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Abstract

We review and extend our earlier wortk on Bayesian analysis of the Multinomial Probit
model. We employ a hierarchical Bayesian framework and define various Gibbs samplers
for analysis of these hierarchical models. We outline two basic samplers for the MNP model
— one which navigates in the full parameter space and one which navigates only in the space
of identified parameters. We consider extensions of the basic model to include panel data
settings with random effects priors as well as general priors for the covariance matrix of the
probit equation errors which offer more flexibility than the standard Wishart Prior.






1. Introduction

In this chapter, we discuss Bayesian Analysis of the Multinomial Probit Model
(MNP) using Markov Chain Monte Carlo methods. Although the MNP model has been in
the econometrics and psychology literature for some 60 years, it is only recently that
estimation and inference methods have made it feasible to analyze MNP models with more
than two or three response categories. Classical sampling theoretic approaches to estimation
of the MNP model have recently been proposed in the econometrics literature (see
Hajivassiliou [1994] for an excellent overview of these methods). All of these classical
econometric methods rely on asymptotic approximations to conduct inference about the
probit model parameters. McCulloch and Rossi (1994) show that is possible to conduct
exact, likelihood-based inference for the MNP model by using a Bayesian simulation method
which complements the work by Albert and Chib (1993) on the binomial probit model (see
Zellner and Rosst [1984] for a non-simulation approach to Bayesian inference in the
binomial setting). Evidence in McCulloch and Rossi (1994) and Geweke, Keane and Runkle
(1994) shows that the asymptotic approximations used in the classical approaches can be
inaccurate and that the improved inference available in the Bayesian approach is no more
computationally demanding than the classical simulation-based approaches.

Our Bayesian method can easily be extended to handle hierarchical or random
coefficient models used with panel data, autocorrelated latent regression errors, and non-
normal random coefficient distributions all within the same hierarchical framework. Below
we outline approaches for each of these important extensions. All of these extensions build
on the basic hierarchical model structure laid out in McCulloch and Rossi. A critical

component of the Bayesian approach to inference in the MNP is a prior on the covariance



matrix of the latent regression errors. We review two basic approaches to specifying these
covariance matrix priors. We also review the approach of the Barnard, McCulloch and
Meng (1996) and show how this very flexible class of covariance matrix priors can be used in

this situation.

2. The MNP Model and Identification

2.1 The Model

To begin, we briefly review the notation for the MNP model. Let Y be a
multinomial random variable which takes on one of the possible values, {1, ..., p}. In
many econometric applications, Y denotes the choice made by economic agents between p
alternative goods. We observe Y conditional on information contained in the matrix Z
(p % k'). The conditional distribution of Y | Z is specified via a latent regression system.

1. U=78+v  where v ~N(0,Q)
We do not observe U directly but instead observe the index of the maximum W

ii. Y =i if max,(U)=1,

I

Here max(U) means the maximal element of U’ = (U1 ,Ussos, Up) .
U is often interpreted in the choice context as the system of latent utilities associated
with p choice alternatives. Agents choose among the mutually exclusive p choice

alternatives so as to maximize utility but the econometrician is unable to observe the utility

levels and must make inferences about utility using choice information alone.
i) and ii) define the sampling model, Y | Z, & 2. Typically, we obsetrve the set of
observations (Y;,Z,) and assume that they are iid according to the sampling model. In

many applications, choice data is obtained by observing a panel of consumers and the 1id



assumption requires modification. In section 7 below, we elaborate the model to
accommodate a panel structure.

At this point, we can readily appreciate two problems associated with inference in
this model. First, the model as specified in (1) and (2) is not identified. Second, the
likelihood of &8, Y | Y, Z requites the evaluation of the conditional multinomial choice
probabilities which require integration of a p dimensional normal distribution over sets of

the form {U|Y(U) = i}. These sets are cones over which the normal distribution 1s difficult

to integrate. Much of the research on the MNP model has been devoted to the
development of methods for computing these integrals which would allow for fast

evaluation of the likelihood function or moment conditions.

2.2 Identification

As 1s well-known, the model specified by i) and ii) is not identified. The distribution
of Y|Z is unchanged adding a scalar random variable to all components of U or by scale
shifts. The location invariance problem is solved by differencing the system which respect
to some base choice alternative (which we assume is alternative 1).

W, =U,, - U, i=1,...,p—1

W, = 2y 7,

If there are intercept terms in the Z matrix for each choice alternative, then the differencing

of the rows of Z expresses each of the intercepts as differences with respect to the first
choice alternative. Thus, to achieve identification we customatily set the first element of
to zero. From this point on, we will call this vector, B. The sampling model can now be

written as



W=XB+e €~N(0,%)
0 if max(W) <0
i i max(W) =W, >0

Wis p-1, X ((p —-1)x k), and 2 ((p —-1)x(p- 1))
While differencing the system removes the location invariance problem, we still face

the problem of scale invariance. This problem arise from the fact that Y(cW) = Y(W) for all
c > 0. Since cW = c(XPB+€) = X(cB) + cg, we cansee that Y | X, B, Z =Y | X, cf3, 2%
and thus that L(B,%) = L(c[3,c2%).

In the classical literature, it is common to fix an element of 2 (e.g set 011 = 1.0) (c.f.
Dansie[1985]). Another possibility would be to fix an element of the B vector which would
require a priori knowledge of the sign of that element. In the Bayesian approach, it is not
straightforward to adopt a prior with 011 = 1.0 since this requires putting a prior on the set

of covariance matrices with fixed 1,1 element. As we show below, this is possible but it

requires non-standard, non-conjugate priors.

3. The MCMC Approach to Bayesian Inference in the MNP

To conduct Bayesian inference in the MNP, we must summarize information given

by the posterior distribution of the model parameters.

p(B,2

Y,X) o< p(B,Z)p(Y[X,B, )

Generally, we want to compute the moments of the posterior and make various probability
statements about the likely range of parameter values. If the likelihood function could be
evaluated at low computational cost, we could use standard numerical integration methods

as in Zellner and Rossi (1984). Even with more modern methods of approximating the



probabilities need to evaluate the likelihood function, direct numerical integration
procedures would be computationally infeasbile for all except the smallest models. In
addition, approximation error in computation of the multinomial probabilities would have to
be held to a minimum to as not to affect the properties of the direct numerical integration

methods such as importance sampling.

3.1 Gibbs Samplers for the MNP

Our approach to the problem of postetior inference for the MNP model is to
construct a method which provides the equivalent of a indirect simulator from the posterior
distribution. We construct a Markov chain whose invariant or equilibrium distribution is
the posterior distribution. Thus, we can simply run this Markov chain forward from some
starting point to generate sequences of draws which can be used to estimate any desired
feature of the posterior distribution. This idea of constructing a Markov chain as a indirect
posterior simulator is called Markov Chain Monte Carlo (MCMC) and has been fruitfully
applied to many important problems in Bayesian statistics and economettrics.

In the analysis of the MNP model, we use a particular MCMC method called the
Gibbs sampler (introduced by Geman and Geman[1984] and Tanner and Wong [1987]).
The Gibbs sampler relies on the remarkable result that iterative, recursive sampling from the
full set of conditional distribution results in a Markov chain with equilibrium distribution
equal to the joint distribution. In the case of the MNP model, if we augment the parameters

(B,%) with the vector of all latent udlides, W, then we can break the full set of parameters

into three groups and draw these groups successively to form the Gibbs sampler. This

strategy relies on the fact that, conditional on W, the Bayesian analysis of the MNP reduces



to standard linear model results. The three groups of conditional distributions are defined as

follows:
i wB,G=2",y,X where w'=(W,,...,Wy),y'=(Y,,.... Yy),
Xl
X=|
XN
i. Blw, X,G
iii. G|B, W

To implement the Gibbs sampler, we start with values of 3 and G. We then draw w from i,
B from ii using the new value of w, and finally G from iii using the new values of w and [3.

This process is repeated to produce a sequence of draws of (w,[3,G). Note that since this

simple version of the MNP model is 1id, we can draw the w vector in conditional i) above,

one observation at a time and then piece the W together.

The distribution of W,

B,G,Y, is a p-1 dimensional normal distribution truncated
to a cone. For example, if Y; =j then W, > max(Wi’_].,O) where W, _, is the p-2 dimensional
vector of all of the components of W excluding W,;. We avoid this problem of drawing
from a truncated multivariate normal distribution by using a sub-chain Gibbs sampler to

B,Z,Y,,X.. The

draw from the truncated univariate conditional distributions, \X/i,]-‘\X/i S
truncation point of this univariate normal distribution can readily be calculated from the
definition of implied regions in 0", The moments of these univariate normal distributions

can readily be calculated from the multivariate normal  distribution of

Wi

B,G,X,; ~ N(XiB,G). To make draws from the truncated univariate normal

distribution, we use a rejection strategy (see McCulloch and Rossi [1994], p. 212).



The second conditional distribution, B|G,w, 1s a simple matter to draw from if the
ptior on 3 is multivatiate normal. 3 ~ N(E, A_1>.
LetG=CC

Blw, X,G ~ N(fs, zB) T, = (XIX. +A) 1B = 2y (X, +AB)

w, =1, UCw; X, =1, 0CX

The method by which we draw from the conditional posterior distribution of G
depends critically on the prior adopted. In this chapter, we develop three different sorts of
priors for G, each with a different draw strategy which we introduce in sections 4, 5, and 6
below.

To summarize, we use various Gibbs samplers to construct a Markov chain which
enables us to estimate via simulation any required posterior quantity. Given sufficient
computer resources, we can achieve a very high degree of accuracy in these estimates of
posterior quantities. Thus, while our inferences do not rely on asymptotics in the sense of
arbitrarily large sample sizes, we do require large simulation sizes to achieve a high degree of
accuracy in the estimates of posterior quantities. We take the basic view that asymptotic
approximations are more relevant and useful when the investigator has control over the

sample size.

3.2 Practical Considerations for the MNP Gibbs Sampler

The theory of MCMC and, i particular, the Gibbs sampler shows that under very
mild conditions, the Gibbs sampler Markov Chain will converge i distribution to the
posterior distribution at a geometric rate (see McCulloch and Rossi [1984] and Tierney

[1991]). While these theoretical results assure the eventual convergence of the MNP Gibbs



samplers, this theory offers little practical guidance. There are two important practical
considerations: 1) how long must the Gibbs sampler be run in order to be confident that the
effect of initial conditions have dissipated? 2) what 1s the information content of a given
sequence of Gibbs draws from the stationary distribution?

These practical convergence considerations can only be answered empirically. To
assess the rate at which the initial conditions are dissipated, we conduct an analysis of the
sensitivity of the estimated posterior distributions to various, widely dispersed initial
conditions (see Gelman and Rubin [1992]). For each initial condition, we “burn-in” or run
out the Gibbs sampler for a large number of draws (typically at least 5000 draws) and then
use the remaining draws in the sequence to estimate the posterior distribution. If we have
chosen an adequate burn-in series length, T*, then the estimated posteriors should all be
about the same for all starting points. McCulloch and Rossi [1994] report a series of
experiments in which the algorithm specified in section 3 below is tested with a wide variety
of imitial conditions. The sampler appears to converge rapidly from any initial condition.
Our experience with more complicated samplers affirms this general finding of insensitivity
to initial conditions (Nobile[1995] documents a possible exception which can occur using
informative priors, see section 4 for details).

If we feel comfortable that the “burn-in” periods of T* draws is sufficient, we then
use the remaining T-T* draws to estimate posterior quantities. It is important to remember
that the Gibbs sampler is a non-iid simulation method and, therefore, the draws can exhibit
dependence. In the first applications of the Gibbs sampler to linear models, this dependence
in the draw sequence was never a severe problem and quite short runs could be made.
However, our experience with the MNP model is that the draw sequences can be highly

autocorrelated, necessitating long runs of the sampler to achieve good accuracy in the



estimates of posterior quantities. Given even relatively modest computing resources, it 1is
possible to make very long runs of the MNP Gibbs samplers even for relatively large
samples and high dimensional (e.g. p>4 and N > 2000) problems. Our usual approach is to
make a “burn-in” run and then start short runs on a number of workstations, starting from
the “burned-in” values of the parameters (including the latent variables). These short runs
are pieced together to form the draw sequence which is used for inference. In this manner,

we can solve most problems in no more than one day of computing.

4.  An Algorithm with Non-identified Parameters

As discussed 1n section 2.2, the model parameters (B,Z) are not identified. The
identified parameters are functions of these unidentified parameters.

B=B/yo,: £=2/c,

If we desire informative priors, it would seem most convenient to put these priors directly

on the identified parameters, (B,Z). This requires a prior on the space of covariance

matrices conditional on 011 =1.0. One approach to this problem taken in McCulloch and
Rossi (1994) is to specify a prior on the full set of parameters (B,E). This induces a prior on

the identified parameters. For a given choice of the prior hyperparameters, we then
examine the implied prior on the identified parameters. With some trial and error, we can
hope to find prior parameter settings that will appropriately reflect our views on the
identified parameters. In practice, this approach is most useful for specifying relatively
diffuse or uniformative priors.

To define the Gibbs sampler in this case, we use the approach outlined m 3.1 and

specify a conditionally conjugate Wishart prior on G.



v—p-1 1
p(Glv, V) e<|G[ 2 etr{—EGV}
The posterior of G i1s also in the Wishart form.

G

N
B,w,X ~ W(V+N,V + Zsis;)
1=1

If we combine this Wishart draw with the draws from the conditional postetior of 3 and the

draws of w specified in section 3.1, we define a Gibbs sampler that navigates in the full
parameter space of unidentified parameters. Fortran code for this algorithm can be obtained
at ftp://gsbper.uchicago.edu in the directory pub/rossi/mnp.

Our approach in most applications of this sampler is to specify proper but fairly

diffuse ptiors on G and B. We investigate the induced ptior over the identified patameters

to insure that it reflects a proper level of diffusion. We then run the Gibbs sampler to
indirectly simulate from the joint posterior of (B,Z,W). We report the marginal posterior

distribution of the identified parameters. It should be emphasized that it does not matter
whether we first marginalize the prior and conduct the analysis only on the identified
parameters or marginalize the posterior since the likelihood depends only on the identified
parametets.

This Gibbs sampler navigates freely in the non-identified parameter space,
constrained only the non-identifed directions only by the proper prior. Nobile (1995) has
constructed some examples in which this algorithm can take a very long time to dissipate the
mnitial conditions. These examples involve mformative priors on the space of non-identified
priors. These priors “flatten” down the likelthood ridge in certain regions of the parameter
space and make it difficult for the algorithm to find the region of high posterior value. The

priors Nobile considers are informative about non-identified parameters. It is hard to
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imagine how such prior information could arise in normal circumstances. Nobile proposes a

hybrid MCMC method which accelerates convergence.

5. An Algorithm with Fully Identified Parameters

An alternative to the non-identified algorithm would be to specify a prior directly on
the identified parameters, (B,i), in such as way as we can easily draw from the appropriate
conditional posteriors. McCulloch, Polson and Rossi (1993) introduce a computationally
attractive prior for 3.

We define this ptior by first reparameterizing 2. According to the basic model,

g, ~N(0,%). Write €/ = {Si)l,(si)z,---, € i )} ={U,,e/}. We can then write the joint

distribution of €; as the marginal distribution of U; and the conditional distribution, e,|U;.
Lety = E[Uiei] and 2 = E[el.ei']. We then can write the marginal distribution of U and
the conditional distribution of ¢ U,

U, ~N(0,6,,)

el U, NN[LUUZZ -y /011)

11

Let ® =X —7vy’/0,,. Then we can reparametetize 2 in terms of G,,,Y, and ®.

z:[““ v }
Yy @®+yw'/o,

Hence, we can put a prior on {Z|(511 = 1} by setting 6,, =1 and putting ptiors on Y and ®.
For convenience, we use the following priors

Y~N(7,B")

-11-



and
o ~ W(Kk,C)

To obtain draws from (’Y,CI)) B,w,X, we note that we “observe” (Ui, ei). yand @ are

simply the parameters of a multivariate regression of e; on U;. Standard results from Bayes

linear models provide the conditional posteriors -

V|CD, B,w,X ~ N(Ay((vec(q)_lE'U) + By), Ay)

I

where A, = (U'U® " +B) 5 U =(U,,...,Uy); E' = (ey,...0y)

and

q)—l

Y,B,w, X ~ W(K +N,C+(E - Uy')' (E- Uy'))

The Gibbs sampler for the identified parameter case 1s defined as the following sequence of

conditional draws.

L. W B,E,X,y
il B‘E,W,X
iii. |, w,X which is achieved via

¥o Bw,X and  @7fy,Bw,X

This Markov chain navigates in a lower (by one) dimensional space that the MNP sampler
for non-identified parameters. In addition, the one-shot draw of the covariance matrix 1s
broken down into two conditional draws which may introduce an additional source of
autocotrelation into the Markov chain. It should be noted, however, that with the natural

conjugate prior of the multivariate regression framework (see Zellner [1971], chapter VIII)

_12-



we can draw % in one shot by drawing from the marginal postetior of @' B,W,X instead of

the posterior conditional on Y.
Some care has to be used 1n assessing the prior hyperparameters in this set-up. The

relative diffusion of the ptior on Yand @ is important. To see this, consider the case of p=3.

e
Y 0+Y

and

¥

O+

If the prior on Y is relatively more diffuse that the prior on (@, then the joint prior will put

corr(e1 ,82) =

most mass near high correlations.

The advantages of the prior on identified parameters 1s twofold: 1) improper diffuse
priors are possible and 2) informative priors for B more easily assessed than for the method
which uses the full non-identified parameterization. In many applications, we have prior
information on the likely values of E In the prior set-up for the non-identified parameters,
we do not directly assess a prior on the identified slope coefficients but must induce a
complicated prior instead (see McCulloch, Polson, and Rosst [1993] for an analysis of the
implied marginal distribution of P for this prior).

One might ask the legitimate question of whether or not it 1s possible to asssess a
prior on the identified parameters via the method of section 4 which is similar to the prior
introduced 1n this section. In McCulloch, Polson, and Rossi (1993) the marginal

distributions of Y and @® are detived under the non-identified ptior. While the ptiors on the
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identified parameters are not identical for the two methods in section 4 and 5, it is possible

to assess very similar priors by careful equating of moments.

6. Other Informative Priors for the Covariance Matrix

Experience with actual and simulated data has shown that it is very difficult to make
precise inferences about the covariance parameters in the MNP. Keane (1990) notes that
there are situations in which these covariance parameters are nearly unidentified. — Our

experience is that the relative variances (0, / 0,,) are well identified by the data, but that the

correlations may require a great deal of information to make relatively precise inferences
about. Thus, in many situations, it may be desirable to inject prior information about the
correlation patterns in the data via exact restrictions on covariance structure or via

informative priors.

6.1 Vartance Components Approaches

To discuss the variance component approach, it is useful to return to the notation
for the undifferenced system of latent variables.

U=78+v v~N(0,Q)
If we start with an independence probit (Q=D, a diagonal matrix), then the differenced

system errors will show an equi-correlated structure.

d2 +d1 dl dl
d, +d, :
Var(S =v_ _Vl) = ’ J
1
dp—l +d1

If D = dI, we would have an equi-correlated structure with a correlation of .5.

_14-



Patterns of correlation can be most easily introduced by using a variance
components structure. For the purpose of interpretation, we find it more intuitive to
introduce the variance components in the undifferenced system. We can think of grouping
the p choice alternatives into G groups, each of which has some common, unobservable
component of utility. For example, if the alternatives are different brands of a consumer
product, then the high-priced products might all enjoy a higher perceived quality in the eyes
of certain consumers. This would introduce a variance component for quality perceptions
for the higher-priced brands.

We break the p alternatives into G groups. Let g(j) be an indicator index function

for group g. ¢(j) =1 if j Uindices for group g, g=1, ..., p.
G
v, =w, + z g()t,
g=1

w, ~ iid N(O, o’ ); £, ~ N(O, Gi ); {ty } are independent.
This parametetizes the Q matrix with G+1 variance component parameters. We note that

because of the restricted structure of this parameterization of €, differencing is not required
for identification purposes. We still must impose some restriction on the covariance para-
meters for identification. If we restrict %, =1, this will achieve identification.

We can easily define a Gibbs strategy for this variance component structure by
introducing the {r, } as additional latent variables. If we group together the components of
each v;i vector corresponding to group g, then the conditional posterior of rg is a normal

mean problem. Our MNP Gibbs sampler for the variance component problem replaces the

draw of ¥ or 2 with the following sets of conditional draws:

t .|v.,0

gt 12 T g

_15-



O-g

{rg,i }

6.2 More General Priors on the Correlation Matrix

The variance component approach to specifying an information prior on the
covariance structure 1s appealing because of it’s parsimony and usefulness 1n cases i which
the alternatives can be grouped into similar groups. However, the covariance structure
generated from the variance component model is restrictive in that it only affords positive
covariances. In addition, a prior information on grouping may not be available. A more
general approach would be to put an informative prior on the matrix of correlations which
“shrinks” the correlation structure toward some base case such as the equi-correlated case
produced by a scalar independence probit.

Barnard, McCulloch and Meng [1996] introduce a general class of priors for
covariance matrices that can be applied fruitfully here. To introduce this prior, it is most
convenient to return to the differenced system. The Barnard et al approach is to
reparameterize the covariance matrix in terms of the standard deviations and the correlation
matrix and then put independent priors on each.

> =/ARA where A\ is a diagonal matrix with Ai =0
The prior considered in Barnard et al 1s

p(AR) = p(A)p(R); p(R) O1; log(A,) ~ iid N(u,, T,)
The emphasis in Barnard et al is on the prior for the variances with the primary motivation
stemming from a location shrinkage application. Here we might prefer to be very diffuse on

the variances and more informative on R.
In this general framework, we put a prior on 2 by simply specifying p(/\) and p(R).

We set A1 = 1 for identification purposes, and let the log-normal priors on remaining

_16-



elements of A be very diffuse (or even impropet). We then must choose an appropriate
prior on R.  The region of support of the prior on R is a subset of the hypercube with side
(-1,1). This region becomes more restricted as you move away from the origin due to the
constraints implied by positivity of the R matrix.  This implies the “non-informative”
uniform prior on R is actually informative due to the nature of the restricted support. For
p>2, the marginal prior distributions of each r;j element is non-uniform and becomes more
concentrated near zero as the dimension (p) increases. If we wanted to “center” the prior
over the independent scalar Probit model (this is the probit analogue of the multinomial
logit model), we would have to use a prior which puts mass around .5. One such prior with
reasonably slow damping tails might be

p(R) O exp{—npz_1 pz_l‘rﬁ—.S‘}.

=1 =il
The task of drawing from the conditional postetior, Z|B,w,X, might seem

formidable because of the teparametetization of 2, the non-conjugate nature of the prior,

and the restricted region of support. The un-normalized conditional posterior density can

be written.
p(]B.w.X) = p(E]E) = p(A,R|E) O etr{=5(ARA) ™ EE'}p(R)IPj p(A,)
E=[e,....& ]

Direct draws from this density are not possible. A very general solution to this problem 1s
to define a sub-Gibbs sampler and draw the elements of A and R one by one, conditional on

the others. This one-by-one method also allows one to compute the region of support for
each rj given all of the other elements. Still, the conditional distributions are in very non-

standard forms. A highly effective solution to this problem is to adopt a “Griddy” Gibbs
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strategy (Ritter and Tanner, 1992). The Griddy Gibbs sampler uses a discrete approximation
to the conditional distributions used in the sub-Gibbs sampler. We choose a gtid of points
in the support of the prior and simply compute the multinomial approximation to the
conditional distribution by evaluating the conditional posterior density at each of the grid
points. It should be emphasized that the Griddy Gibbs Sampler does not suffer from the
direct curse of dimensionality that would afflict a standard discrete approximation to the
joint posterior. We only evaluate the conditional posteriors, one by one, and never have to
evaluate the joint posterior at a grid of points designed to fill the entire parameter space.
Furthermore, the grids can be adaptive so that we only put points in regions where there is
high posterior mass. Barnard et al report effective use of the Griddy Gibbs method for up

to 10 x 10 covariance matrices.

7. Bayesian Random Coefficient or Hierarchical Models for Panel Data

As we have discussed, reasonably precise inferences about the MNP model
parameters, particularly correlation and covariance parameters, may require a large number
of observations. It is rare to observe only one economic agent making choices between the
same set of alternatives on many different occasions. Large samples are obtained in MNP
applied work by observing the choices made by a large number of agents. Frequently, these
choices are observed in a panel setting in which a large number of entities are observed for a
relatively short period of time. In these panel settings, it is important that the MNP model
be able to accommodate differences between entities. From this point on, we will refer to
the economic entities as households even though they could just as easily be firms.

Differences between households in model coefficients or ‘“heterogeneity” has

received a good deal of attention in the econometric literature.. The standard approach to
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this problem of accommodating heterogeneity with large N and small T is to use a random
coefficient model. In the MNP literature, we typically see heterogeneity modeled as a
random coefficient model for the intercepts (c.f. Borsch-Supan and Hajivassilliou [1992]).
There 1s no particular reason to believe that heterogeneity is restricted to the intercepts (for
example, it is entirely reasonable that different households might display different
sensitivities to choice characteristics such as price). In addition, a distinction is often made
between “observable” heterogeneity (differences which are linked to observable attributes of
households) and “unobservable” heterogeneity which is only revealed by choice behavior.
Therefore, it is imperative that our approach to modeling heterogeneity accommodate
differences in all MNP regression coefficient parameters as well as incorporate observable

and unobservable heterogeneity.

7.1 A Hierarchical Approach to Modeling Heterogeneity

To fix the notation, we consider a panel of N households observed over Th periods

for each household.

We model the household heterogeneity via an additional regression model.
B, =0z, +v, v, ~ N(O, VB)
zn contains a vector of d household characteristic (“demographic”) variables. Thus, each

MNP regression coefficient is related to a vector of characteristics and an unobservable

component v. The unobservable component has a general covariance structure over
households. Since we typically do not want to fix A and V as known, we introduce priors

for these common parameters. This is a good example of a hierarchical Bayesian model in
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which the sampling model and set of priors is built up from a series of conditional
distributions.

The complete model is specified as follows:

L Yh,t

Wh,t

1. Wh,t

Xh,t>Bh’ Z

1it. B, ‘zh A,V

1v. 2V, V
V. AZ,A,VB
vi. VB‘VB,VU

Z,A, Ug,V, are hypet-parametets of the priors for A and V, . The conditionals 1 and 1

specify what most consider the “sampling” model. Conditional 1. specifies what

econometricians call the “random coefficient” model. In our Bayesian hierarchical
approach, the conditionals iii-vi specify a joint prior over the set of {Bn }. Rossi, McCulloch

and Allenby (1995) discuss the specific form of these priors using the conditionally conjugate

families.

The prior on V; is especially important in determining how much information is
shared or “borrowed” across households in performing inference about the {Bh} If the
prior for V, is tight around a small value, then there will be extensive shrinkage and the
{Bh} will differ little. More diffuse priors on V, will induce less shrinkage. It is important

to note that this prior must be proper in order for the joint posterior in this model to be

proper. Thus, even with very diffiuse settings, the prior on V, must be influential. By
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making this a proper prior, we are asserting that there is some commonality among the

1B}
Given the basic framework outlined for the fixed coefficient MNP model outlined in

sections 3 above, it is a simple matter to elaborate the Gibbs sampler to include conditional
posterior draws of the A and V, which are in well-known multivariate normal and Wishart

form (see Rossi, et al [1995] for details). Our experience with this more elaborate sampler 1s
that the sampler converges rapidly to a stationary distribution but that the draw sequences

can be highly autocorrelated, necessitating long runs for accurate results.
In some problems, it may be useful to make inferences about the draw of Py for a
specific household. In the Bayesian hierarchical approach, we require the marginal posterior

distribution of .

p(P, |data) O J p(Bh A, V[3|d:41t:41)dAdV[3

Fortunately, we can easily marginalize on [, using the sequence of Gibbs draws produced as
a by-product of our procedure. Rosst et al (1995) make explicit use of these household-level
parameter inferences to solve various targeted marketing problems which involve
customizing promotional offers at the household level. The Br draws can also be used as the
basis of an informal diagnostic procedure for the form of the prior or mixing distribution.
The assumption By ~ N(Azn, V) is only the form of the prior for each household. The
individual household data can shape the posterior for household h to a different form. If we
lump together all draws across all households and look at this distribution, we can assess
whether the normal prior is approptiate to characterize the distribution of PBn  over

households. For example, if we see a multi-modal distribution, this might suggest that we

should mvestigate more flexible priors.
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In a classical random coefficient model, the likelihood is averaged over the mixing
distribution and inference is only made about the common parameters of the mixing
distribution. On the other hand, the Bayesian approach combines the smoothing advantages
of the frequentist random effects model with the richness of the fixed effects approach. In
the Bayesian approach, there is no real distinction between fixed and random effects only
between independence priors (“fixed” effects) and dependent priors (hierarchical or random

coefficient models).

7.2 Extensions
7.2.1 Normal Mixtures

The normal mixing model used in section 7.1 as the first stage of the hierarchical
prior can be criticized as insufficiently flexible. In many situations, we might want to specify
a prior structure that would allow for some grouping or clustering of households into more
homogenous sub-populations. One way of achieving this would be to specify a mixture of
normals as the prior. To illustrate how this might be achieved, we will simplify the model of

section 7.1 to remove the household characteristics vector, zh. In this model, we would
simply have a normal prior with a fixed mean vector, B, ~ N(B, VB)‘ We can replace this

normal distribution with a mixture of normals:

J J

)"{Ei}’{vm}): Z)\iq)(ﬁh‘ﬁj,\fg,j) > A =1

=1 =1

p(Bh

We would have to introduce a ptior for the Aj mixture probabilities, and it would be most

convenient to use a standard natural conjugate Dirichlet prior. The mixture of normals
model could be easily handled in the Gibbs sampler via the introduction of latent indicator

variables which switch on for each of the ] components in the mixture. The indicator
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variables would have a conditional multinomial distribution. Given the component indicator
variables, inference about the parameters of each component in the mixture can be done

using standard normal model theory.

7.2.2 Multiperiod Probit Models

In many panel applications, the assumption of independence of the model errors
across time for the same households is questionable. It is straightforward to extend the
MNP samplers to handle error terms which follow an AR(p) process. To illustrate this idea,
consider a binomial multiperiod probit model. Geweke, Keane and Runkle (1994) consider
a Gibbs sampling approach to the multinomial multiperiod probit model and conduct
extensive comparisons with the methods of simulated moments and method of simulated
likelihood.

The latent variables set-up for the binomial multiperiod probit is given as follows:
Wy, = Xh,t,Bh +E,, where €, = rP(B)Sh,t +tu, Var(uh,t) =1
The AR polynomial is parameterized by p autoregressive coefficients which we denote by
the vector (. The un; are assumed to be independent across time and households. We must

introduce priors for the €,y and @. To implement the Gibbs sampler, we must modify our

strategy for drawing w and append two sets of conditionals to the Gibbs structure. This

Gibbs sampler consists of the following set of conditionals:

wiB,¢,g,,y,X
B|W’ ¢’8() ’X
O|w,B,g,.X

80|W’ ¢s B’X
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Here B, € ,w,y and X are stacked vectors (mattices) of household parameters and data.
The draw of w proceeds using the same strategy as before except that the autocorrelation

structure changes the univariate normal conditional distribution of w,  (w, _, . In addition,

the conditional postetior of 3 is computed as before except on the orthogonalized regression
system (pre-multiplied by the Cholesky root of the correlation structure which 1s available

since we are conditioning on ().

8. Conclusions

In this chapter, we 1illustrate how Bayesian inference can be achieved for a number of
variants of the multinomial probit model. In particular, we consider various informative and
non-informative priors on the model parameters, accommodating heterogeneity of various
forms, non-normal mixing distributions, and multiperiod models. All of these situations can
be handled via a Gibbs sampling strategy in which a Markov chain is constructed with the
posterior distribution as its invariant distribution. Extensions of the basic model are handled
in a unified framework by appending additional distributions to the base Gibbs sampler.

Our experience to date with the MNP model with both actual and simulated data
suggests that there is much promise in this line of research. All of the data sets we have
analyzed strongly support a trejection of the IIA property which is at the core of the
multinomial logit model. The MNP model provides a great deal of flexibility at the expense
of a complicated and high-dimensional parameterization. Our own experience 1s that it is

difficult to make precise inferences about the covariance structure of the latent variable
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errors. This suggests that future successful modeling approaches will rely on restricted MNP
models or informative priors.

Finally, Bayesian methods offer an alternative to the recent classical methods of
simulated moments, simulated scores and simulated maximum likelthood. These methods
provide the basis for finite sample inferences at approximately the same order of
computation demands as these classical alternatives. In addition, our methods provide a
natural and flexible method for modeling heterogeneity and provide household level
parameter inferences should these be needed. The chief practical concern in the application
of our methods is the rate of convergence of the Gibbs sampler. Our experience is that

convergence is rapid enough for reliable practical application.
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