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Abstract

In principle, the Bayesian approach to model selection is straightforward. Prior probability
distributions are used to describe the uncertainty surrounding all unknowns. After observing
the data, the posterior distribution provides a coherent post data summary of the remaining
uncertainty which is relevant for model selection. However, the practical implementation of this
approach often requires carefully tailored priors and novel posterior calculation methods. In
this article, we illustrate some of the fundamental practical issues that arise for two different
model selection problems: the variable selection problem for the linear model and the CART
model selection problem.
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1 Introduction

The Bayesian approach to statistical problems is fundamentally probabilistic. A joint proba-
bility distribution is used to describe the relationships between all the unknowns and the data.
Inference is then based on the conditional probability distribution of the unknowns given the
observed data, the posterior distribution. Beyond the specification of the joint distribution, the
Bayesian approach is automatic. Exploiting the internal consistency of the probability frame-
work, the posterior distribution extracts the relevant information in the data and provides a
complete and coherent summary of post data uncertainty. Using the posterior to solve specific
inference and decision problems is then straightforward, at least in principle.

In this article, we describe applications of this Bayesian approach for model uncertainty
problems where a large number of different models are under consideration for the data. The
joint distribution is obtained by introducing prior distributions on all the unknowns, here the
parameters of each model and the models themselves, and combining them with the models.
Conditioning on the data then induces a posterior distribution of model uncertainty that can
be used for model selection and other inference and decision problems. This is the essential idea
and it can be very powerful. Especially appealing is its broad generality as it is based only on
probabilistic considerations. However, two major challenges confront its practical implementa-
tion - the specification of the prior distributions and the calculation of the posterior. This will
be our main focus.

The statistical properties of the Bayesian approach rest squarely on the specification of the
prior distributions on the unknowns. But where do these prior distributions come from and what
do they mean? One extreme answer to this question is the pure subjective Bayesian point of view
that characterizes the prior as a wholly subjective description of initial uncertainty, rendering the
posterior as a subjective post data description of uncertainty. Although logically compelling, we
find this characterization to be unrealistic in complicated model selection problems where such
information is typically unavailable or difficult to precisely quantify as a probability distribution.
At the other extreme is the objective Bayesian point of view which seeks to find semi-automatic
prior formulations or approximations when subjective information is unavailable. Such priors
can serve as default inputs and make them attractive for repeated use by non-experts.

Prior specification strategies for recent Bayesian model selection implementations, includ-
ing our own, have tended to fall somewhere between these two extremes. Typically, specific
parametric families of proper priors are considered, thereby reducing the specification prob-
lem to that of selecting appropriate hyperparameter values. To avoid the need for subjective
inputs, automatic default hyperparameter choices are often recommended. For this purpose,
empirical Bayes considerations, either formal or informal, can be helpful, especially when in-
formative choices are needed. However, subjective considerations can also be helpful, at least
for roughly gauging prior location and scale and for putting small probability on implausible
values. Of course, when substantial prior information is available, the Bayesian model selection
implementations provide a natural environment for introducing realistic and important views.

By abandoning the pure subjective point of view, the evaluation of such Bayesian methods
must ultimately involve frequentist considerations. Typically, such evaluations have taken the
form of average performance over repeated simulations from hypothetical models or of cross

2



validations on real data. Although such evaluations are necessarily limited in scope, the Bayesian
procedures have consistently performed well compared to non-Bayesian alternatives. Although
more work is clearly needed on this crucial aspect, there is cause for optimism, since by the
complete class theorems of decision theory, we need look no further than Bayes and generalized
Bayes procedures for good frequentist performance.

The second major challenge confronting the practical application of Bayesian model se-
lection approaches is posterior calculation or perhaps more accurately, posterior exploration.
Recent advances in computing technology coupled with developments in numerical and Monte
Carlo methods, most notably Markov Chain Monte Carlo (MCMC), have opened up new and
promising directions for addressing this challenge. The basic idea behind MCMC here is the
construction of a sampler which simulates a Markov chain that is converging to the posterior
distribution. Although this provides a route to calculation of the full posterior, such chains
are typically run for a relatively short time and used to search for high posterior models or
to estimate posterior characteristics. However, constructing effective samplers and the use of
such methods can be a delicate matter involving problem specific considerations such as model
structure and the prior formulations. This very active area of research continues to hold promise
for future developments.

In this introduction, we have described our overall point of view to provide context for
the implementations we are about to describe. In Section 2, we describe the general Bayesian
approach in more detail. In Sections 3 and 4, we illustrate the practical implementation of
these general ideas to Bayesian variable selection for the linear model and Bayesian CART
model selection, respectively. In Section 5, we conclude with a brief discussion of related recent
implementations for Bayesian model selection.

2 The General Bayesian Approach

2.1 A Probabilistic Setup for Model Uncertainty

Suppose a set of K models M = {M1, . . . ,MK} are under consideration for data Y , and
that under Mk, Y has density p(Y | θk,Mk) where θk is a vector of unknown parameters that
indexes the members of Mk. (Although we refer to Mk as a model, it is more precisely a model
class). The Bayesian approach proceeds by assigning a prior probability distribution p(θk |Mk)
to the parameters of each model, and a prior probability p(Mk) to each model. Intuitively,
this complete specification can be understood as a three stage hierarchical mixture model for
generating the data Y ; first the model Mk is generated from p(M1), . . . , p(MK), second the
parameter vector θk is generated from p(θk | Mk), and third the data Y is generated from
p(Y | θk,Mk).

Letting Yf be future observations of the same process that generated Y , this prior formulation
induces a joint distribution p(Yf , Y, θk,Mk) = p(Yf , Y | θk,Mk) p(θk |Mk) p(Mk). Conditioning
on the observed data Y , all remaining uncertainty is captured by the joint posterior distribution
p(Yf , θk,Mk|Y ). Through conditioning and marginalization, this joint posterior can be used for a
variety Bayesian inferences and decisions. For example, when the goal is exclusively prediction of
Yf , attention would focus on the predictive distribution p(Yf |Y ), which is obtained by margining
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out both θk and Mk. By averaging over the unknown models, p(Yf | Y ) properly incorporates
the model uncertainty embedded in the priors. In effect, the predictive distribution sidesteps
the problem of model selection, replacing it by model averaging. However, sometimes interest
focuses on selecting one of the models in M for the data Y , the model selection problem. One
may simply want to discover a useful simple model from a large speculative class of models. Such
a model might, for example, provide valuable scientific insights or perhaps a less costly method
for prediction than the model average. One may instead want to test a theory represented by
one of a set of carefully studied models.

In terms of the three stage hierarchical mixture formulation, the model selection problem
becomes that of finding the model in M that actually generated the data, namely the model
that was generated from p(M1), . . . , p(MK) in the first step. The probability that Mk was in
fact this model, conditionally on having observed Y , is the posterior model probability

p(Mk | Y ) =
p(Y | Mk)p(Mk)∑
k p(Y | Mk)p(Mk)

(1)

where
p(Y | Mk) =

∫
p(Y | θk,Mk)p(θk | Mk)dθk (2)

is the marginal or integrated likelihood of Mk. Based on these posterior probabilities, pairwise
comparison of models, say M1 and M2, is summarized by the posterior odds

p(M1 | Y )
p(M2 | Y )

=
p(Y | M1)
p(Y | M2)

× p(M1)
p(M2)

. (3)

This expression reveals how the data, through the Bayes factor p(Y |M1)
p(Y |M2) , updates the prior odds

p(M1)
p(M2) to yield the posterior odds.

The model posterior distribution p(M1|Y ), . . . , p(MK |Y ) is the fundamental object of interest
for model selection. Insofar as the priors p(θk |Mk) and p(Mk) provide an initial representation
of model uncertainty, the model posterior summarizes all the relevant information in the data Y

and provides a complete post-data representation of model uncertainty. By treating p(Mk | Y )
as a measure of the “truth” of model Mk, a natural and simple strategy for model selection is
to choose the most probable Mk, the one for which p(Mk | Y ) largest. Alternatively one might
prefer to report a set of high posterior models along with their probabilities to convey the model
uncertainty.

More formally, one can motivate selection strategies based on the posterior using a decision
theoretic framework where the goal is to maximize expected utility, (Gelfand, Dey and Chang
1992 and Bernardo and Smith 1994). More precisely, let α represent the action of selecting
Mk, and suppose that α is evaluated by a utility function u(α, ∆), where ∆ is some unknown
of interest, possibly Yf . Then, the optimal selection is that α which maximizes the expected
utility ∫

u(α, ∆)p(∆ | Y )d∆ (4)

where the predictive distribution of ∆ given Y

p(∆ | Y ) =
∑
k

p(∆ | Mk, Y )p(Mk | Y ) (5)
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is a posterior weighted mixture of the conditional predictive distributions.

p(∆ | Mk, Y ) =
∫

p(∆ | θk,Mk)p(θk | Mk, Y )dθk (6)

It is straightforward to show that if ∆ identifies one of the Mk as the “true state of nature”,
and u(α, ∆) is 0 or 1 according to whether a correct selection has been made, then selection
of the highest posterior probability model will maximize expected utility. However, different
selection strategies are motivated by other utility functions. For example, suppose α entails
choosing p(∆ |Mk, Y ) as a predictive distribution for a future observation ∆, and this selection
is to be evaluated by the logarithmic score function u(α, ∆) = log p(∆ |Mk, Y ). Then, the best
selection is that α which maximizes the posterior weighted logarithmic divergence

∑
k′

p(Mk′ | Y )
∫

p(∆ | Mk′ , Y ) log
p(∆ | Mk′ , Y )
p(∆ | Mk, Y )

(7)

(San Martini and Spezzaferri 1984).
However, if the goal is strictly prediction and not model selection, then expected logarithmic

utility is maximized by using the posterior weighted mixture p(∆ | Y ) in (5). Under squared
error loss, the best prediction of ∆ is the overall posterior mean

E(∆ | Y ) =
∑
k

E(∆ | Mk, Y )p(Mk | Y ). (8)

Such model averaging or mixing procedures incorporate model uncertainty and have been ad-
vocated by Geisser (1993), Draper (1995), Hoeting, Madigan, Raftery & Volinsky (1999) and
Clyde, Desimone and Parmigiani (1995). Note however, that if a cost of model complexity is
introduced into these utilities, then model selection may dominate model averaging.

Another interesting modification of the decision theory setup is to allow for the possibility
that the “true” model is not one of the Mk, a commonly held perspective in many applications.
This aspect can be incorporated into a utility analysis by using the actual predictive density
in place of p(∆ | Y ). In cases where the form of the true model is completely unknown, this
approach serves to motivate cross validation types of training sample approaches, (see Bernardo
and Smith 1994, Berger and Pericchi 1996 and Key, Perrichi and Smith 1998).

2.2 General Considerations for Prior Selection

For a given set of models M, the effectiveness of the Bayesian approach rests firmly on the
specification of the parameter priors p(θk | Mk) and the model space prior p(M1), . . . , p(MK).
Indeed, all of the utility results in the previous section are predicated on the assumption that
the model is correct. If one takes the subjective point of view that these priors represent
the statistician’s prior uncertainty about all the unknowns, then the posterior would be the
appropriate update of this uncertainty after the data Y has been observed. However appealing,
the pure subjective point of view here has practical limitations. Because of the sheer number
and complexity of unknowns in most model uncertainty problems, it is probably unrealistic to
assume that such uncertainty can be meaningfully described.
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The most common and practical approach to prior specification in this context is to try and
construct noninformative, semi-automatic formulations, using subjective and empirical Bayes
considerations where needed. Roughly speaking, one would like to specify priors that allow the
posterior to accumulate probability at or near the actual model that generated the data. At
the very least, such a posterior can serve as a heuristic device to identify promising models for
further examination.

Beginning with considerations for choosing the model space prior p(M1), . . . , p(MK), a simple
and popular choice is the uniform prior

p(Mk) ≡ 1/K (9)

which is noninformative in the sense of favoring all models equally. Under this prior, the model
posterior is proportional to the marginal likelihood, p(Mk | Y ) ∝ p(Y | Mk), and posterior odds
comparisons in (3) reduce to Bayes factor comparisons. However, the apparent noninformative-
ness of (9) can be deceptive. Although uniform over models, it will typically not be uniform on
model characteristics such as model size. A more subtle problem occurs in setups where many
models are very similar and only a few are distinct. In such cases, (9) will not assign probability
uniformly to model neighborhoods and may bias the posterior away from good models. As will
be seen in later sections, alternative model space priors that dilute probability within model
neighborhoods can be meaningfully considered when specific model structures are taken into
account.

Turning to the choice of parameter priors p(θk | Mk), direct insertion of improper noninfor-
mative priors into (1) and (2) must be ruled out because their arbitrary norming constants are
problematic for posterior odds comparisons. Although one can avoid some of these difficulties
with constructs such as intrinsic Bayes factors (Berger and Pericchi 1996) or fractional Bayes
factors (O’Hagan 1995), many Bayesian model selection implementations, including our own,
have stuck with proper parameter priors, especially in large problems. Such priors guarantee
the internal coherence of the Bayesian formulation, allow for meaningful hyperparameter spec-
ifications and yield proper posterior distributions which are crucial for the MCMC posterior
calculation and exploration described in the next section.

Several features are typically used to narrow down the choice of proper parameter priors. To
ease the computational burden, it is very useful to choose priors under which rapidly computable
closed form expressions for the marginal p(Y |Mk) in (2) can be obtained. For exponential family
models, conjugate priors serve this purpose and so have been commonly used. When such priors
are not used, as is sometimes necessary outside the exponential family, computational efficiency
may be obtained with the approximations of p(Y | Mk) described in Section 2.3. In any case,
it is useful to parametrize p(θk | Mk) by a small number of interpretable hyperparameters. For
nested model formulations, which are obtained by setting certain parameters to zero, it is often
natural to center the priors of such parameters at zero, further simplifying the specification. A
crucial challenge is setting the prior dispersion. It should be large enough to avoid too much
prior influence, but small enough to avoid overly diffuse specifications that tend to downweight
p(Y |Mk) through (2), resulting in too little probability on Mk. For this purpose, we have found
it useful to consider subjective inputs and empirical Bayes estimates.
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2.3 Extracting Information from the Posterior

Once the priors have been chosen, all the needed information for Bayesian inference and decision
is implicitly contained in the posterior. In large problems, where exact calculation of (1) and
(2) is not feasible, Markov Chain Monte Carlo (MCMC) can often be used to extract such
information by simulating an approximate sample from the posterior. Such samples can be used
to estimate posterior characteristics or to explore the posterior, searching for models with high
posterior probability.

For a model characteristic η, MCMC entails simulating a Markov chain, say η(1), η(2), . . ., that
is converging to its posterior distribution p(η |Y ). Typically, η will be an index of the models Mk

or an index of the values of (θk,Mk). Simulation of η(1), η(2), . . . requires a starting value η(0) and
proceeds by successive simulation from a probability transition kernel p(η | η(j)), see Meyn and
Tweedie (1993). Two of the most useful prescriptions for constructing a kernel that generates a
Markov chain converging to a given p(η | Y ), are the Gibbs sampler (GS) (Geman and Geman
1984, Gelfand and Smith 1990) and the Metropolis-Hastings (MH) algorithms (Metropolis 1953,
Hastings 1970). Introductions to these methods can be found in Casella and George (1992) and
Chib and Greenberg (1995). More general treatments that detail precise convergence conditions
(essentially irreducibility and aperiodicity) can found in Besag and Green (1993), Smith and
Roberts (1993) and Tierney (1994).

When η ∈ Rp, the GS is obtained by successive simulations from the full conditional com-
ponent distributions p(ηi | η−i), i = 1, . . . , p, where η−i denotes the most recently updated
component values of η other than ηi. Such GS algorithms reduce the problem of simulating
from p(η | Y ) to a sequence of one-dimensional simulations.

MH algorithms work by successive sampling from an essentially arbitrary probability tran-
sition kernel q(η | η(j)) and imposing a random rejection step at each transition. When the
dimension of η(j) remains fixed, an MH algorithm is defined by:

1. Simulate a candidate η∗ from the transition kernel q(η | η(j))

2. Set η(j+1) = η∗ with probability

α(η∗ | η(j)) = min
{

1,
q(η(j) | η∗)
q(η∗ | η(j))

p(η∗ | Y )
p(η(j) | Y )

}

Otherwise set η(j+1) = η(j),

This is a special case of the more elaborate reversible jump MH algorithms (Green 1995) which
can be used when dimension of η is changing. The general availability of such MH algorithms
derives from the fact that p(η |Y ) is only needed up to the norming constant for the calculation
of α above.

The are endless possibilities for constructing Markov transition kernels p(η | η(j)) that guar-
antee convergence to p(η | Y ). The GS can be applied to different groupings and reorderings of
the coordinates, and these can be randomly chosen. For MH algorithms, only weak conditions
restrict considerations of the choice of q(η |η(j)) and can also be considered componentwise. The
GS and MH algorithms can be combined and used together in many ways. Recently proposed
variations such as tempering, importance sampling, perfect sampling and augmentation offer a
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promising wealth of further possibilities for sampling the posterior. As with prior specification,
the construction of effective transition kernels and how they can be exploited is meaningfully
guided by problem specific considerations as will be seen in later sections. Various illustrations
of the broad practical potential of MCMC are described in Gilks, Richardson, Spieglehalter
(1996).

The use of MCMC to simulate the posterior distribution of a model index η is greatly
facilitated when rapidly computable closed form expressions for the marginal p(Y | Mk) in (2)
are available. In such cases, p(Y | η)p(η) ∝ p(η | Y ) can be used to implement GS and MH
algorithms. Otherwise, one can simulate an index of the values of (θk,Mk) (or at least Mk and
the values of parameters that cannot be eliminated analytically). When the dimension of such
an index is changing, MCMC implementations for this purpose typically require more delicate
design, see Carlin and Chib (1995), Dellaportas, Forster and Ntzoufras (2000), Geweke (1996),
Green (1995), Kuo and Mallick (1998) and Phillips and Smith (1996).

Because of the computational advantages of having closed form expressions for p(Y |Mk), it
may be preferable to use a computable approximation for p(Y |Mk) when exact expressions are
unavailable. An effective approximation for this purpose, when h(θk) ≡ log p(Y |θk,Mk)p(θk|Mk)
is sufficiently well-behaved, is obtained by Laplace’s method (see Tierney and Kadane 1986) as

p(Y | Mk) ≈ (2π)dk/2|H(θ̃k)|1/2p(Y | θ̃k,Mk)p(θ̃k | Mk) (10)

where dk is the dimension of θk, θ̃k is the maximum of h(θk), namely the posterior mode of
p(θ̃k | Y,Mk), and H(θ̃k) is minus the inverse Hessian of h evaluated at θ̃k. This is obtained
by substituting the Taylor series approximation h(θk) ≈ h(θ̃k) − 1

2 (θk − θ̃k)′H(θ̃k)(θk − θ̃k) for
h(θk) in p(Mk | Y ) =

∫
exp{h(θk)}dθk.

When finding θ̃k is costly, further approximation of p(Y | M) can be obtained by

p(Y | Mk) ≈ (2π)dk/2|H∗(θ̂k)|1/2p(Y | θ̂k,Mk)p(θ̂k | Mk) (11)

where θ̂k is the maximum likelihood estimate and H∗ can be H , minus the inverse Hessian of
the log likelihood or Fisher’s information matrix. Going one step further, by ignoring the terms
in (11) that are constant in large samples, yields the BIC approximation (Schwarz 1978)

log p(Y | M) ≈ log p(Y | θ̂k,Mk) − (dk/2) log n (12)

where n is the sample size. This last approximation was successfully implemented for model
averaging in a survival analysis problem by Raftery, Madigan and Volinsky (1996). Although
it does not explicitly depend on a parameter prior, (12) may be considered an implicit approx-
imation to p(Y | M) under a “unit information prior” (Kass and Wasserman 1995) or under a
“normalized” Jeffreys prior (Wasserman 2000). It should be emphasized that the asymptotic
justification for these successive approximations, (10), (11), (12), may not be very good in small
samples, see for example, McCulloch and Rossi (1991).

3 Bayesian Variable Selection for the Linear Model

Suppose Y a variable of interest, and X1, . . . , Xp a set of potential explanatory variables or
predictors, are vectors of n observations. The problem of variable selection, or subset selection
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as it often called, arises when one wants to model the relationship between Y and a subset of
X1, . . . , Xp, but there is uncertainty about which subset to use. Such a situation is particularly
of interest when p is large and X1, . . . , Xp is thought to contain many redundant or irrelevant
variables.

The variable selection problem is usually posed as a special case of the model selection
problem, where each model under consideration corresponds to a distinct subset of X1, . . . , Xp.
This problem is most familiar in the context of multiple regression where attention is restricted
to normal linear models. Many of the fundamental developments in variable selection have
occurred in the context of the linear model, in large part because its analytical tractability
greatly facilitates insight and computational reduction, and because it provides a simple first
order approximation to more complex relationships. Furthermore, many problems of interest can
be posed as linear variable selection problems. For example, for the problem of nonparametric
function estimation, the values of the unknown function are represented by Y , and a linear basis
such as a wavelet basis or a spline basis are represented by X1, . . . , Xp. The problem of finding
a parsimonious approximation to the function is then the linear variable selection problem.
Finally, when the normality assumption is inappropriate, such as when Y is discrete, solutions
for the linear model can be extended to alternatives such as general linear models (McCullagh
and Nelder 1989).

We now proceed to consider Bayesian approaches to this important linear variable selection
problem. Suppose the normal linear model is used to relate Y to the potential predictors
X1, . . . Xp

Y ∼ Nn(Xβ, σ2I) (13)

where X = (X1, . . .Xp), β is a p × 1 vector of unknown regression coefficients, and σ2 is an
unknown positive scalar. The variable selection problem arises when there is some unknown
subset of the predictors with regression coefficients so small that it would be preferable to ignore
them. In Sections 3.2 and 3.4, we describe two Bayesian formulations of this problem which are
distinguished by their interpretation of how small a regression coefficient must be to ignore Xi.
It will be convenient throughout to index each of these 2p possible subset choices by the vector

γ = (γ1, . . . , γp)′,

where γi = 0 or 1 according to whether βi is small or large, respectively. We use qγ ≡ γ′1
to denote the size of the γth subset. Note that here, γ plays the role of model identifier Mk

described in Section 2.
We will assume throughout this section that X1, . . .Xp contains no variable that would

be included in every possible model. If additional predictors Z1, . . . , Zr were to be included
every model, then we would assume that their linear effect had been removed by replacing Y

and X1, . . .Xp with (I − Z(Z ′Z)−1Z ′)Y and (I − Z(Z ′Z)−1Z ′)Xi, i = 1, . . . , p where Z =
(Z1, . . . , Zr). For example, if an intercept were to be included in every model, then we would
assume that Y and X1, . . . Xp had all been centered to have mean 0. Such reductions are
simple and fast, and can be motivated from a formal Bayesian perspective by integrating out
the coefficients corresponding to Z1, . . . , Zr with respect to an improper uniform prior.
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3.1 Model Space Priors for Variable Selection

For the specification of the model space prior, most Bayesian variable selection implementations
have used independence priors of the form

p(γ) =
∏

wγi

i (1 − wi)1−γi , (14)

which are easy to specify, substantially reduce computational requirements, and often yield
sensible results, see, for example, Clyde, Desimone and Parmigiani (1996), George and McCul-
loch (1993, 1997), Raftery, Madigan and Hoeting (1997) and Smith and Kohn (1996). Under
this prior, each Xi enters the model independently of the other coefficients, with probability
p(γi = 1) = 1 − p(γi = 0) = wi. Smaller wi can be used to downweight Xi which are costly or
of less interest.

A useful reduction of (14) has been to set wi ≡ w, yielding

p(γ) = wqγ (1 − w)p−qγ , (15)

in which case the hyperparameter w is the a priori expected proportion of X ′
is in the model. In

particular, setting w = 1/2, yields the popular uniform prior

p(γ) ≡ 1/2p, (16)

which is often used as a representation of ignorance. However, this prior puts most of its weight
near models of size qγ = p/2 because there are more of them. Increased weight on parsimonious
models, for example, could instead be obtained by setting w small. Alternatively, one could put
a prior on w. For example, combined with a beta prior w ∼ Beta(α, β), (15) yields

p(γ) =
B(α + qγ , β + p − qγ)

B(α, β)
(17)

where B(α, β) is the beta function. More generally, one could simply put a prior h(qγ) on the
model dimension and let

p(γ) =
(

p

qγ

)−1

h(qγ), (18)

of which (17) is a special case. Under priors of the form (18), the components of γ are exchange-
able but not independent, (except for the special case (15)).

Independence and exchangeable priors on γ may be less satisfactory when the models under
consideration contain dependent components such as might occur with interactions, polynomials,
lagged variables or indicator variables (Chipman 1996). Common practice often rules out certain
models from consideration, such as a model with an X1X2 interaction but no X1 or X2 linear
terms. Priors on γ can encode such preferences.

With interactions, the prior for γ can capture the dependence relation between the impor-
tance of a higher order term and those lower order terms from which it was formed. For example,
suppose there are three independent main effects A, B, C and three two-factor interactions AB,
AC, and BC. The importance of the interactions such as AB will often depend only on whether
the main effects A and B are included in the model. This belief can be expressed by a prior for
γ = (γA, . . . , γBC) of the form:

p(γ) = p(γA)p(γB)p(γC)p(γAB | γA, γB)p(γAC | γA, γC)p(γBC | γB, γC). (19)
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The specification of terms like p(γAC |γA, γC) in (19) would entail specifying four probabilities,
one for each of the values of (γA, γC). Typically p(γAC | 0, 0) < (p(γAC | 1, 0), p(γAC | 0, 1))
< p(γAC | 1, 1). Similar strategies can be considered to downweight or eliminate models with
isolated high order terms in polynomial regressions or isolated high order lagged variables in
ARIMA models. With indicators for a categorical predictor, it may be of interest to include
either all or none of the indicators, in which case p(γ) = 0 for any γ violating this condition.

The number of possible models using interactions, polynomials, lagged variables or indicator
variables grows combinatorially as the number of variables increases. In contrast to independence
priors of the form (14), priors for dependent component models, such as (19), is that they
concentrate mass on “plausible” models, when the number of possible models is huge. This can
be crucial in applications such as screening designs, where the number of candidate predictors
may exceed the number of observations (Chipman, Hamada, and Wu 1997).

Another more subtle shortcoming of independence and exchangeable priors on γ is their
failure to account for similarities and differences between models due to covariate collinearity
or redundancy. An interesting alternative in this regard are priors that “dilute” probability
across neighborhoods of similar models, the so called dilution priors (George 1999). Consider
the following simple example.

Suppose that only two uncorrelated predictors X1 and X2 are considered, and that they
yield the following posterior probabilities:

Variables in γ X1 X2 X1, X2

p(γ | Y ) 0.3 0.4 0.2

Suppose now a new potential predictor X3 is introduced, and that X3 is very highly correlated
with X2, but not with X1. If the model prior is elaborated in a sensible way, as is discussed
below, the posterior may well look something like

Variables in γ X1 X2 X3 X1, X2 · · ·
p(γ | Y ) 0.3 0.13 0.13 0.06 · · ·

The probability allocated to X2 and X1, X2 has here been “diluted” across all the new models
containing X3. Such dilution seems desirable because it maintains the allocation of posterior
probability across neighborhoods of similar models. The introduction of X3 has added proxies
for the models containing X2 but not any really new models. The probability of the resulting
set of equivalent models should not change, and it is dilution that prevents this from happening.
Note that this dilution phenomenon would become much more pronounced when many highly
correlated variables are under consideration.

The dilution phenomenon is controlled completely by the model space prior p(γ) because
p(γ | Y ) ∝ p(Y | γ)p(γ) and the marginal p(Y | γ) is unaffected by changes to the model space.
Indeed, no dilution of neighborhood probabilities occurs under the uniform prior (16) where
p(γ | Y ) ∝ p(Y | γ). Instead the posterior probability of every γ is reduced while all pairwise
posterior odds are maintained. For instance, when X3 is introduced above and a uniform prior
is used, the posterior probabilities become something like
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Variables in γ X1 X2 X3 X1, X2 · · ·
p(γ | Y ) 0.15 0.2 0.2 0.1 · · ·

If we continued to introduce more proxies for X2, the probability of the X1 only model could be
made arbitrarily small and the overall probability of the X2 like models could be made arbitrar-
ily large, a disturbing feature if Y was strongly related to X1 and unrelated to X2. Note that
any independence prior (14), of which (16) is a special case, will also fail to maintain probability
allocation within neighborhoods of similar models, because the addition of a new Xj reduces all
the model probabilities by wj for models in which Xj is included, and by (1−wi) for models in
which Xj is excluded.

What are the advantages of dilution priors? Dilution priors avoid placing too little probabil-
ity on good, but unique, models as a consequence of massing excess probability on large sets of
bad, but similar, models. Thus dilution priors are desirable for model averaging over the entire
posterior to avoid biasing averages such as (8) away from good models. They are also desirable
for MCMC sampling of the posterior because such Markov chains gravitate towards regions of
high probability. Failure to dilute the probability across clusters of many bad models would
bias both model search and model averaging estimates towards those bad models. That said, it
should be noted that dilution priors would not be appropriate for pairwise model comparisons
because the relative strengths of two models should not depend on whether another is consid-
ered. For this purpose, Bayes factors (corresponding to selection under uniform priors) would
be preferable.

3.2 Parameter Priors for Selection of Nonzero βi

We now consider parameter prior formulations for variable selection where the goal is to ignore
only those Xi for which βi = 0 in (13). In effect, the problem then becomes that of selecting a
submodel of (13) of the form

p(Y | βγ , σ2, γ) = Nn(Xγβγ , σ2I) (20)

where Xγ is the n x qγ matrix whose columns correspond to the γth subset of X1, . . . , Xp, βγ

is a qγ × 1 vector of unknown regression coefficients, and σ2 is the unknown residual variance.
Here, (βγ , σ2) plays the role of the model parameter θk described in Section 2.

Perhaps the most useful and commonly applied parameter prior form for this setup, especially
in large problems, is the normal-inverse-gamma, which consists of a qγ-dimensional normal prior
on βγ

p(βγ | σ2, γ) = Nqγ (β̄γ , σ2Σγ), (21)

coupled with an inverse gamma prior on σ2

p(σ2 | γ) = p(σ2) = IG(ν/2, νλ/2), (22)

(which is equivalent to νλ/σ2 ∼ χ2
ν). For example, see Clyde, DeSimone and Parmigiani (1996),

Fernandez, Ley and Steel (2001), Garthwaite and Dickey (1992, 1996), George and McCulloch
(1997), Kuo and Mallick (1998), Raftery, Madigan and Hoeting (1997) and Smith and Kohn

12



(1996). Note that the coefficient prior (21), when coupled with p(γ), implicitly assigns a point
mass at zero for coefficients in (13) that are not contained in βγ . As such, (21) may be thought
of as a point-normal prior. It should also be mentioned that in one the first Bayesian variable
selection treatments of the setup (20), Mitchell and Beauchamp (1988) proposed spike-and-slab
priors. The normal-inverse-gamma prior above is obtained by simply replacing their uniform
slab by a normal distribution.

A valuable feature of the prior combination (21) and (22) is analytical tractability; the
conditional distribution of βγ and σ2 given γ is conjugate for (20), so that βγ and σ2 can be
eliminated by routine integration from p(Y, βγ , σ

2 | γ) = p(Y | βγ , σ2, γ)p(βγ | σ2, γ)p(σ2 | γ) to
yield

p(Y | γ) ∝ |X ′
γXγ + Σ−1

γ |−1/2|Σγ |−1/2(νλ + S2
γ)−(n+ν)/2 (23)

where
S2
γ = Y ′Y − Y ′Xγ(X ′

γXγ + Σ−1
γ )−1X ′

γY. (24)

As will be seen in subsequent sections, the use of these closed form expressions can substantially
speed up posterior evaluation and MCMC exploration. Note that the scale of the prior (21) for
βγ depends on σ2, and this is needed to obtain conjugacy. Integrating out σ2 with respect to
(22), the prior for βγ conditionally only on γ is

p(βγ | γ) = Tqγ (ν, β̄γ , λΣγ) (25)

the qγ-dimensional multivariate T -distribution centered at β̄γ with ν degrees of freedom and
scale λΣγ .

The priors (21) and (22) are determined by the hyperparameters β̄γ , Σγ , λ, ν,, which must
be specified for implementations. Although a good deal of progress can be made through
subjective elicitation of these hyperparameter values in smaller problems when substantial expert
information is available, for example see Garthwaite and Dickey (1996), we focus here on the case
where such information is unavailable and the goal is roughly to assign values that “minimize”
prior influence.

Beginning with the choice of λ and ν, note that (22) corresponds to the likelihood information
about σ2 provided by ν independent observations from a N(0, λ) distribution. Thus, λ may be
thought of as a prior estimate of σ2 and ν may be thought of as the prior sample size associated
with this estimate. By using the data and treating s2

Y , the sample variance of Y , as a rough
upper bound for σ2, a simple default strategy is to choose ν small, say around 3, and λ near
s2
Y . One might also go a bit further, by treating s2

FULL, the traditional unbiased estimate of σ2

based on a saturated model, as a rough lower bound for σ2, and then choosing λ and ν so that
(22) assigns substantial probability to the interval (s2

LS , s
2
Y ). Similar informal approaches based

on the data are considered by Clyde, Desimone and Parmigiani (1996) and Raftery, Madigan
and Hoeting (1997). Alternatively, the explicit choice of λ and ν can be avoided by using
p(σ2 | γ) ∝ 1/σ2, the limit of (22) as ν → 0, a choice recommended by Smith and Kohn (1996)
and Fernandez, Ley and Steel (2001). This prior corresponds to the uniform distribution on
log σ2, and is invariant to scale changes in Y . Although improper, it yields proper marginals
p(Y | γ) when combined with (21) and so can be used formally.
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Turning to (21), the usual default for the prior mean β̄γ has been β̄γ = 0, a neutral choice
reflecting indifference between positive and negative values. This specification is also consistent
with standard Bayesian approaches to testing point null hypotheses, where under the alternative,
the prior is typically centered at the point null value. For choosing the prior covariance matrix
Σγ , the specification is substantially simplified by setting Σγ = c Vγ , where c is a scalar and Vγ

is a preset form such as Vγ = (X ′
γXγ)−1 or Vγ = Iqγ , the qγ × qγ identity matrix. Note that

under such Vγ , the conditional priors (21) provide a consistent description of uncertainty in the
sense that they are the conditional distributions of the nonzero components of β given γ when
β ∼ Np(0, c σ2(X ′X)−1) or β ∼ Np(0, c σ2I), respectively. The choice Vγ = (X ′

γXγ)−1 serves
to replicate the covariance structure of the likelihood, and yields the g-prior recommended by
Zellner (1986). With Vγ = Iqγ , the components of βγ are conditionally independent, causing
(21) to weaken the likelihood covariance structure. In contrast to Vγ = (X ′

γXγ)−1, the effect of
Vγ = Iqγ on the posterior depends on the relative scaling of the predictors. In this regard, it may
be reasonable to rescale the predictors in units of standard deviation to give them a common
scaling, although this may be complicated by the presence of outliers or skewed distributions.

Having fixed Vγ , the goal is then to choose c large enough so that the prior is relatively flat
over the region of plausible values of βγ , thereby reducing prior influence (Edwards, Lindman
and Savage 1963). At the same time, however, it is important to avoid excessively large values of
c because the prior will eventually put increasing weight on the null model as c → ∞, a form of
the Bartlett-Lindley paradox, Bartlett (1957). For practical purposes, a rough guide is to choose
c so that (25) assigns substantial probability to the range of all plausible values for βγ . Raftery,
Madigan and Hoeting (1997), who used a combination of Vγ = Iqγ and Vγ = (X ′

γXγ)−1 with
standardized predictors, list various desiderata along the lines of this rough guide which lead
them to the choice c = 2.852. They also note that their resulting coefficient prior is relatively
flat over the actual distribution of coefficients from a variety of real data sets. Smith and
Kohn (1996), who used Vγ = (X ′

γXγ)−1, recommend c = 100 and report that performance was
insensitive to values of c between 10 and 10,000. Fernandez, Ley and Steel (2001) perform a
simulation evaluation of the effect of various choices for c, with Vγ = (X ′

γXγ)−1, p(σ2 |γ) ∝ 1/σ2

and p(γ) = 2−p, on the posterior probability of the true model. Noting how the effect depends
on the true model and noise level, they recommend c = max{p2, n}.

3.3 Calibration and Empirical Bayes Variable Selection

An interesting connection between Bayesian and non-Bayesian approaches to variable selection
occurs when the special case of (21) with β̄γ = 0 and Vγ = (X ′

γXγ)−1, namely

p(βγ | σ2, γ) = Nqγ (0, c σ2(X ′
γXγ)−1), (26)

is combined with
p(γ) = wqγ (1 − w)p−qγ (27)

the simple independence prior in (15); for the moment, σ2 is treated as known. As shown by
George and Foster (2000), this prior setup can be calibrated by choices of c and w so that the
same γ maximizes both the model posterior and the canonical penalized sum-of-squares criterion

SSγ/σ
2 − F qγ (28)
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where SSγ = β̂′
γX

′
γXγ β̂γ , β̂γ ≡ (X ′

γXγ)−1X ′
γY and F is a fixed penalty. This correspondence

may be of interest because a wide variety of popular model selection criteria are obtained by
maximizing (28) with particular choices of F and with σ2 replaced by an estimate σ̂2. For
example F = 2 yields Cp (Mallows 1973) and, approximately, AIC (Akaike 1973), F = log n

yields BIC (Schwarz 1978) and F = 2 log p yields RIC (Donoho and Johnstone 1994, Foster
and George 1994). The motivation for these choices are varied; Cp is motivated as an unbiased
estimate of predictive risk, AIC by an expected information distance, BIC by an asymptotic
Bayes factor and RIC by minimax predictive risk inflation.

The posterior correspondence with (28) is obtained by reexpressing the model posterior
under (26) and (27) as

p(γ | Y ) ∝ wqγ (1 − w)p−qγ (1 + c)−qγ/2 exp
{
−Y ′Y − SSγ

2σ2
− SSγ

2σ2(1 + c)

}

∝ exp
[

c

2(1 + c)
{SSγ/σ

2 − F (c, w) qγ}
]
, (29)

where

F (c, w) =
1 + c

c

{
2 log

1 − w

w
+ log(1 + c)

}
. (30)

The expression (29) reveals that, as a function of γ for fixed Y , p(γ | Y ) is increasing in (28)
when F = F (c, w). Thus, both (28) and (29) are simultaneously maximized by the same γ

when c and w are chosen to satisfy F (c, w) = F . In this case, Bayesian model selection based
on p(γ | Y ) is equivalent to model selection based on the criterion (28).

This correspondence between seemingly different approaches to model selection provides
additional insight and interpretability for users of either approach. In particular, when c and
w are such that F (c, w) = 2, log n or 2 log p, selecting the highest posterior model (with σ2 set
equal to σ̂2) will be equivalent to selecting the best AIC/Cp, BIC or RIC models, respectively.
For example, F (c, w) = 2, log n and 2 log p are obtained when c � 3.92, n and p2 and w =
1/2. Similar asymptotic connections are pointed out by Fernandez, Ley and Steel (2001) when
p(σ2 | γ) ∝ 1/σ2 and w = 1/2. Because the posterior probabilities are monotone in (28) when
F = F (c, w), this correspondence also reveals that the MCMC methods discussed in Section 3.5
can also be used to search for large values of (28) in large problems where global maximization
is not computationally feasible. Furthermore, since c and w control the expected size and
proportion of the nonzero components of β, the dependence of F (c, w) on c and w provides an
implicit connection between the penalty F and the profile of models for which its value may be
appropriate.

Ideally, the prespecified values of c and w in (26) and (27) will be consistent with the true
underlying model. For example, large c will be chosen when the regresssion coefficients are large,
and small w will be chosen when the proportion of nonzero coefficients are small. To avoid the
difficulties of choosing such c and w when the true model is completely unknown, it may be
preferable to treat c and w as unknown parameters, and use empirical Bayes estimates of c and
w based on the data. Such estimates can be obtained, at least in principle, as the values of c

and w that maximize the marginal likelihood under (26) and (27), namely

L(c, w | Y ) ∝
∑
γ

p(γ | w) p(Y | γ, c)
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∝
∑
γ

wqγ (1 − w)p−qγ (1 + c)−qγ/2 exp
{

c SSγ
2σ2(1 + c)

}
. (31)

Although this maximization is generally impractical when p is large, the likelihood (31) simplifies
considerably when X is orthogonal, a setup that occurs naturally in nonparametric function
estimation with orthogonal bases such as wavelets. In this case, letting ti = bivi/σ where v2

i is
the ith diagonal element of X ′X and bi is the ith component of β̂ = (X ′X)−1X ′Y , (31) reduces
to

L(c, w | Y ) ∝
p∏
i=1

{
(1 − w)e−t

2
i /2 + w(1 + c)−1/2e−t

2
i/2(1+c)

}
. (32)

Since many fewer terms are involved in the product in (32) than in the sum in (31), maximization
of (32) is feasible by numerical methods even for moderately large p.

Replacing σ2 by an estimate σ̂2, the estimators ĉ and ŵ that maximize the marginal likelihood
L above can be used as prior inputs for an empirical Bayes analysis under the priors (26) and
(27). In particular, (4) reveals that the γ maximizing the posterior p(γ |Y, ĉ, ŵ) can be obtained
as the γ that maximizes the marginal maximum likelihood criterion

CMML = SSγ/σ̂
2 − F (ĉ, ŵ) qγ , (33)

where F (c, w) is given by (30). Because maximizing (31) to obtain ĉ and ŵ can be computa-
tionally overwhelming when p is large and X is not orthogonal, one might instead consider a
computable empirical Bayes approximation, the conditional maximum likelihood criterion

CCML = SSγ/σ̂
2 − qγ

{
1 + log+(SSγ/σ̂

2qγ)
} − 2

{
log(p − qγ)−(p−qγ) + log q−qγγ

}
(34)

where log+(·) is the positive part of log(·). Selecting the γ that maximizes CCML provides an
approximate empirical Bayes alternative to selection based on CMML.

In contrast to criteria of the form (28), which penalize SSγ/σ̂
2 by Fqγ , with F constant,

CMML uses an adaptive penalty F (ĉ, ŵ) that is implicitly based on the estimated distribution of
the regression coefficients. CCML also uses an adaptive penalty, but one can be expressed by a
rapidly computable closed form that can be shown to act like a combination of a modified BIC
penalty F = log n, which gives it same consistency property as BIC, and a modified RIC penalty
F = 2 log p. Insofar as maximizing CCML approximates maximizing CMML, these interpretations
at least roughly explain the behavior of the CMML penalty F (ĉ, ŵ) in (33).

George and Foster (2000) proposed the empirical Bayes criteria CMML and CCML and provided
simulation evaluations demonstrating substantial performance advantages over the fixed penalty
criteria (28); selection using CMML delivers excellent performance over a much wider portion of
the model space, and CCML performs nearly as well. The superiority of empirical Bayes methods
was confirmed in context of wavelet regression by Johnstone and Silverman (1998) and Clyde
and George (1999). Johnstone and Silverman (1998) demonstrated the superiority of using
maximum marginal likelihood estimates of c and w with posterior median selection criteria,
and proposed EM algorithms for implementation. Clyde and George (1999) also proposed EM
algorithms for implementation, extended the methods to include empirical Bayes estimates of
σ2 and considered both model selection and model averaging.
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Finally, a fully Bayes analysis which integrates out c and w with respect to some noninfor-
mative prior p(c, w) could be a promising alternative to empirical Bayes estimation of c and w.
Indeed, the maximum marginal likelihood estimates ĉ and ŵ correspond to the posterior mode
estimates under a Bayes formulation with independent uniform priors on c and w, a natural de-
fault choice. As such, the empirical Bayes methods can be considered as approximations to fully
Bayes methods, but approximations which do not fully account for the uncertainty surrounding
c and w. We are currently investigating the potential of such fully Bayes alternatives and plan
to report on them elsewhere.

3.4 Parameter Priors for Selection Based on Practical Significance

A potential drawback of the point-normal prior (21) for variable selection is that with enough
data, the posterior will favor the inclusion of Xi for any βi �= 0, no matter how small. Although
this might be desirable from a purely predictive standpoint, it can also run counter to the goals
of parsimony and interpretability in some problems, where it would be preferable to ignore such
negligible βi. A similar phenomenon occurs in frequentist hypothesis testing, where for large
enough sample sizes, small departures from a point null become statistically significant even
though they are not practically significant or meaningful.

An alternative to the point-normal prior (21) that avoids this potential drawback is the
normal-normal formulation used in the SSVS procedure of George and McCulloch (1993, 1996,
1997). This formulation builds in the goal of excluding Xi from the model whenever |βi| < δi for
a given δi > 0. The idea is that δi is a “threshold of practical significance” that is prespecified
by the user. A simple choice might be δi = ∆Y/∆Xi, where ∆Y is the size of an insignificant
change in Y , and ∆Xi is the size of the maximum feasible change in Xi. To account for the
cumulative effect of changes of other X ’s in the model, one might prefer the smaller conservative
choice δi = ∆Y/(p∆Xi). The practical potential of the SSVS formulation is nicely illustrated
by Wakefield and Bennett (1996).

Under the normal-normal formulation of SSVS, the data always follow the saturated model
(13) so that

p(Y | β, σ2, γ) = Nn(Xβ, σ2I) (35)

for all γ. In the general notation of Section 2, the model parameters here are the same for every
model, θk ≡ (β, σ2). The γth model is instead distinguished by a coefficient prior of the form

π(β | σ2, γ) = π(β | γ) = Np(0, DγRDγ) (36)

where R is a correlation matrix and Dγ is a diagonal matrix with diagonal elements

(Dγ)ii =

{ √
υ0i when γi = 0√
υ1i when γi = 1

(37)

Under the model space prior p(γ), the marginal prior distribution of each component of β is
here

p(βi) = (1 − p(γi))N(0, υ0i) + p(γi)N(0, υ1i), (38)

a scale mixture of two normal distributions.
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Although β is independent of σ2 in (36), the inverse Gamma prior (22) for σ2 is still useful, as
are the specification considerations for it discussed in Section 3.2. Furthermore, R ∝ (X ′X)−1

and R = I are natural choices for R in (36), similarly to the commonly used choices for Σγ in
(21).

To use this normal-normal setup for variable selection, the hyperparameters υ0i and υ1i are
set “small and large” respectively, so that N(0, υ0i) is concentrated and N(0, υ1i) is diffuse. The
general idea is that when the data support γi = 0 over γi = 1, then βi is probably small enough
so that Xi will not be needed in the model. For a given threshold δi, higher posterior weighting
of those γ values for which |βi| > δi when γi = 1, can be achieved by choosing υ0i and υ1i such
that p(βi | γi = 0) = N(0, υ0i) > p(βi | γi = 1) = N(0, υ1i) precisely on the interval (−δi, δi).
This property is obtained by any υ0i and υ1i satisfying

log(υ1i/υ0i)/(υ−1
0i − υ−1

1i ) = δ2
iγ (39)

By choosing υ1i such that N(0, υ1i) is consistent with plausible values of βi, υ0i can then be
chosen according to (39). George and McCulloch (1997) report that computational problems
and difficulties with υ1i too large will be avoided whenever υ1i/υ0i ≤ 10, 000, thus allowing for
a wide variety of settings.

Under the normal-normal setup above, the joint distribution of β and σ2 given γ is not
conjugate for (13) because (36) excludes σ2. This prevents analytical reduction of the full
posterior p(β, σ2, γ | Y ), which can severely increase the cost of posterior computations. To
avoid this, one can instead consider the conjugate normal-normal formulation using

p(β | σ2, γ) = Np(0, σ2DγRDγ), (40)

which is identical to (36) except for the insertion of σ2. Coupled with the inverse Gamma prior
(22) for σ2, the conditional distribution of β and σ2 given γ is conjugate. This allows for the
analytical margining out of β and σ2 from p(Y, β, σ2 | γ) = p(Y | β, σ2)p(β | σ2, γ)p(σ2 | γ) to
yield

p(Y | γ) ∝ |X ′X + (DγRDγ)−1|−1/2|DγRDγ |−1/2(νλ + S2
γ)−(n+ν)/2 (41)

where
S2
γ = Y ′Y − Y ′X(X ′X + (DγRDγ)−1)−1X ′Y. (42)

As will be seen in Section 3.5, this simplification confers strong advantages for posterior calcu-
lation and exploration.

Under (40), (22), and a model space prior p(γ), the marginal distribution each component
of β is

p(βi | γ) = (1 − γi)T1(ν, 0, λυ0i) + γiT1(ν, 0, λυ1i), (43)

a scale mixture of t-distributions, in contrast to the normal mixture (38). As with the noncon-
jugate prior, the idea is that υ0i and υ1i are to be set “small and large” respectively, so that
when the data supports γi = 0 over γi = 1, then βi is probably small enough so that Xi will not
be needed in the model. However, the way in which υ0i and υ1i determine “small and large” is
affected by the unknown value of σ2, thereby making specification more difficult and less reliable
than in the nonconjugate formulation. For a chosen threshold of practical significance δi, the
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pdf p(βi | i, γi = 0) = T (ν, 0, λυ0i) is larger than the pdf p(βi | i, γi = 1) = T (ν, 0, λυ1i) precisely
on the interval (−δi, δi), when υ0i and υ1i satisfy

(υ0i/υ1i)ν/(ν+1) = [υ0i + δ2
i /(νλ)]/[υ1i + δ2

i /(νλ)] (44)

By choosing υ1i such that T (ν, 0, λυ1i) is consistent with plausible values of βi, υ0i can then be
chosen according to (44).

Another potentially valuable specification of the conjugate normal-normal formulation can
be used to address the problem of outlier detection, which can be framed as a variable selection
problem by including indicator variables for the observations as potential predictors. For such
indicator variables, the choice υ∗

0i = 1 and υ∗
1i = K > 0 yields the well-known additive outlier

formulation, see, for example, Petit and Smith (1985). Furthermore, when used in combination
with the previous settings for ordinary predictors, the conjugate prior provides a hierarchical
formulation for simultaneous variable selection and outlier detection. This has also been consid-
ered by Smith and Kohn (1996). A related treatment has been considered by Hoeting, Raftery
and Madigan (1996).

3.5 Posterior Calculation and Exploration for Variable Selection

3.5.1 Closed Form Expressions for p(Y | γ)

A valuable feature of the previous conjugate prior formulations is that they allow for analytical
margining out of β and σ2 from p(Y, β, σ2 | γ) to yield the closed form expressions in (23) and
(41) which are proportional to p(Y | γ). Thus, when the model prior p(γ) is computable, this
can be used to obtain a computable, closed form expression g(γ) satisfying

g(γ) ∝ p(Y | γ)p(γ) ∝ p(γ | Y ). (45)

The availability of such g(γ) can greatly facilitate posterior calculation and estimation. Fur-
thermore, it turns out that for certain formulations, the value of g(γ) can be rapidly updated
as γ is changed by a single component. As will be seen, such rapid updating schemes can be
used to speed up algorithms for evaluating and exploring the posterior p(γ | Y ).

Consider first the conjugate point-normal formulation (21) and (22) for which p(Y | γ) pro-
portional to (23) can be obtained. When Σγ = c (X ′

γXγ)−1, a function g(γ) satisfying (45) can
be expressed as

g(γ) = (1 + c)−qγ/2(νλ + Y ′Y − (1 + 1/c)−1W ′W )−(n+ν)/2p(γ) (46)

where W = T ′−1X ′
γY for upper triangular T such that T ′T = X ′

γXγ for (obtainable by the
Cholesky decomposition). As noted by Smith and Kohn (1996), the algorithm of Dongarra,
Moler, Bunch and Stewart (1979) provides fast updating of T , and hence W and g(γ), when
γ is changed one component at a time. This algorithm requires O(q2

γ) operations per update,
where γ is the changed value.

Now consider the conjugate normal-normal formulation (40) and (22) for which p(Y | γ)
proportional to (41) can be obtained. When R = I holds, a function g(γ) satisfying (45) can be
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expressed as

g(γ) = (
p∏
i=1

T 2
ii [(1 − γi)υ∗

0γ(i)
+ γiυ

∗
1γ(i)

])−1/2(νλ + Y ′Y − W ′W )−(n+ν)/2p(γ) (47)

where W = T ′−1X̃ ′Ỹ for upper triangular T such that T ′T = X̃ ′X̃ (obtainable by the Cholesky
decomposition). As noted by George and McCulloch (1997), the Chambers (1971) algorithm
provides fast updating of T , and hence W and g(γ), when γ is changed one component at a
time. This algorithm requires O(p2) operations per update.

The availability of these computable, closed form expressions for g(γ) ∝ p(γ | Y ) enables
exhaustive calculation of p(γ | Y ) in moderately sized problems. In general, this simply entails
calculating g(γ) for every γ value and then summing over all γ values to obtain the normalization
constant. However, when one of the above fast updating schemes can be used, this calculation
can be substantially speeded up by sequential calculation of the 2p g(γ) values where consecutive
γ differ by just one component. Such an ordering is provided by the Gray Code, George and
McCulloch (1997). After computing T , W and g(γ) for an initial γ value, subsequent values of
T , W and g(γ) can be obtained with the appropriate fast updating scheme by proceeding in
the Gray Code order. Using this approach, this exhaustive calculation is feasible for p less than
about 25.

3.5.2 MCMC Methods for Variable Selection

MCMC methods have become a principal tool for posterior evaluation and exploration in
Bayesian variable selection problems. Such methods are used to simulate a sequence

γ(1), γ(2), . . . (48)

that converges (in distribution) to p(γ | Y ). In formulations where analytical simplification of
p(β, σ2, γ |Y ) is unavailable, (48) can be obtained as a subsequence of a simulated Markov chain
of the form

β(1), σ(1), γ(1), β(2), σ(2), γ(2), . . . (49)

that converges to p(β, σ2, γ | Y ). However, in conjugate formulations where β and σ2 can be
analytically eliminated form the posterior, the availability of g(γ) ∝ p(γ | Y ) allows for the
flexible construction of MCMC algorithms that simulate (48) directly as a Markov chain. Such
chains are often more useful, in terms of both computational and convergence speed.

In problems where the number of potential predictors p is very small, and g(γ) ∝ p(γ | Y )
is unavailable, the sequence (48) may be used to evaluate the entire posterior p(γ | Y ). Indeed,
empirical frequencies and other functions of the γ values will be consistent estimates of their
values under p(γ |Y ). In large problems where exhaustive calculation of all 2p values of p(γ |Y )
is not feasible, the sequence (48) may still provide useful information. Even when the length of
the sequence (48) is much smaller than 2p, it may be possible to identify at least some of the
high probability γ, since those γ are expected to appear more frequently. In this sense, these
MCMC methods can be used to stochastically search for high probability models.
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In the next two subsections, we describe various MCMC algorithms which may be useful
for simulating (48). These algorithms are obtained as variants of the Gibbs sampler (GS) and
Metropolis-Hastings (MH) algorithms described in Section 2.3.

3.5.3 Gibbs Sampling Algorithms

Under the nonconjugate normal-normal formulation (36) and (22) for SSVS, the posterior
p(β, σ2, γ | Y ) is p-dimensional for all γ. Thus, a simple GS that simulates the full parame-
ter sequence (49) is obtained by successive simulation from the full conditionals

p(β | σ2, γ, Y )

p(σ2 | β, γ, Y ) = p(σ2 | β, Y ) (50)

p(γi | β, σ2, γ(i), Y ) = p(γi | β, γ(i)), i = 1, . . . , p

where at each step, these distributions are conditioned on the most recently generated parame-
ter values. These conditionals are standard distributions which can be simulated quickly and
efficiently by routine methods.

For conjugate formulations where g(γ) is available, a variety of MCMC algorithms for gen-
erating (48) directly as a Markov chain, can be conveniently obtained by applying the GS with
g(γ). The simplest such implementation is obtained by generating each γ value componentwise
from the full conditionals,

γi | γ(i), Y i = 1, 2, . . . , p, (51)

(γ(i) = (γ1, γ2, . . . , γi−1, γi+1, . . . , γp)) where the γi may be drawn in any fixed or random order.
By margining out β and σ2 in advance, the sequence (48) obtained by this algorithm should
converge faster than the nonconjugate Gibbs approach, rendering it more effective on a per
iteration basis for learning about p(γ | Y ), see Liu, Wong and Kong (1994).

The generation of the components in (51) in conjunction with g(γ) can be obtained trivially
as a sequence of Bernoulli draws. Furthermore, if g(γ) allows for fast updating as in (46) or (47),
the required sequence of Bernoulli probabilities can be computed faster and more efficiently. To
see this, note that the Bernoulli probabilities are simple functions of the ratio

p(γi = 1, γ(i) | Y )
p(γi = 0, γ(i) | Y )

=
g(γi = 1, γ(i))
g(γi = 0, γ(i))

. (52)

At each step of the iterative simulation from (51), one of the values of g(γ) in (52) will be
available from the previous component simulation. Since γ has been varied by only a single
component, the other value of g(γ) can then be obtained by using the appropriate updating
scheme. Under the point-normal prior (21) with Σγ = c (X ′

γXγ)−1, the fast updating of (46)
requires O(q2

γ) operations, whereas under the conjugate normal-normal prior formulation (40)
with R = I fast updating of (47) requires O(p2) operations. Thus, GS algorithms in the former
case can be substantially faster when p(γ | Y ) is concentrated on those γ for which qγ is small,
namely the parsimonious models. This advantage could be pronounced in large problems with
many useless predictors.
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Simple variants of the componentwise GS can be obtained by generating the components
in a different fixed or random order. Note that in any such generation, it is not necessary to
generate each and every component once before repeating a coordinate. Another variant of the
GS can be obtained by drawing the components of γ in groups, rather than one at a time. Let
{Ik}, k = 1, 2, . . . ,m be a partition of {1, 2, . . . , p} so that, Ik ⊆ {1, 2, . . . , p}, ∪Ik = {1, 2, . . . , p}
and Ik1 ∩ Ik2 = ∅ for k1 �= k2. Let γIk = {γi | i ∈ Ik} and γ(Ik) = {γi | i /∈ Ik}. The grouped GS
generates (48) by iterative simulation from

γIk | γ(Ik), Y k = 1, 2, . . . ,m. (53)

Fast updating of g(γ), when available, can also be used to speed up this simulation by computing
the conditional probabilities of each γIk in Gray Code order. The potential advantage of such a
grouped GS is improved convergence of (48). This might be achieved by choosing the partition
so that strongly correlated γi are contained in the same Ik, thereby reducing the dependence
between draws in the simulation. Intuitively, clusters of such correlated γi should correspond
to clusters of correlated Xi which, in practice, might be identified by clustering procedures. As
before, variants of the grouped GS can be obtained by generating the γIk in a different fixed or
random order.

3.5.4 Metropolis-Hastings Algorithms

The availability of g(γ) ∝ p(γ |Y ) also facilitates the use of MH algorithms for direct simulation
of (48). By restricting attention to the set of γ values, a discrete space, the simple MH form
described in Section 2.3 can be used. Because g(γ)/g(γ′) = p(γ |Y )/p(γ′|Y ), such MH algorithms
are here of the form:

1. Simulate a candidate γ∗ from a transition kernel q(γ∗ | γ(j)).

2. Set γ(j+1) = γ∗ with probability

α(γ∗ | γ(j)) = min
{

q(γ(j) | γ∗)
q(γ∗ | γ(j))

g(γ∗)
g(γ(j))

, 1
}

. (54)

Otherwise, γ(j+1) = γ(j).

When available, fast updating schemes for g(γ) can be exploited. Just as for the Gibbs sampler,
the MH algorthims under the point-normal formulations (21) with Σγ = c (X ′

γXγ)−1 will be the
fastest scheme when p(γ | Y ) is concentrated on those γ for which qγ is small.

A special class of MH algorithms, the Metropolis algorithms, are obtained from the class of
transition kernels q(γ1 | γ0) which are symmetric in γ1 and γ0. For this class, the form of (54)
simplifies to

αM (γ∗ | γ(j)) = min
{

g(γ∗)
g(γ(j))

, 1
}

. (55)

Perhaps the simplest symmetric transition kernel is

q(γ1 | γ0) = 1/p if
p∑
1

|γ0
i − γ1

i | = 1. (56)

This yields the Metropolis algorithm

22



1. Simulate a candidate γ∗ by randomly changing one component of γ(j).

2. Set γ(j+1) = γ∗ with probability αM (γ∗ | γ(j)). Otherwise, γ(j+1) = γ(j) .

This algorithm was proposed in a related model selection context by Madigan and York (1995)
who called it MC3. It was used by Raftery, Madigan and Hoeting (1997) for model averaging,
and was proposed for the SSVS prior formulation by Clyde and Parmigiani (1994).

The transition kernel (56) is a special case of the class of symmetric transition kernels of the
form

q(γ1 | γ0) = qd if
p∑
1

|γ0
i − γ1

i | = d. (57)

Such transition kernels yield Metropolis algorithms of the form

1. Simulate a candidate γ∗ by randomly changing d components of γ(j) with probability qd.

2. Set γ(j+1) = γ∗ with probability αM (γ∗ | γ(j)). Otherwise, γ(j+1) = γ(j) .

Here qd is the probability that γ∗ will have d new components. By allocating some weight to
qd for larger d, the resulting algorithm will occasionally make big jumps to different γ values.
In contrast to the algorithm obtained by (56) which only moves locally, such algorithms require
more computation per iteration.

Finally, it may also be of interest to consider asymmetric transition kernels such as

q(γ1 | γ0) = qd if
p∑
1

(γ0
i − γ1

i ) = d. (58)

Here qd is the probability of generating a candidate value γ∗ which corresponds to a model with
d more variables γ(j). When d < 0, γ∗ will represent a more parsimonious model than γ(j). By
suitable weighting of the qd probabilities, such Metropolis-Hastings algorithms can be made to
explore the posterior in the region of more parsimonious models.

3.5.5 Extracting Information from the Output

In nonconjugate setups, where g(γ) is unavailable, inference about posterior characteristics based
on (48) ultimately rely on the empirical frequency estimates the visited γ values. Although such
estimates of posterior characteristics will be consistent, they may be unreliable, especially if the
size of the simulated sample is small in comparison to 2p or if there is substantial dependence
between draws. The use of empirical frequencies to identify high probability γ values for selection
can be similarly problematic.

However, the situation changes dramatically in conjugate setups where g(γ) ∝ p(γ | Y ) is
available. To begin with, g(γ) provides the relative probability of any two values γ0 and γ1 via
g(γ0) / g(γ1) and so can be used to definitively identify the higher probability γ in the sequence
(48) of simulated values. Only minimal additional effort is required to obtain such calculations
since g(γ) must be calculated for each of the visited γ values in the execution of the MCMC
algorithms described in Sections 3.5.3 and 3.5.4.

The availability of g(γ) can also be used to obtain estimators of the normalizing constant C

p(γ | Y ) = C g(γ) (59)
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based on the MCMC output (48) , say γ(1), . . . , γ(K). Let A be a preselected subset of γ values
and let g(A) =

∑
γ∈A g(γ) so that p(A | Y ) = C g(A). Then, a consistent estimator of C is

Ĉ =
1

g(A)K

K∑
k=1

IA(γ(k)) (60)

where IA( ) is the indicator of the set A, George and McCulloch (1997). Note that if (48) were
an uncorrelated sequence, then Var(Ĉ) = (C2/K)(1 − p(A | Y ))/p(A | Y ) suggesting that the
variance of (60) is decreasing as p(A | Y ) increases. It is also desirable to choose A such that
IA(γ(k)) can be easily evaluated. George and McCulloch (1997) obtain very good results by
setting A to be those γ values visited by a preliminary simulation of (48). Peng (1998) has
extended and generalized these ideas to obtain estimators of C that improve on (60).

Inserting Ĉ into (59) yields improved estimates of the probability of individual γ values,

p̂(γ | Y ) = Ĉ g(γ), (61)

as well as an estimate of the total visited probability,

p̂(B | Y ) = Ĉ g(B), (62)

where B is the set of visited γ values. Such p̂(B | Y ) can provide valuable information about
when to stop a MCMC simulation. Another useful quantity is

|(Ĉ/C) − 1|. (63)

Since p̂(γ | Y )/p(γ | Y ) ≡ Ĉ/C, (63) measures of the uniform accuracy of the probability es-
timates. It also measures the total probability discrepancy since

∑
γ |p̂(γ | Y ) − p(γ | Y )| =

|Ĉ − C|∑γ g(γ) = |(Ĉ/C) − 1|.
The simulated values (48) can also play an important role in model averaging. For example,

suppose one wanted to predict a quantity of interest ∆ by the posterior mean

E(∆ | Y ) =
∑
all γ

E(∆ | γ, Y )p(γ | Y ). (64)

When p is too large for exhaustive enumeration and p(γ | Y ) cannot be computed, (64) is
unavailable and is typically approximated by something of the form

Ê(∆ | Y ) =
∑
γ∈S

E(∆ | γ, Y )p̂(γ | Y, S) (65)

where S is a manageable subset of models and p̂(γ | Y, S) is a probability distribution over S.
(In some cases, E(∆ | γ, Y ) will also be approximated).

Using the Markov chain sample for S, a natural choice for (65) is

Êf (∆ | Y ) =
∑
γ∈S

E(∆ | γ, Y )p̂f (γ | Y, S) (66)

where p̂f (γ | Y, S) is the relative frequency of γ in S, George (1999). Indeed, (66) will be a
consistent estimator of E(∆ |Y ). However, here too, it appears that when g(γ) is available, one
can do better by using

Êg(∆ | Y ) =
∑
γ∈S

E(∆ | γ, Y )p̂g(γ | Y, S) (67)
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where
p̂g(γ | Y, S) = g(γ)/g(S) (68)

is just the renormalized value of g(γ). For example, when S is an iid sample from p(γ | Y ), (67)
increasingly approximates the best unbiased estimator of E(∆ | Y ) as the sample size increases.
To see this, note that when S is an iid sample, Êf (∆ | Y ) is unbiased for E(∆ | Y ). Since S

(together with g) is sufficient, the Rao-Blackwellized estimator E(Êf (∆ |Y ) |S) is best unbiased.
But as the sample size increases, E(Êf (∆ | Y ) | S) → Êg(∆ | Y ).

4 Bayesian CART Model Selection

For our second illustration of Bayesian model selection implementations, we consider the problem
of selecting a classification and regression tree (CART) model for the relationship between
a variable y and a vector of potential predictors x = (x1, . . . , xp). An alternative to linear
regression, CART models provide a more flexible specification of the conditional distribution
of y given x. This specification consists of a partition of the x space, and a set of distinct
distributions for y within the subsets of the partition. The partition is accomplished by a
binary tree T that recursively partitions the x space with internal node splitting rules of the
form {x ∈ A} or {x /∈ A}. By moving from the root node through to the terminal nodes, each
observation is assigned to a terminal node of T which then associates the observation with a
distribution for y.

Although any distribution may be considered for the terminal node distributions, it is con-
venient to specify these as members of a single parametric family p(y | θ) and to assume all
observations of y are conditionally independent given the parameter values. In this case, a
CART model is identified by the tree T and the parameter values Θ = (θ1, . . . , θb) of the dis-
tributions at each of the b terminal nodes of T . Note that T here plays the role of Mk of model
identifier as described in Section 2. The model is called a regression tree model or a classification
tree model according to whether y is quantitative or qualitative, respectively. For regression
trees, two simple and useful specifications for the terminal node distributions are the mean shift
normal model

p(y | θi) = N(µi, σ2), i = 1, . . . , b, (69)

where θi = (µi, σ), and the mean-variance shift normal model

p(y | θi) = N(µi, σ2
i ), i = 1, . . . , b, (70)

where θi = (µi, σi). For classification trees where y belongs to one of K categories, say
C1, . . . , CK , a natural choice for terminal node distributions are the simple multinomials

p(y | θi) =
K∏
k=1

p
I(y∈Ck)
ik i = 1, . . . , b, (71)

where θi = pi ≡ (pi1, . . . , piK), pik ≥ 0 and
∑
k pik = 1. Here p(y ∈ Ck) = pik at the ith

terminal node of T .
As illustration, Figure 1 depicts a regression tree model where y ∼ N(θ, 22) and x = (x1, x2).

x1 is a quantitative predictor taking values in [0,10], and x2 is a qualitative predictor with
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Figure 1: A regression tree where y ∼ N(θ, 22) and x = (x1, x2).

categories {A,B,C,D}. The binary tree has 9 nodes of which b = 5 are terminal nodes that
partition the x space into 5 subsets. The splitting rules are displayed at each internal node. For
example, the leftmost terminal node corresponds to x1 ≤ 3.0 and x2 ∈ {C,D}. The θi value
identifying the mean of y given x is displayed at each terminal node. Note that in contrast to
a linear model, θi decreases in x1 when x2 ∈ {A,B}, but increases in x1 when x2 ∈ {C,D}.

The two basic components of the Bayesian approach to CART model selection are prior spec-
ification and posterior exploration. Prior specification over CART models entails putting a prior
on the tree space and priors on the parameters of the terminal node distributions. The CART
model likelihoods are then used to update the prior to yield a posterior distribution that can
be used for model selection. Although straightforward in principle, practical implementations
require subtle and delicate attention to details. Prior formulation must be interpretable and
computationally manageable. Hyperparameter specification can be usefully guided by overall
location and scale measures of the data. A feature of this approach is that the prior specifi-
cation can be used to downweight undesirable model characteristics such as tree complexity or
to express a preference for certain predictor variables. Although the entire posterior cannot be
computed in nontrivial problems, posterior guided MH algorithms can still be used to search for
good tree models. However, the algorithms require repeated restarting or other modifications
because of the multimodal nature of the posterior. As the search proceeds, selection based
on marginal likelihood rather than posterior probability is preferable because of the dilution
properties of the prior. Alternatively, a posterior weighted average of the visited models can be
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easily obtained.
CART modeling was popularized in the statistical community by the seminal book of

Breiman, Friedman, Olshen and Stone (1984), which proposed a nonparametric approach for
tree selection based on a greedy algorithm named CART. A concise description of this approach,
which seeks to partition the x space into regions where the distribution of y is ‘homogeneous’,
and its implementation in S appears in Clark and Pregibon (1992). Bayesian approaches to
CART are enabled by elaborating the CART tree formulation to include parametric terminal
node distributions, effectively turning it into a statistical model and providing a likelihood.
Conventional greedy search algorithms are also replaced by the MCMC algorithms that provide
a broader search over the tree model space.

The Bayesian CART model selection implementations described here were proposed by Chip-
man, George and McCulloch (1998) and Denison, Mallick and Smith (1998a), hereafter referred
to as CGM and DMS, respectively. An earlier Bayesian approach to classification tree model-
ing was proposed by Buntine (1992) which, compared to CGM and DMS, uses similar priors
for terminal node distributions, but different priors on the space of trees, and deterministic,
rather than stochastic, algorithms for model search. Priors for tree models based on Minimum
Encoding ideas were proposed by Quinlan and Rivest (1989) and Wallace and Patrick (1993).
Oliver and Hand (1995) discuss and provide an empirical comparison of a variety of pruning and
Bayesian model averaging approaches based on CART. Paass and Kindermann (1997) applied a
simpler version of the CGM approach and obtained results which uniformly dominated a wide
variety of competing methods. Other alternatives to greedy search methods include Sutton
(1991) and Lutsko and Kuijpers (1994) who use simulated annealing, Jordan and Jacobs (1994)
who use the EM algorithm, Breiman (1996), who averages trees based on bootstrap samples,
and Tibshirani and Knight (1995) who select trees based on bootstrap samples.

4.1 Prior Formulations for Bayesian CART

Since a CART model is identified by (Θ, T ), a Bayesian analysis of the problem proceeds by
specifying priors on the parameters of the terminal node distributions of each tree p(Θ | T ) and
a prior distribution p(T ) over the set of trees. Because the prior for T does not depend on the
form of the terminal node distributions, p(T ) can be generally considered for both regression
trees and classification trees.

4.1.1 Tree Prior Specification

A CART model tree T partitions the x space and consists of both the binary tree structure and
the set of splitting rules associated with the internal nodes. A general formulation approach for
p(T ) proposed by CGM, is to specify p(T ) implicitly by the following tree-generating stochastic
process which “grows” trees from a single root tree by randomly “splitting” terminal nodes:

1. Begin by setting T to be the trivial tree consisting of a single root (and terminal) node
denoted η.

2. Split the terminal node η with probability pη = α(1 + dη)−β where dη is the depth of the
node η, and α ∈ (0, 1) and β ≥ 0 are prechosen control parameters.
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3. If the node splits, randomly assign it a splitting rule as follows: First choose xi uniformly
from the set of available predictors. If xi is quantitative, assign a splitting rule of the form
{xi ≤ s} vs {xi > s} where s is chosen uniformly from the available observed values of
xi. If xi is qualitative, assign a splitting rule of the form {xi ∈ C} vs {xi /∈ C} where C

is chosen uniformly from the set of subsets of available categories of xi. Next assign left
and right children nodes to the split node, and apply steps 2 and 3 to the newly created
tree with η equal to the new left and the right children (if nontrivial splitting rules are
available).

By available in step 3, we mean those predictors, split values and category subsets that would
not lead to empty terminal nodes. For example, if a binary predictor was used in a splitting rule,
it would no longer be available for splitting rules at nodes below it. Each realization of such a
process can simply be considered as a random draw from p(T ). Furthermore, this specification
allows for straightforward evaluation of p(T ) for any T , and can be effectively coupled with the
MH search algorithms described in Section 4.2.1.

Although other useful forms can easily be considered for the splitting probability in step 2
above, the choice of pη = α(1 + dη)−β is simple, interpretable, easy to compute and dependent
only on the depth dη of the node η. The parameters α and β control the size and shape of the
binary tree produced by the process. To see how, consider the simple specification, pη ≡ α < 1
when β = 0. In this case the probability of any particular binary tree with b terminal nodes
(ignoring the constraints of splitting rule assignments in step 3) is just αb−1(1 − α)b, a natural
generalization of the geometric distribution. (A binary tree with b terminal nodes will always
have exactly (b − 1) internal nodes). Setting α small will tend to yield smaller trees and is a
simple convenient way to control the size of trees generated by growing process.

The choice of β = 0 above assigns equal probability to all binary trees with b terminal nodes
regardless of their shape. Indeed any prior that is only a function of b will do this; for example,
DMS recommend this with a truncated Poisson distribution on b. However, for increasing β > 0,
pη is a decreasing function of dη making deeper nodes less likely to split. The resulting prior
p(T ) puts higher probability on “bushy” trees, those whose terminal nodes do not vary too
much in depth. Choosing α and β in practice can guided by looking at the implicit marginal
distributions of characteristics such as b. Such marginals can be easily simulated and graphed.

Turning to the splitting rule assignments, step 3 of the tree growing process represents the
prior information that at each node, available predictors are equally likely to be effective, and
that for each predictor, available split values or category subsets are equally likely to be effective.
This specification is invariant to monotone transformations of the quantitative predictors, and is
uniform on the observed quantiles of a quantitative predictor with no repeated values. However,
it is not uniform over all possible splitting rules because it assigns lower probability to splitting
rules based on predictors with more potential split values or category subsets. This feature is
necessary to maintain equal probability on predictor choices, and is essentially yields the dilution
property discussed in Sections 2.2 and 3.1. Predictors with more potential split values will give
rise to more trees. By downweighting the splitting rules of such predictors, p(T ) serves to dilute
probability within neighborhoods of similar trees.
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Although the uniform choices for p(T ) above seem to be reasonable defaults, non-uniform
choices may also be of interest. For example, it may be preferable to place higher probability on
predictors that are thought to be more important. A preference for models with fewer variables
could be expressed by putting greater mass on variables already assigned to ancestral nodes.
For the choice of split value, tapered distribution at the extremes would increase the tendency
to split more towards the interior range of a variable. One might also consider the distribution
of split values to be uniform on the available range of the predictor and so could weight the
available observed values accordingly. For the choice of category subset, one might put extra
weight on subsets thought to be more important.

As a practical matter, note that all of the choices above consider only the observed predictor
values as possible split points. This induces a discrete distribution on the set of splitting rules,
and hence the support of p(T ) will be a finite set of trees in any application. This is not really
a restriction since it allows for all possible partitions of any given data set. The alternative of
putting a continuous distribution on the range of the predictors would needlessly increase the
computational requirements of posterior search while providing no gain in generality. Finally, we
note that the dependence of p(T ) on the observed x values is typical of default prior formulations,
as was the case for some of the coefficient prior covariance choices discussed in Sections 3.2 and
3.4.

4.1.2 Parameter Prior Specifications

As discussed in Section 2.3, the computational burden of posterior calculation and exploration
is substantially reduced when the marginal likelihood, here p(Y | T ), can be obtained in closed
form. Because of the large size of the space of CART models, this computational consideration
is key in choosing the prior p(Θ | T ) for the parameters of the terminal node distributions. For
this purpose, we recommend the conjugate prior forms below for the parameters of the models
(69)-(71). For each of these priors, Θ can be analytically margined out via (2), namely

p(Y | T ) =
∫

p(Y | Θ, T )p(Θ | T )dΘ, (72)

where Y here denotes the observed values of y.
For regression trees with the mean-shift model normal model (69), perhaps the simplest prior

specification for p(Θ | T ) is the standard normal-inverse-gamma form where µ1, . . . , µb are iid
given σ and T with

p(µi | σ, T ) = N(µ̄, σ2/a) (73)

and
p(σ2 | T ) = p(σ2) = IG(ν/2, νλ/2). (74)

Under this prior, standard analytical simplification yields

p(Y | T ) ∝ c ab/2∏b
i=1(ni + a)1/2

(
b∑
i=1

(si + ti) + νλ

)−(n+ν)/2

(75)

where c is a constant which does not depend on T , si is (ni−1) times the sample variance of the
ith terminal node Y values, ti = nia

ni+a
(ȳi − µ̄)2, and ȳi is the sample mean of the ith terminal

node Y values.
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In practice, the observed Y can be used to guide the choice of hyperparameter values for
(ν, λ, µ̄, a). Considerations similar to those discussed for Bayesian variable selection in Section
3.2 are also useful here. To begin with, because the mean-shift model attempts to explain the
variation of Y , it is reasonable to expect that σ2 will be smaller than s2

Y , the sample variance
of Y . Similarly, it is reasonable to expect that σ2 will be larger than a pooled variance estimate
obtained from a deliberate overfitting of the data by a greedy algorithm, say s2

G. Using these
values as guides, ν and λ would then be chosen so that the prior for σ2 assigns substantial
probability to the interval (s2

G, s2
Y ). Once ν and λ have been chosen, µ̄ and a would be selected

so that the prior for µ is spread out over the range of Y values.
For the more flexible mean-variance shift model (70) where σi can also vary across the

terminal nodes, the normal-inverse-gamma form is easily extended to

p(µi | σi, T ) = N(µ̄, σ2
i /a) (76)

and
p(σ2

i | T ) = p(σ2
i ) = IG(ν/2, νλ/2), (77)

with the pairs (µ1, σ1), . . . , (µb, σb) independently distributed given T . Under this prior, ana-
lytical simplification is still straightforward, and yields

p(Y | T ) ∝
b∏
i=1

π−ni/2(λν)ν/2
√

a√
ni + a

Γ((ni + ν)/2)
Γ(ν/2)

(si + ti + νλ)−(ni+ν)/2 (78)

where si and ti are as above. Interestingly, the MCMC computations discussed in the next
section are facilitated by the factorization of this marginal likelihood across nodes, in contrast
to the marginal likelihood (75) for the equal variance model.

Here too, the observed Y can be used to guide the choice of hyperparameter values for
(ν, λ, µ̄, a). The same ideas above may be used with an additional consideration. In some cases,
the mean-variance shift model may explain variance shifts much more so than mean shifts. To
handle this possibility, it may be better to choose ν and λ so that σ2

Y is more toward the center
rather than the right tail of the prior for σ2. We might also tighten up our prior for µ about the
average y value. In any case, it can be useful to explore the consequences of several different
prior choices.

For classification trees with the simple multinomial model (71), a useful conjugate prior
specification for Θ = (p1, . . . , pb) is the standard Dirichlet distribution of dimension K − 1 with
parameter α = (α1, . . . , αK), αk > 0, where p1, . . . , pb are iid given T with

p(pi | T ) = Dirichlet(pi | α) ∝ pα1−1
i1 · · · pαK−1

iK . (79)

When K = 2 this reduces to the familiar Beta prior. Under this prior, standard analytical
simplification yields

p(Y | T ) ∝
(

Γ (
∑
k αk)∏

k Γ(αk)

)b b∏
i=1

∏
k Γ(nik + αk)

Γ (ni +
∑
k αk)

(80)

where nik is the number of ith terminal node Y values in category Ck, ni =
∑
k nik and

k = 1, ...,K over the sums and products above. For a given tree, p(Y | T ) will be larger when
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nodes are assigned more homogeneous values of y. To see this, note that assignments for which
the Y values at the same node are similar will lead to more disparate values of ni1, . . . , niK ,
which in turn will lead to larger values of p(Y | T ).

The natural default choice for α is the vector (1, . . . , 1) for which the Dirichlet prior (79) is
the uniform. However, by setting certain αk to be larger for certain categories, p(Y | T ) will
become more sensitive to misclassification at those categories. This would be desirable when
classification into those categories is most important.

One detail of analytical simplifications yielding integrated likelihoods (75), (78) or (80)
merits attention. Independence of parameters across terminal nodes means that integration
can be carried out separately for each node. Normalizing constants in integrals for each node
that would usually be discarded (for example ab/2 in (75)) need to be kept, since the number
of terminal nodes, b, varies across trees. This means that these normalizing constants will be
exponentiated to a different power for trees of different size.

All the prior specifications above assume that given the tree T , the parameters in the terminal
nodes are independent. When terminal nodes share many common parents, it may be desirable
to introduce dependence between their θi values. Chipman, George, and McCulloch (2000)
introduce such a dependence for the regression tree model, resulting in a Bayesian analogue of the
tree shrinkage methods considered by Hastie and Pregibon (1990) and Leblanc and Tibshirani
(1998).

4.2 Stochastic Search of the CART Model Posterior

Combining any of the closed form expressions (75), (78) or (80) for p(Y | T ) with p(T ) yields a
closed form expression g(T ) satisfying

g(T ) ∝ p(Y | T )p(T ) ∝ p(T | Y ). (81)

Analogous to benefits of the availability g(γ) in (45) for Bayesian variable selection, the avail-
ability of g(T ) confers great advantages for posterior computation and exploration in Bayesian
CART model selection.

Exhaustive evaluation of g(T ) over all T will not be feasible, except in trivially small prob-
lems, because of the sheer number of possible trees. This not only prevents exact calculation
of the norming constant, but also makes it nearly impossible to determine exactly which trees
have largest posterior probability. In spite of these limitations, MH algorithms can still be used
to explore the posterior. Such algorithms simulate a Markov chain sequence of trees

T 0, T 1, T 2, . . . (82)

which are converging in distribution to the posterior p(T |Y ). Because such a simulated sequence
will tend to gravitate towards regions of higher posterior probability, the simulation can be used
to stochastically search for high posterior probability trees. We now proceed to describe the
details of such algorithms and their effective implementation.
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4.2.1 Metropolis-Hastings Search Algorithms

By restricting attention to a finite set of CART trees T , as discussed in the last paragraph of
Section 4.1.1, the simple MH form described in Section 2.3 can be used for direct simulation
of the Markov chain (82). Because g(T )/g(T ′) = p(T | Y )/p(T ′ | Y ), such MH algorithms are
obtained as follows. Starting with an initial tree T 0, iteratively simulate the transitions from
T j to T j+1 by the two steps:

1. Simulate a candidate T ∗ from the transition kernel q(T | T j).
2. Set T j+1 = T ∗ with probability

α(T ∗ | T j) = min
{

q(T j | T ∗)
q(T ∗ | T j)

g(T ∗)
g(T j)

, 1
}

. (83)

Otherwise, set T j+1 = T j.

The key to making this an effective MH algorithm is the choice of transition kernel q(T |T j).
A useful strategy in this regard is to construct q(T |T j) as a mixture of simple local moves from
one tree to another - moves that have a chance of increasing posterior probability. In particular,
CGM use the following q(T | T j), which generates T from T j by randomly choosing among four
steps:

• GROW: Randomly pick a terminal node. Split it into two new ones by randomly assigning
it a splitting rule using the same random splitting rule assignment used to determine p(T ).

• PRUNE: Randomly pick a parent of two terminal nodes and turn it into a terminal node
by collapsing the nodes below it.

• CHANGE: Randomly pick an internal node, and randomly reassign it using the same
random splitting rule assignment used to determine p(T ).

• SWAP: Randomly pick a parent-child pair which are both internal nodes. Swap their
splitting rules unless the other child has the identical rule. In that case, swap the splitting
rule of the parent with that of both children.

In executing the GROW, CHANGE and SWAP steps, attention is restricted to splitting rule
assignments that do not force the tree have an empty terminal node. CGM also recommend
further restricting attention to splitting rule assignments which yield trees with at least a small
number (such as five) observations at every terminal node. A similar q(T |T j), without the SWAP
step, was proposed by DMS. An interesting general approach for constructing such moves was
proposed by Knight, Kustra and Tibshirani (1998).

The transition kernel q(T |T j) above has some appealing features. To begin with, every step
from T to T ∗ has a counterpart that moves from T ∗ to T . Indeed, the GROW and PRUNE steps
are counterparts of one another, and the CHANGE and SWAP steps are their own counterparts.
This feature guarantees the irreducibility of the algorithm, which is needed for convergence. It
also makes it easy to calculate the ratio q(T j |T ∗)/q(T ∗ |T j) in (83). Note that other reversible
moves may be much more difficult to implement because their counterparts are impractical
to construct. For example, pruning off more than a pair of terminal nodes would require a
complicated and computationally expensive reverse step. Another computational feature occurs
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in the GROW and PRUNE steps, where there is substantial cancelation between g and q in the
calculation of (83) because the splitting rule assignment for the prior is used.

4.2.2 Running the MH Algorithm for Stochastic Search

The MH algorithm described in the previous section can be used to search for desirable trees.
To perform an effective search it is necessary to understand its behavior as it moves through
the space of trees. By virtue of the fact that its limiting distribution is p(T | Y ), it will spend
more time visiting tree regions where p(T | Y ) is large. However, our experience in assorted
problems (see the examples in CGM) has been that the algorithm quickly gravitates towards
such regions and then stabilizes, moving locally in that region for a long time. Evidently, this is
a consequence of a transition kernel that makes local moves over a sharply peaked multimodal
posterior. Once a tree has reasonable fit, the chain is unlikely to move away from a sharp local
mode by small steps. Because the algorithm is convergent, we know it will eventually move from
mode to mode and traverse the entire space of trees. However, the long waiting times between
such moves and the large size of the space of trees make it impractical to search effectively with
long runs of the algorithm. Although different move types might be implemented, we believe
that any MH algorithm for CART models will have difficulty moving between local modes.

To avoid wasting time waiting for mode to mode moves, our search strategy has been to
repeatedly restart the algorithm. At each restart, the algorithm tends to move quickly in a
direction of higher posterior probability and eventually stabilize around a local mode. At that
point the algorithm ceases to provide new information, and so we intervene in order to find
another local mode more quickly. Although the algorithm can be restarted from any particular
tree, we have found it very productive to repeatedly restart at the trivial single node tree. Such
restarts have led to a wide variety of different trees, apparently due to large initial variation of
the algorithm. However, we have also found it productive to restart the algorithm at other trees
such as previously visited intermediate trees or trees found by other heuristic methods. For
example, CGM demonstrate that restarting the algorithm at trees found by bootstrap bumping
(Tibshirani and Knight 1996) leads to further improvements over the start points.

A practical implication of restarting the chain is that the number of restarts must be traded
off against the length of the chains. Longer chains may more thoroughly explore a local region
of the model space, while more restarts could cover the space of models more completely. In
our experience, a preliminary run with a small number of restarts can aid in deciding these two
parameters of the run. If the marginal likelihood stops increasing before the end of each run,
lengthening runs may be less profitable than increasing the number of restarts.

It may also be useful to consider the slower “burn in” modification of the algorithm proposed
by DMS. Rather than let their MH algorithm move quickly to a mode, DMS intervene, forcing
the algorithm to move around small trees with around 6 or fewer nodes, before letting it move
on. This interesting strategy can take advantage of the fact that the problems caused by the
sharply peaked multimodal posterior are less acute when small trees are constructed. Indeed,
when trees remain small, the change or swap steps are more likely to be permissible (since there
are fewer children to be incompatible with), and help move around the model space. Although
this “burn in” strategy will slow down the algorithm, it may be a worthwhile tradeoff if it
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sufficiently increases the probability of finding better models.

4.2.3 Selecting the “Best” Trees

As many trees are visited by each run of the algorithm, a method is needed to identify those
trees which are of most interest. Because g(T ) ∝ p(T | Y ) is available for each visited tree,
one might consider selecting those trees with largest posterior probability. However, this can
be problematic because of the dilution property of p(T ) discussed in Section 4.1.1. Consider
the following simple example. Suppose we were considering all possible trees with two terminal
nodes and a single rule. Suppose further that we had only two possible predictors, a binary
variable with a single available splitting rule, and a multilevel variable with 100 possible splits.
If the marginal likelihood p(Y |T ) was the same for all 101 rules, then the posterior would have
a sharp mode on the binary variable because the prior assigns small probability to each of the
100 candidate splits for the multilevel predictor, and much larger probability to the single rule
on the binary predictor. Selection via posterior probabilities is problematic because the relative
sizes of posterior modes does not capture the fact that the total posterior probability allocated
to the 100 trees splitting on the multilevel variable is the same as that allocated to the single
binary tree.

It should be emphasized that the dilution property is not a failure of the prior. By using
it, the posterior properly allocates high probability to tree neighborhoods which are collectively
supported by the data. This serves to guide the algorithm towards such regions. The difficulty
is that relative sizes of posterior modes do not capture the relative allocation of probability to
such regions, and so can lead to misleading comparisons of single trees. Note also that dilution
is not a limitation for model averaging. Indeed, one could approximate the overall posterior
mean by the average of the visited trees using weights proportional to p(Y |T )p(T ). Such model
averages provide a Bayesian alternative to the tree model averaging proposed by see Breiman
(1996) and Oliver and Hand (1995).

A natural criterion for tree model selection, which avoids the difficulties described above,
is to use the marginal likelihood p(Y | T ). As illustrated in CGM, a useful tool in this regard
is a plot of the largest observed values of p(Y | T ) against the number of terminal nodes of T ,
an analogue of the Cp plot (Mallows 1973). This allows the user to directly gauge the value of
adding additional nodes while removing the influence of p(T ). In the same spirit, we have also
found it useful to consider other commonly used tree selection criteria such as residual sums of
squares for regression trees and misclassification rates for classification trees.

After choosing a selection criterion, a remaining issue is what to do when many different
models are found, all of which fit the data well. Indeed, our experience with stochastic search
in applications has been to find a large number of good tree models, distinguished only by
small differences in marginal likelihood. To deal with such output, in Chipman, George and
McCulloch (1998b, 2001a), we have proposed clustering methods for organizing such multiple
model output. We found such clustering to reveal a few distinct neighborhoods of similar models.
In such cases, it may be better to select a few representative models rather than a single “best”
model.
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5 Much More to Come

Because of its broad generality, the formulation for Bayesian model uncertainty can be applied
to a wide variety of problems. The two examples that we have discussed at length, Bayesian
variable selection for the linear model and Bayesian CART model selection, illustrate some of
the main ideas that have been used to obtain effective practical implementations. However,
there have been many other recent examples. To get an idea of the extent of recent activity,
consider the following partial list of some of the highlights just within the regression framework.

To begin with, the Bayesian variable selection formulation for the linear model has been
extended to the multivariate regression setting by Brown, Vannucci and Fearn (1998). It has
been applied and extended to nonparametric spline regression by Denison, Mallick and Smith
(1998bc), Gustafson (2000), Holmes and Mallick (2001), Liang, Truong and Wong (2000), Smith
and Kohn (1996, 1997), Smith, Wong and Kohn (1998); and to nonparametric wavelet regression
by Abramovich, Sapatinas and Silverman (1998), Chipman, Kolaczyk and McCulloch (1997),
Clyde and George (1999,2000), Clyde, Parmigiani and Vidakovic (1998), Holmes and Mallick
(2000) and Johnstone and Silverman (1998). Related Bayesian approaches for generalized linear
models and time series models have been put forward by Chen, Ibrahim and Yiannoutsos (1999),
Clyde (1999), George, McCulloch and Tsay (1995), Ibrahim and Chen (1999), Mallick and
Gelfand (1994), Raftery (1996), Raftery, Madigan and Volinsky (1996), Raftery and Richardson
(1996), Shively, Kohn and Wood (1999), Troughton and Godsill (1997) and Wood and Kohn
(1998); for loglinear models by Dellaportas and Foster (1999) and Albert (1996); and to graphical
model selection by Giuduci and Green (1999) and Madigan and York (1995). Bayesian CART
has been extended to Bayesian treed modeling by Chipman, George and McCulloch (2001);
an related Bayesian partitioning approach has been proposed by Holmes, Denison and Mallick
(2000). Alternative recent Bayesian methods for the regression setup include the predictive
criteria of Laud and Ibrahim (1995), the information distance approach of Goutis and Robert
(1998) and the utility approach of Brown, Fearn and Vannucci (1999) based on the early work of
Lindley (1968). An excellent summary of many of the above articles and additional contributions
to Bayesian model selection can be found in Ntzoufras (1999).

Spurred on by applications to new model classes, refinements in prior formulations and ad-
vances in computing methods and technology, implementations of Bayesian approaches to model
uncertainty are widening in scope and becoming increasingly prevalent. With the involvement
of a growing number of researchers, the cross-fertilization of ideas is further accelerating devel-
opments. As we see it, there is much more to come.
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