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1. Basic References

There is a paper on arxiv and the paper has instructions for
installing an R package from github.
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Key References:

Conley (CHMR) does linear IV with nonparametric error
distributions using DPM (Dirichlet Process Mixtures).

Chipman (Bayesian Additive Regression Trees, BART) does
Bayesian Machine Learning in the spirit of boosting.

George does BART with DPM errors.

We are simply trying to get rid of linear and normal errors for IV!!
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2. Basic and Flexible IV

The classic linear approach to IV modeling is expressed by the
following two equations:

The treatment equation

Ti = µT + γ′zi + α′xi + εTi

The outcome equation

Yi = µY + β Ti + δ′xi

In the treatment equation where we try to understand how much
treatment (T ) is being given to each subject (i th subject).

Both z and x are things we can measure (mostly about the treated
subject) that potentially affect T .
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Ti = µT + γ′zi + α′xi + εTi

Yi = µY + β Ti + δ′xi + εYi .

The second equation is the outcome equation.

Our fundamental goal is to understand how the treatment (T )
affects the outcome (Y ).

This is captured by the single parameter β.

We consider the possibility that the variables in x
may also affect Y .

The x variables are often called “confounders”.
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Ti = µT + γ′zi + α′xi + εTi

Yi = µY + β Ti + δ′xi + εYi .

Because we did not assign T , but merely observe it, we cannot
assume that the errors in the two equations are independent.

There may be unobserved variables affecting both T and Y .

Thus, we cannot simply regress Y on T and x to understand the
causal effect of T .

The “causal effect” is the change in Y due to an intervention in
the system where we actively change T .
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Ti = µT + γ′zi + α′xi + εTi

Yi = µY + β Ti + δ′xi + εYi .

This is the fundamental causal inference problem.

We want to predict a process (intervening to change T ) we have
not actually observed.

We love experiments because we actually intervene to change T so
we are observing what we want to predict.
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Ti = µT + γ′zi + α′xi + εTi

Yi = µY + β Ti + δ′xi + εYi .

The variables z are the instruments.

We assume that variation in z is comparable to us “exogenously”
intervening in the system to cause changes in T .

Variation in T due to z is good variation in that it is comparable
to us running an experiment.
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Card Example

A classic IV example.

We will use it in our examples.

I Y : wages

I T : years of schooling

I z : how close to a two year college, how close to a four year
college

I x : years of experience, race, lives in standard metropolitan
area, live in south

Somewhat plausibly, z could be in the treatment equation but not
in the outcome equation.

We assume that variation in T due to z , is comparable to variation
in T due to an experiment.
This identifies the causal effect of T on Y .
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Flexible IV

Classic Bayesian IV assume linearity and bivariate iid normal errors.

Then applied work has to worry about the “specification”.

That is, how do we transform or feature engineer the x and z to
enter linearly in our two equations.

Of course, inference about β may depend on the specification.

This makes a mess.

Our goal is to eliminate the need to assume that the relationships
are linear and to make minimal assumptions about the nature of
the errors.
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Flexible IV

Can we get the causal inference without making assumptions??

Ti = f (zi , xi ) + εTi

Yi = β Ti + h(xi ) + εYi .

εi = (εTi , εYi )
′ ∼ N(µi ,Σi )

f , h ∼ BART , (µi ,Σi ) ∼ DPM.

We use BART to flexibly model the functions f and h.

We use the tried-and-true Dirichlet process mixture model with a
bivariate normal base to model the errors.

Intercepts go into the errors.
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Note:

In this talk and the currently available R package we are still linear
in T in the outcome equation.

We intend to relax this, but we think this version may be very
appealing to practitioners!!
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BART

BART: Bayesian Additive Regression Trees.

I BART is able to learn high-dimensional, complex, non-linear
relationships

I BART is a fully Bayesian procedure with an effective MCMC
algorithm that inherently provides an assessment of
uncertainty.

I BART often obtains an adequate fit with minimal tuning.

I Multiple additive BART models can be embedded in a larger
model (as in our model !!).

I Simple prior: f (x) ∼ N(0, σ2f ), you can choose σf .
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DPM

Each observation gets to have its own (µi ,Σi ).

But, the DPM machinery allows us to uncover a set of
(µ∗j ,Σ

∗
j ), j = 1, 2, . . . , I such that each

for each i , (µi ,Σi ) = (µ∗j ,Σ
∗
j ), for some j .

I is much smaller than n so we partition the observations into joint
subsets so that within a subset all the observations have the same
(µ∗j ,Σ

∗
j ).
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Connection to Mixture of Normals

Given (µi ,Σi ), i = 1, 2, . . . , n, let

{(µ∗j ,Σ∗j )}, j = 1, 2, . . . , I

be the unique (µ,Σ) pairs.

Let

pj =
#
[
(µi ,Σi ) = (µ∗j ,Σ

∗
j )
]

n

Then

ε ≈
I∑

j=1

pj N(µ∗j ,Σ
∗
j )
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3. Prior Choice

While our examples will suggest that our results are not too
sensitive to the prior specifications, we do see some sensitivity.

We are still working on this.

You can explain (T ,Y ) with the DPM or the BARTs !!
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We first rescale both T and Y by subtracting off the sample mean
and then dividing by the sample standard deviation.

The error DPM prior is then designed to be informative, but
flexible enough to cover the full range of the data.

For the DPM we follow Conley, Hansen, McCulloch, and Rossi.
This may be too spread out.

As a base case we use

f (x , z) ∼ N(0, σ2f ), h(x) ∼ N(0, σ2h)

with σf = σh = 1.2.

We will consider the sensitivity of the results to the choice of σf
and σh.

These should be be chosen as in DPMBART.
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4. Gibbs Sampler

Ti = f (zi , xi ) + εTi

Yi = β Ti + h(xi ) + εYi .

θi = (µi ,Σi ).

We use the obvious Gibbs sampler:

f | h, β, {θi},D
h | f , β, {θi},D
β | f , h, {θi},D
{θi} | f , h, β,D

Only the f draw is a little tricky, but they all reduce to standard
conjugate Bayes or weighted BART.

Yi = f (xi ) + εi , εi ∼ N(0,wi σ
2).
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5. Simulated Examples

Ti = f (zi , xi ) + εTi

Yi = β Ti + h(xi ) + εYi .

We will consider a nonlinear pair of function:

f (x , z) = x1 + .5 x1x2 + .5x22 + z1 + z2x1 + .5z22

h(x) = x1 − .25x1x
3
2 + x3

And a linear pair:

f (x , z) = x1 + x2 + x3 + z1 + z2

h(x) = x1 − x2 + .5x4 .

True β: β = 1.
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x and z

Each coordinate of both x and z are iid uniform on the interval
(−2, 2).

For x , we simulate xj , j = 1, 2, . . . , 10.

For z we simulated zj , j = 1, 2, . . . 5.

So, there are 10 x variables and 5 potential z instruments.
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Errors:

For the error distribution we use:

εT = σT ZT

εY = γZT + σYZY

where (ZT ,ZY ) are indepenent tν random variables with ν = 5.

We let σT = 1 and (γ, σY ) = ( 1√
2
, 1√

2
).

With these choices, both errors have the same variance as the Z ’s
and the correlation is 1/

√
2 ≈ .707.

The pair of errors (εTi , εYi ) are iid over observations.

20



We consider four different simulation scenarios by letting the
sample size n be 2,000 or 500 and letting the functions be
nonlinear or linear.

We draw 90 samples and run MCMC estimation of each of the
three models IVBART, linear-normal, and linear-DPM (CHMR) on
each of the 90 samples.

We used the R package bayesm for the linear-normal and
linear-DPM results and our R package for IVBART.
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Each density represents all posterior draws of β over all MCMC
iterations and all data simulations.

compare:
IVBART, linear, normal errors, linear, DPM errors, (CHMR)

topleft: works !!; bottom left: bias with small n but still better
than linear!!
In the linear case, not much worse than linear methods. 22



n = 2, 000, nonlinear functions.

95% posterior intervals for each data simulation.
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Prior Sensitivity

n = 500, nonlinear functions, a single data simulation.
σf , σh, ∈ Sσ = {.8, 1, 1.2, 1.4}

Top:
σf = σh ∈ Sσ.

Bottom:
σf , σh ∈ Sσ.

Pretty good!!

But we are still
working on the
prior.
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6. Card Example

16 posteriors by varying σf and σh in Sσ = {.8, 1, 1.2, 1.4}.

Confirms CHMR result that β is much smaller than suggested by
classic IV.

β is plausibly smaller than CHMR. 25


