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1 Introduction

The Multinomial Probit Model (MNP) has now become a widely accepted alternative to

the multinomial logit model for situations in which one of a �nite number of outcomes are

observed conditional on a set of covariates. The recent popularity of the MNP model stems

from the appeal of relaxing the IIA property of logit models and advances in methods for

inference. Both likelihood-based and non-likelihood based methods have been advanced

which make estimation of MNP models for a large number of alternatives computationally

tractable. Working from the frequentist point of view, McFadden (1989) proposed the

method of simulated moments and Hajivassiliou and McFadden (1990) have proposed the

method of simulated scores (See also Keane (1994) and Borsch-Supan and Hajivassiliou

(1993)).

A Bayesian analysis of the MNP model is given in McCulloch and Rossi (1994) (hence-

forth MR) (see also Nobile (1998)). The MNP model, as commonly speci�ed, has a vector

of coe�cients � and a covariance matrix � as parameters. However, the parameters (�;�)

are not fully identi�ed. The model is often identi�ed by setting the �rst diagonal element

of the covariance matrix equal to one (¦11 = 1). A key feature of the MR method is the

manner in which the identi�cation issue is handled. In the MR approach, a proper prior is

speci�ed for the full set of parameters (�;�) and the marginal posterior of the identi�ed

parameters (�=
p
¦11;�=¦11) is reported. Thus, the prior on the identi�ed parameters is the

marginal prior of (�=
p
¦11;�=¦11) derived from the prior distribution speci�ed for the full

set of parameters (�;�). The approach is taken because of the di�culties associated with

a Bayesian analysis of covariance matrices with �rst diagonal element �xed at one. Since

it is impossible to specify a truly di�use or improper prior with this approach, the induced

priors must be inspected to assure that they properly represent the investigators beliefs.

In this paper, we present a new approach which places a prior directly on the set of

identi�ed parameters. We do this by specifying a prior on � such that the �rst diagonal

element is one with probability one. We discuss both the assessment of the prior and

the computation of the posterior. Computation of the posterior involves a simple Gibbs
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sampler in which each draw is either normal, truncated univariate normal, or Wishart. The

new prior can be both informative or di�use and improper. We present analytical results

that facilitate the prior speci�cation in both the new prior and that of MR. However, we

see in the examples that this simple method of achieving identi�cation comes at a cost: the

Gibbs sampler produces a Markov chain which tends to be more highly autocorrelated that

the Markov chain used in the MR approach. In some extreme cases, the Markov chain for

the identi�ed parameter case will fail to converge. These cases occur in high dimensions

and in situations in which the likelihood is not very informative.

In section 2, we review the multinomial probit model and discuss the identi�cation

problem. As discussed above, the way in which this issue is handled is the key di�erence

between the method of this paper and the MR approach. Section 3 reviews the MR algo-

rithm and section 4 presents our new prior and corresponding Gibbs sampling algorithm.

For either method, we must assess the prior. In section 5 we discuss the choice of the

prior and present some analytical results that aid in assessing and comparing the alterna-

tive priors. Section 6 illustrates the prior and posterior computation with some simulated

examples. Section 7 discusses the implications of our new prior for the distribution of the

smallest eigenvalue which explains why certain prior settings may cause convergence prob-

lems. Section 8 discusses the pros and cons of the new approach and brie�y compares it

with other approaches in the literature.

2 The Multinomial Probit Model

2.1 The Model

In this section we brie�y review the MNP model. Let Y be a random variable such that

Y 2 f0; 1; 2; : : : ; p � 1g and X be a (p � 1) � k matrix. The conditional distribution of

Y jX is speci�ed as follows. First let,

W = X� + � (1)
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where � is N(0;�). Y is then a function of W by,

Y (W ) =

8><
>:

0 if max(W ) < 0

i if max(W ) = Wi > 0:
(2)

Here max(W ) means the maximal element of W 0 = (W1;W2; : : : ;Wp�1)
0. So, if all the Wi

are negative then Y = 0 and Y equals the index of the biggest Wi if it is positive.

We have now de�ned Y j X;�;�, where X consists of observable quantities and the

model parameters are � and �. Typically in application we observe a set of observations

(Yi;Xi) and assume that given the X's the Y 's are independent. Various elaborations of

the model have been considered (see for example MR sections 8 and 9).

At this point, some of the di�culties associated with the analysis of the MNP model

may be appreciated. To compute the likelihood we must compute the probability of sets of

the form fW jY (W ) = ig where W £ N(X�;�). The sets are cones in Rp�1. Much of the

research on the MNP model has been devoted to the development of e�cient computational

methods for computing these integrals.

2.2 Identi�cation

In the model speci�ed by (1) and (2) above, the parameters (�;�) are not identi�ed. This

is because Y (cW ) = Y (W ) for all c > 0. Since cW = c(X� + �) = X(c�) + c� we see

that the distribution Y j X; �;� is the same as the distribution Y j X; c�; c2�. Given a

set of observations (Yi; Xi) the likelihood L would be such that L(�;�) = L(c�; c2�). For

discussion of identi�cation in the context of the MNP model see Dansie (1985), Bunch

(1991), and Keane (1992) for example.

Let ¦ij be the ij
th element of �. Since ¦11 is positive, identi�cation may be achieved by

setting ¦11 equal to 1. This is the approach commonly adopted in frequentist methods. It is

not straightforward to adopt this approach in a Bayesian analysis because of the di�culty

in de�ning a prior on the set of covariance matrices such that the (1,1) element is one.
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3 An Algorithm with Nonidenti�ed Parameters

3.1 The Algorithm

In this section we brie�y review the method developed in MR for a Bayesian analysis of

the MNP model. The method uses the full set of parameters (�;�). Because of the model

is not identi�ed, we use a proper prior to ensure that the posterior is proper. The prior

speci�cation lets � and � be independent with � having a multivariate normal distribution

and G = ��1 having a Wishart distribution:

p(� j ¡b; A) / jAj 12 expf�1

2
(� � ¡b)0A(� � ¡b)g (3)

p(G j ¢; V ) / jGj¢�p2 expftr(�1

2
GV )g: (4)

Here, ¡b and A are the parameters of the normal prior: � £ N(¡b; A�1). V and ¢ are

the parameters of the inverted Wishart prior: ��1 £ W (¢; V ). Note that our parameter-

ization of the Wishart distribution is such that E(��1) = ¢V �1. In practice we choose

values for (¡b;A; ¢; V ) and then check that the marginal prior of the identi�ed parameters

(�=
p
¦11;�=¦11) is reasonable. Theoretically, our marginal posterior is the same as that

obtained by working with just the identi�ed parameters (�=
p
¦11;�=¦11) and the marginal

prior on them derived from the prior speci�ed for the full set of parameters. MR uses the

full set of parameters so that the following simple algorithm may be used to compute the

posterior.

The method uses Gibbs sampling to obtain draws from the posterior distribution. Gibbs

sampling is discussed in Gelfand and Smith (1990), Casella and George (1992), Smith and

Roberts (1993), and Tierney (1991) among many others. In the Gibbs sampling approach,

we sample the Wi in (1) above. As pointed out by Albert and Chib (1993), introducing the

latent variables fWig to be drawn in addition to (�;�) greatly simpli�es the algorithm.

Let Wij be the j
th element of the ith W vector. Let Wi(�j) be the i

th W vector with Wij

removed. Given the data D = fYi; Xig, the Gibbs sampling algorithm proceeds by drawing

from the following set of conditional distributions:
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� j �; fWig; D
� j �; fWig; D

Wij j �;�; fWi(�j)g;D

The draw of � is from a multivariate normal, the draw of � is from an inverted Wishart

distribution, and the draw of each Wij is a univariate truncated normal.

Nobile(1998) has proposed an elaboration of the algorithm above. A Metropolis step is

added in which the current values of all W , �, and � are scaled up or down by a positive

constant and the algorithm jumps to the scaled values or not in the usual Metropolis man-

ner. Nobile provides evidence that this added step signi�cantly improves the performance

of the Markov chain.

4 A Method with Fully Identi�ed Parameters

In this section, we describe an alternative prior and corresponding Gibbs sampling algo-

rithm for the MNP model. The prior assigns probability one to the set f� j ¦11 = 1g in

such a way that we are able to draw from � j�; fWig; D. Thus our algorithm for computing

the posterior will be same as before, except for the draw of �. As discussed in section 2.2

above, by �xing ¦11 = 1, we identify the parameters of the MNP model.

We de�ne our prior by �rst reparametrizing �. Denote the � in (1) by (�1; �2; : : : ; �p�1)
0.

Then let U = �1 and Z = (�2; �3; : : : ; �p�1)
0 so that � = (U;Z 0)0. � indexes the joint

distribution of U and Z which is N(0;�). We rewrite this joint distribution as the marginal

distribution of U and the conditional distribution Z jU . Let � = E(UZ) and �Z = E(ZZ 0).

We have U £ N(0; ¦11) and Z j U £ N((�=¦11)U;�Z � ��0=¦11). Let � = �Z � ��0=¦11.

There is a one to one correspondence between � and (¦11; �;�). Hence we can put a prior
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on f� j ¦11 = 1g by setting ¦11 = 1 and putting priors on � and � using the relation:

� =

2
64
1 �0

� �+ ��0

3
75 : (5)

We choose the following priors:

� £ N(¡�; B�1) (6)

��1 £W (�; C): (7)

To obtain draws from (�;�) j�; fWig; D, �rst note that given � and fWig we \observe"
f�ig. Correspondingly we have observations (Ui; Z

0

i)
0. From above, � and � are simply the

parameters of a multivariate regression of Z on U . The draw of (�;�) is easily done by

again Gibbs sampling: � j �; �; fWig; D and � j �; �; fWig;D. Our full Gibbs sampler is

then:

� j �;�; fWig; D
Wij j �; �;�; fWi(�j)g;D
� j �; �; fWig;D
� j �; �; fWig; D:

The �rst two draws are just as in MR with � obtained from �, � and ¦11 = 1. The third

draw is a normal and the fourth draw is an inverted Wishart. The exact form of these last

two draws is given in the appendix.

5 Analytical Results and Prior Assessment

We shall refer to the approaches of sections 3 and 4 as NID and ID (not identi�ed and

identi�ed) respectively. In this section we present analytical results that help us understand

and choose the priors in both approaches.

First some notation. In the NID approach, one dimension of the parameter is uniden-

ti�ed and a proper prior is used to ensure that the posterior is proper. In the ID approach
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only the identi�ed parameters are used. To clearly distinguish the identi�ed parameters

from the \full" set we shall henceforth refer to the parameters of the NID method as ~�

and ~�. We use � and � to denote the parameters identi�ed by the restriction ¦11 = 1:

� = ~�=
p
~¦11 and � = ~�=~¦11.

Under the NID prior, ~� £ N(¡b; A�1) and ~��1 £ W (¢; V ) so that the set of prior

parameters which must be chosen is (¡b;A; ¢; V ). Under the ID prior we have � £ N( ¡�;D�1),

� £ N(¡�; B�1), and ��1 £W (�;C) so that the set of prior parameters is ( ¡�;D; ¡�;B; �; C).

Note that in the ID case we have the option of using the standard improper choices:

D = 0, B = 0, and � = 0. In this case the choices of ¡�, ¡�, and C do not matter. In the

NID case we must choose a proper prior.

Both the NID prior and the ID prior have unusual forms. In the remainder of this

section we derive results about these nonstandard priors and use these results to help us

choose the prior parameters. We assume that the prior is assessed, at least approximately,

by choosing appropriate marginals for � and �. For both priors, we obtain results about the

marginal priors on the identi�ed parameters � and �. We �rst explore the marginal prior

of � in each prior and then that of �. Proofs of all results are available in the appendix.

5.1 The Prior for �

The simplest prior is that of � in the ID algorithm: � £ N( ¡�;D�1).

In the NID approach the prior for � is more complicated. Result 1 below gives the

prior distribution of the identi�ed coe�cients using the NID prior. We need the following

notation.

V �1 =

2
64
v11 v12

v21 V 22

3
75 (8)

where v11 is 1 � 1, v12 is 1 � (p � 2), v21 = (v12)0, and V 22 is (p � 2) � (p � 2). Let

v1:2 = v11 � v12(V 22)�1v21.

Result 1:
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Under the NID prior the marginal distribution is � = ~�=
p
~¦11 £

p
v1:2 ª ~�, where ª2 £

ª2¢�p+2 independent of
~� £ N(¡b;A�1).

Result 1 tells us that the form of the prior for � using the NID method is quite unusual:

the square root of a chi-squared random variable times a normal. When ¡b is 0, this will

result in a distribution with heavy tails relative to the normal. When ¡b is non-zero the

distribution will be skewed.

A basic feature of the NID prior is that � and � are not independent. In result 1, we

see that the prior for � depends on that of � through ¢ and v1:2. The easiest thing to do in

practice seems to be to choose the prior for � and then choose that of � given ¢ and v1:2.

5.2 The Prior for �

In both the ID and the NID case, we assume that as a �rst step in choosing the prior

parameters for �, we are able to specify its expected value.

E(�) =

2
64

1 E(�)0

E(�) E(�) + E(��0)

3
75 =

2
64

1 E(�)0

E(�) � + E(�)E(�)0

3
75 : (9)

Where � = E(�) + V ar(�).

Given E(�), both E(�) and � are known.

5.2.1 The ID Case

Our goal is to choose values for the prior parameters (¡�;B; �; C) where � £ N(¡�; B�1) and

��1 £ W (�; C). We take as given E(�) and �. Clearly, ¡� = E(�). Using a standard result

in multivariate analysis we have, E(�) = C
(��p+1)

, giving,

� =
C

(�� p+ 1)
+B�1: (10)

Thus,

C = (�� p+ 1)(��B�1): (11)
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Consider the simple but important case where we wish to have E(�) = I. Then

E(�) = 0 and � = I. If we simplify be letting B�1 = §I then speci�cation of the prior now

involves only the choice of the two scalars � and § ! Since � is the degrees of freedom in our

inverted Wishart prior, � and § control the tightness of the prior with large values of of �

and small values of § giving tighter priors. The relative variability of � and � determine

the prior distribution of the correlations. To see this, note that in the case p = 3, the

single correlation in � is �=
q
(�+�2). If the variance of � is small (relative to �) the prior

distribution of the correlation will tighten up around 0.

5.2.2 The NID Case

The prior parameters of � in the NID case are (¢; V ) where ~� £ W (¢; V ). Our goal is to

have some understanding of the implications of choices for (¢; V ) on the prior distribution

of � = ~�=~¦11. Since (�;�) constitute a one to one reparametrization of the identi�ed �,

our approach is to derive the marginal priors of � and � given choices of ¢ and V .

Result 2:

Under the NID prior the marginal distribution of � is multivariate t with ¢� p+3 degrees

of freedom and

E(�) = (V 22)�1v21 and Var(�) =
v1:2

¢ � p+ 1
(V 22)�1 (12)

Result 3:

Under the NID prior the marginal distribution of ��1 is of the form

��1 =
W

!
where W £Wishart(¢; (V 22)�1) and ! £ v1:2ª2¢�p+2 (13)

with W and ! independent.

From result (3) we have:

E(�) =
v1:2(¢ � p+ 2)

¢ � p+ 1
(V 22)�1: (14)
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To use these results, we again suppose that we are able to specify the expected value of

� so that E(�) and � are given. Our results give � = E(�)+V ar(�) = v1:2(V 22)�1 ¢�p+3
¢�p+1

.

Given choices for v1:2 and ¢ we can obtain (V 22)�1 from �. Given (V 22)�1, we can obtain

v21 from E(�). Thus, given E(�) we have only the two numbers ¢ and v1:2 left to choose

in order to specify the prior.

As a simple example we can let (as we did in the ID case) E(�) = 0 and � = I. This

implies that v12 = 0, v1:2 = v11 and

V 22 =
v11(¢ � p+ 3)

(¢ � p + 1)
I: (15)

Given these choices, v11 simply scales the distribution of ~� up and down by a factor which

cancels out for � so that the choice of v11 does not a�ect the distribution of �. Of course

it does a�ect the distribution of � as a scale factor, but this can always be adjusted by

choice of A. Consequently, in this simple setup, we can assume without loss of generality

that v11 = 1. We are now left with only the choice of ¢ in order to specify the prior of �!

6 Simulated Examples

In this section we apply the ID approach to two simulated examples. The examples are

the same as those of MR. In the �rst example p = 3 and in the second p = 6.

We consider two versions of the ID prior. In both cases we choose D = 0, an improper

choice for for the prior on �. In choosing our prior for �, we center the prior on the I so

that (as in section 5.2.1) all we must specify are values for � and § . In our �rst prior we

choose � = p+ 2 and § = 1=8. In our second prior we choose B = 0 and � = 0 so that the

prior on � is improper as well.

In both priors we avoid making choices about the prior for �. In the �rst prior we have

chosen to roughly center our prior for � at the identity matrix. In the second prior we

avoid making choices for � as well.
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Each run of a Gibbs sampler is started at the initial values � = 0 and � = I. Since we

draw W �rst, there is no need to specify initial values.

6.1 Simulated Example with p = 3

With p = 3, � is 2 � 2 so there is just one unconstrained variance and one correlation.

Figure 1 displays the marginal prior distributions of the single correlation (top panel) and

the single variance given the choices of the �rst ID prior: � = (p+2) = 5 and § = 1=8. The

histograms are constructed from 10,000 iid draws from the prior. We see that the prior for

the correlation is centered at zero but spreads out towards �1. The prior for the variance
has mean one and a long right tail. Of course, we cannot display the any marginal priors

for the second prior choice since it is improper on both � and �.

Data was simulated as follows. The matrixX has just one column and the corresponding

true value of the single coe�cient equals -1.414. Each of the X values was drawn iid from

the uniform distribution on the interval (�:5; :5). The true value of the correlation is .5

and the true value of the unconstrained variance is 2. 3000 observations were simulated.

Figure 2 displays the posteriors of the three parameters (�, ¦22, and ¥12) obtained from

the �rst choice of ID prior. In each histogram the solid line is drawn at the value of the true

parameter. These histograms are based on 10,000 iterations of the Gibbs sampler outlined

in section 4 (after discarding a few initial burn in draws). Figure 3 displays the results

using the second prior (improper on �). The results displayed in �gures 2 and 3 are very

similar and both appear to be quite reasonable.

Figure 4 displays additional detail for the draws of the variance. Both the time series

plot of the draws and the autocorrelation function are shown. Rows 1, 2, and 3 of the

�gure display results for the NID sampler, ID sampler with our �rst prior choice, and

the ID sampler with the second prior choice respectively. The prior for the NID sampler

was ¡b = 0, A�1 = 100I, ¢ = 6, and V = ¢I. In all three cases the autocorrelation

functions die o� as the lag increases. Clearly, the draws from the ID samplers are more

highly autocorrelated than those of the NID. The draws from the ID sampler using the
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second prior are more highly autocorrelated than those of the �rst. For example the 10th

autocorrelation is .77 for the second prior and .71 for the �rst.

This example illustrates a basic feature of the Gibbs sampler of section 4 for the ID

prior. The more di�use the prior on � is, the slower the autocorrelations die out. We have

tried many simulated examples and found this to be generally true.

6.2 Simulated Example with p = 6

In this example there is again just one column in the X matrix and its values are iid draws

from the uniform distribution on the interval (�2; 2). The true value of the coe�cient

is .89. With p = 6, � is a 5 � 5 matrix so there are 4 unconstrained variances and 10

correlations. The true values of the 4 variances are .8, .6, .4, and .2 as we go down the

diagonal. All true correlations are .5. 1600 observations were generated.

Figure 5 displays four of the marginal posteriors obtained from our �rst ID prior (� = 8,

§ = 1=8). These histograms are based on 30,000 iterations of the Gibbs sampler. Again,

in each case the solid line depicts the true value of the parameter. The top left panel is �,

the top right is ¦22, the bottom left is ¥12 and the bottom right is ¥23. As in the p = 3 case

the sampler seems quite successful.

The sampler run using the second prior, which is improper on �, got stuck at a � which

was almost singular at about the 15,000th iteration. In the next section we discuss the

relationship between the performance of the sampler and the choice of prior.

7 Marginal Priors for Eigenvalues

The examples of the previous section show the choice of ID prior has an e�ect on the

performance of the corresponding Gibbs sampler. In this section, we explain how the prior

a�ects the performance of the sampler.

The sampler in the p = 6 example failed because we got stuck in a region of the

parameter space where � was nearly singular. This suggests that the prior may be guiding
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the sampler to matrices of this type. In order to get a feeling for this we use the smallest

eigenvalue as a measure of how close to singularity a particular � may be. We now examine

the prior distribution of the smallest eigenvalue.

Figure 6 displays the marginal prior distribution of the smallest eigenvalue of � for two

choices of the ID prior in the case p = 6 (so � is 5� 5). The top panel corresponds to the

choices � = p + 1 and § = 1=2. The bottom panel corresponds to the choices � = p + 2

and § = 1=8 used in section 6. These two priors are markedly di�erent. In the top panel

most of the mass is on values less than .1 while in the bottom panel most of the mass is

on values greater than .1. Since the identity matrix has smallest eigenvalue equal to 1, it

makes sense that if we tighten up our prior around � = I we will move the marginal prior

of the smallest eigenvalue towards 1.

Given that successively less informative proper priors put more prior weight on very

small eigenvalues, one might expect that the improper prior prior on � might e�ectively

put even greater weight on tiny values of the smallest eigenvalue. However, since we cannot

simulate from the prior distribution of the smallest eigenvalue in the case of the improper

prior, our approach is to use this prior with a very small simulated sample of data and

check the posterior for in�uence from this prior. We simulated 7 observations from the

N5(0; I) distribution and then computed the posterior of � given these observations. The

idea is that the posterior from a small data set will largely re�ect features of the prior. The

data set is chosen to be large enough to turn the improper prior into a proper posterior.

We then computed the marginal posterior distribution of the smallest eigenvalue of �. We

did the same thing for the two priors displayed in �gure 6. The results are displayed in

�gure 7. The top, middle, and bottom panels, correspond to the improper, � = p+ 1 and

§ = 1=2, and � = p+2 and § = 1=8 priors. The posteriors are very di�erent. The posteriors

for the proper priors are what we might expect given the priors (�gure 6). The posterior

obtained from the improper prior shows that it is very informative. The improper prior

pushes the posterior towards � matrices such that the smallest eigenvalue is very small.

Clearly, the improper prior is very informative about the smallest eigenvalue. This explains
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why the sampler got stuck using the improper prior. Note that this can only happen if the

likelihood is not su�ciently informative to overwhelm the prior. Recall that in the p = 3

example the sampler based on the improper prior had no problem.

8 Advantages and Disadvantages of ID Prior

The NID prior approach is most useful in situations in which a proper but fairly di�use

prior is desired. However, the results in section 5 show that it may be di�cult to assess

a truely informative prior on � using the NID approach. This is particularly true if a

prior mean other than zero is desired. In contrast, the ID approach can be used to assess a

standard normal prior directly on �. There are a number of situations in which informative

priors are desireable. For example, hierarchical models for situations in which the data has

a panel or grouped structure have become increasing popular. The heart of the hierarchical

model is an informative prior on the coe�cients. Typically, we would assume that each

panel member j corresponds to a set of coe�cients �j, and use a prior,

�j £ N( ¡�; V�): (16)

In our view, this hierarchical model makes the most sense when applied to the identi�ed

coe�cients (see Rossi et al (1996) for an example). The ID approach can be extended easily

to handle a variety of hierarchical models of this sort.

Informative priors on � are also useful in situations in which the investigator has prior

information from subject matter theory or experience with similar datasets. For example,

a multinomial model for choices between di�erent brands of similar products as in Nevo

(1997) would feature a price coe�cient which is certainly negative and never much less

than -20 or so.

Note that this approach to prior speci�cation should be viewed as a way to roughly

gauge the prior since we assume that the prior is assessed by separately choosing marginals

for � and �. Given the nature of the MNP model, prior information should involve de-

pendence between � and �. For example, prior information may be about the implied
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probabilities rather than directly about � and � which would imply dependence. For the

simpler multinomial logit model (the main competitor to the MNP) it is possible to assess

the prior in a more natural way (see Koop and Poirier (1993)). For the more complicated

MNP model prior assessment is a di�cult problem. If, for example, the researcher had prior

information about the underlying utility maximization process leading to the multinomial

data it might be possible to specify specify a prior on the full set of parameters ( ~� and ~�)

and actually use that data to learn about the unidenti�ed parameters (see Poirier (1998)).

Some investigators are uncomfortable with informative priors and would like to use

improper priors. The NID approach cannot be used with improper priors on either � or

�. The ID approach can easily handle an improper uniform priors on �. In principle, we

can also used improper priors on � as well. However, as shown in 6 above, the improper

prior on � is actually an extremely informative prior on the smallest eigenvalue of the

sigma matrix. In some situations, the Gibbs sampler based on the ID improper prior on

� can get stuck on a near singular matrix. This will happen with highest probabilty in

high dimensional problems with a small amount of data. Note that in practice is very easy

to identify when the sampler is stuck so that there is no possibility of actually reporting

incorrect results.

There is an accumulating body of evidence in the statistics literature on covariance

matrix estimation that a modest amount of shrinkage on the eigenvalues or correlations

will produce estimators with good risk properties (see Yang and Berger (1994) and Kass and

Daniels (1998)). Thus, an improper prior on � has at least three undesireable aspects: 1.

it is actually a very informative prior on the smallest eigenvalue, 2. the sampling properties

of Bayes estimators based on this prior are apt to be poor and 3. our ID Gibbs sampler

may experience convergence problems with this prior. For these reasons, we advocate the

use of a weakly informative default prior on � (centered on I) in the absense of strong prior

information. The improper prior on � can be used as a diagnostic for prior senstivity, if

desired.

Other possible approaches to assessing priors directly on the identi�ed parameters in-
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clude using the prior of Barnard, Meng and McCulloch (1996)(see, also, in McCulloch and

Rossi (1996)) and the approach of Chib et al (1998). In the Barnard et al approach, � is

written as Diag(S)RDiag(S) and various priors are used on the standard deviations and

correlations. This prior can be implemented in a Griddy Gibbs algorithm since the relevant

range of each correlation can be expressed as function of all other correlations, allowing

a one by one draw of R. The Griddy Gibbs algorithm is reliable but it can be slow and

requires the choice of grid size and �neness tuning parameters. Some additional work would

be required to assess truely informative priors on R. Chib et al (1998) propose using the

Cholesky root parameterization with the diagonals parameterized to insure positivity and

set ¦11 = 1. As Chib et al (1998) discuss, it would be extremely di�cult to assess an

informative prior in this parameterization. The authors use a prior which is assessed based

on preliminary estimates of the covariance matrix and asymptotic variances. A Metropolis

algorithm is used with a t-style candidate sampling density. Tail and shape tuning pa-

rameters must be assessed to insure proper functioning of the Metropolis algorithm. A

basic advantage of the approach presented in this paper is that we are able to obtain the

analytical results of sections 5. These results help us understand the prior and guide its

choice. It seems unlikely that there is any other way to specify a prior such that ¦11 = 1

using standard distributions for which analytical results are available.

The advantages, then, of our ID approach is that we can use both truely informative

or strictly improper priors on � and � and the MCMC algorithm can be implemented

using standard conjugate normal and Wishart draws with no tuning parameters. Because

standard distributions are used analytical results on the properties of the prior are available.

The cost of using the ID approach (vis a vis the NID approach) is that chain de�ned by the

ID Gibbs sampler has higher autocorrelation and is more sensitive to initial conditions than

the NID Gibbs sampler or the improved hybrid NID sampler proposed by Nobile (1998).

Fortunately, we have found that the ID Gibbs sampler is computationally tractible and

that these problems can be avoided using longer draw sequences.

Finally, the prior developed in this paper is useful in any situation in which the marginal
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prior distribution of the (1,1) element of a covariance matrix can be speci�ed. In the case

the MNP model, we focus on the special case in which this distribution is degenerate

around the value 1. An earlier working paper version of this paper (McCulloch, Polson and

Rossi(1994)) has already stimulated the use of this prior for switching regression models

by Koop and Poirier (1997) and for strucutural equations models with limited dependent

variables (Li (1996)). Jacquier, Polson and Rossi (1994) use this prior to model correlation

between innovations in the level and volatility of time series. Ainslie (1998) uses the ID

prior in an extension of the standard MNP model to consider purchases of the outside good.
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Appendix

In this appendix, we derive the marginal distributions of � and � under the prior used

by MR (the NID prior). We also present the exact form of the additional conditional

distributions used in the second Gibbs sampling algorithm of section 4.

Marginals of � and �

Let ~� denote the variance matrix of � in equation(1) above and � denote the matrix of

identi�ed parameters. We then have:

� = ~�=~¦11: (1)

In the �rst algorithm, the prior on ~� is de�ned by G = ~��1 £Wishart(¢; V ) and the prior

on � is then the marginal prior induced by equation(1). Note that we de�ne ¢ and V to

be such that E(G) = ¢V �1.

It is useful to partition the (p� 1)� (p� 1) matrices �, G, and V as follows:

� =

2
64

1 ¦12

¦21 �22

3
75 G =

2
64
g11 g12

g21 G22

3
75 V �1 =

2
64
v11 v12

v21 V 22

3
75 (2)

Here, ¦12 is 1� (p� 2), ¦2;1 is (p� 2)� 1, �22 is (p� 2)� (p� 2), and ¦12 = ¦021 and

the partitions of the other matrices are dimensioned in the same way.

The parameters � and � are de�ned as functions of � by:

� = ¦21 and � = �22 � ¦21¦12: (3)

Equations (1) and (3) de�ne � and � as functions of G. We proceed by �rst deriving these

functions in an explicit form and then obtaining the marginal distributions.

Using standard results on the inverse of a partitioned matrix, we have:

G�1 =

2
64

(g11 � g12G
�1
22 g21)

�1 �g12G�1
22 (g11 � g12G

�1
22 g21)

�1

�G�1
22 g21(g11 � g12G

�1
22 g21)

�1 G�1
22 +G�1

22 g21g12G
�1
22 (g11 � g12G

�1
22 g21)

�1

3
75 ; (4)

so that,

� =

2
64

1 �g12G�1
22

�G�1
22 g21 (g11 � g12G

�1
22 g21)G

�1
22 +G�1

22 g21g12G
�1
22

3
75 : (5)
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From equation (3) we then have:

� = �G�1
22 g21 and � = (g11 � g12G

�1
22 g21)G

�1
22 ; (6)

under the prior of the �rst algorithm.

To obtain the marginal distributions of � and � write G =
P¢

i=1 ZiZ
0

i where Zi £
N(0; V �1) iid. Then let Z 0

i = (Yi; X
0

i)
0 with Yi 2 R and Xi 2 Rp�2. With Y 0 =

(Y1; Y2; : : : ; Y¢)
0 and X 0 = (X1; X2; : : : ; X¢) we have:

G =

2
64
Y 0Y Y 0X

X 0Y X 0X

3
75 : (7)

Now note that the conditional distribution of YijXi isN(X 0

i(V
22)�1v21; (v11�v12(V 22)�1v21)).

Since g11� g12G
�1
22 g21 is the residual sum of squares from the regression of Y on X, its dis-

tribution is (v11� v12(V 22)�1v21)ª2¢�p+2 given X and hence it is independent of X, and its

marginal distribution is its conditional. Clearly, X 0X = G22 £Wishart(¢; (V 22)�1). Thus

��1 has the distribution of a Wishart divided by an independent ª2:

��1 =
G22

g11 � g12G
�1
22 g21

£ Wishart(¢; V 22)�1)

(v11 � v12(V 22)�1v21)ª2¢�p+2

: (8)

The expected value of ��1 is given by E(��1) = E(Wishart(¢; (V 22)�1))E(1=ª2¢�p+2)(v
11�

v12(V 22)�1v21)�1 = ¢V 22(¢ � p)�1(v11 � v12(V 22)�1v21)�1.

For the distribution of � we have �� = G�1
22 g21 = (X 0X)�1X 0Y . Given X we have

�� £ N((V 22)�1v21; (v11 � v12(V 22)�1v21)(X 0X)�1). The joint distribution of (�;G22)

is now seen to be of the same form as that of the conjugate prior for the mean and

covariance matrix in the analysis of iid samples from the multivariate normal distribu-

tion. Hence the marginal distribution of � is multivariate t with ¢ � p + 3 degrees

of freedom and moments E(E(�� j X)) = E((V 22)�1v21) = (V 22)�1v21 and V ar(�) =

E(V ar(� jX)) = E((v11 � v12(V 22)�1v21)(X 0X)�1) = (v11 � v12(V 22)�1v21)E((X 0X)�1) =

(v11 � v12(V 22)�1v21)(V 22)�1(¢ � p + 1)�1. The last equality follows from the fact that if

W is p� p and W £Wishart(¢; A) then E(W�1) = A(¢ � p� 1)�1.

Conditional Distributions for � and Phi Draws
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As discussed in section 4, drawing � and � is like drawing from the posterior distribution

of the multivariate regression of the last p� 2 � 's on the �rst �. In the notation of section

4, let Ui be the i
th observation of the �rst � and Zi the the i

th observation of last p � 2

� 's. Let U 0 = (U1; U2; : : : Un)
0 and Z 0 = (Z1; Z2; : : : ; Zn)

0. Then we have the multivariate

regression Z = U�0 + " where the rows of " are N(0;�) iid.

Given � and the conjugate prior ��1 £Wishart(�; C), the posterior for ��1 is Wishart(�+

n; C + (Z � U�0)0(Z � U�0)).

Given � we have V ec(Z 0) = (U � I)� + V ec("0), with V ec("0) £ N(0; I � �). If we

write (I � ��1=2)V ec(Z 0) = (I � ��1=2)(U � I)� + (I � ��1=2)V ec("0) and � £ N(¡�; B�1

we then have a standard univariate regression with conjugate prior. From this we obtain

� £ N(A�(V ec(�
�1Z 0U) +B¡�); A�) where A� = (U 0U��1 +B)�1.
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Figure 1.
ID Prior Distributions
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Figure 2.
Posterior Distributions - Proper ID prior
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Figure 3.
Posterior Distributions - Improper ID Prior
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Figure 4.
Time Series Properties of NID, ID proper and ID Improper Samplers
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Figure 5.
Posterior distributions of Model Parameters: p = 6 example
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Figure 6.
Prior Distributions of Smallest Eigenvalue
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Figure 7.
Posterior Distribution of Smallest Eigenvalue - Small Dataset
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