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Measuring Variable Importance with BART
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A Competitive Bottleneck for Entry
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Example: The Friedman Test Function
BART variable importance on data simulated from:

Y = 10 sin(πx1x2) + 20(x3 − .5)2 + 10x4 + 5x5 + 0x6 + · · · + 0x10 + ϵ
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Part II. Monotone BART - mBART

mBART: Multidimensional Monotone BART
Chipman, George, McCulloch, Shively (2021 Bayesian Analysis)

The Key Idea:

BART approximates a function by a sum of tree functions

mBART approximates a monotone function by a sum of monotone
tree functions

This works because of the obvious fact:

The sum of monotone functions yields a monotone function
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An Example of a Monotone Tree Function

x1

x2

f(x) Three different views of
a bivariate monotone
tree.
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In what sense is this tree function monotone?

x1

x2

f(x)

A tree function g(x ; T , M) is said to be monotone nondecreasing
in xi if for all x−i and δ > 0,

g(xi , x−i ; T , M) ≤ g(xi + δ, x−i ; T , M)

For simplicity and wlog, let’s restrict attention to monotone
nondecreasing tree functions.
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The mBART Prior

Bayesian Nonparametrics: 
     Lots of parameters (to make model flexible) 
     A strong prior to shrink towards simple structure (regularization) 
     BART shrinks towards additive models with some interaction 

Dynamic Random Basis: 
     g(x;T1,M1), ..., g(x;Tm,Mm) are dimensionally adaptive 

Gradient Boosting: 
     Overall fit becomes the cumulative effort of many “weak learners” 

Connections to Other Modeling Ideas 

Y = g(x;T1,M1) + ... + g(x;Tm,Mm) + & z 
 plus   

#((T1,M1),....(Tm,Mm),&) 

12 

Recall the BART parameter

θ = ((T1, M1), (T2, M2), . . . , (Tm, Mm), σ)

Let S = {θ : each (Tj , Mj) is monotone in a desired subset of x ′
i s}

To impose the monotonicity we simply truncate the BART prior
π(θ) to the set S

π∗(θ) ∝ π(θ) IS(θ)

where IS(θ) is 1 if every tree in θ is monotone.
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Forcing a tree to be monotone is easy: we simply constrain the
mean level of a node to be greater than those of its
“below-neighbors”, and less than those of its “above-neighbors”.
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For example, the mean level of node 13 must be greater than those
of 10 and 12 and less than that of node 7.

For any bottom node µ, given the rest of the tree, we can figure
out (and easily code) its interval of constraint.

Because we only make local changes via the MCMC algorithm, this
criterion suffices for all computations.

The remaining challenge is the construction of a new algorithm
which can handle the nonconjugacy of truncated priors on µ’s.
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A New BART MCMC “Christmas Tree” Algorithm

π((T1, M1), (T2, M2), . . . , (Tm, Mm), σ | y))

Bayesian Backfitting again: Iteratively sample each (Tj , Mj) given
(y , σ) and other (Tj , Mj)’s

Each (T 0, M0) → (T 1, M1) update is sampled as follows:
▶ Denote move as

(T 0, M0
Common, M0

Old) → (T 1, M0
Common, M1

New )
▶ Propose T ∗ via birth, death, etc.
▶ If M-H with π(T , M | y) accepts (T ∗, M0

Common)
▶ Set (T 1, M1

Common) = (T ∗, M0
Common)

▶ Sample M1
New from π(MNew | T 1, M1

Common, y)

Only M0
Old → M1

New needs to be updated.

Works for both BART and mBART.
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Example: Product of two x ’s

Let’s consider a very simple simulated monotone example:

Y = x1 x2 + ϵ, xi ∼ Uniform(0, 1).

Here is the plot of the true function f (x1, x2) = x1 x2
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First we try a single (just one tree), unconstrained tree model.

Here is the graph of the fit.
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The fit is not terrible, but there are some aspects of the fit which
violate monotonicity.
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Here is the graph of the fit with the monotone constraint:
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We see that our fit is monotonic, and more representative of the
true f .
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Here is the unconstrained BART fit:
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Much better (of course) but not monotone!
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And, finally, the constrained BART fit:
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Not Bad!

Same method works with any number of x’s!
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Automatic Uncertainty Quantification

Revisiting our simple simulated 1-dimensional example
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mBART intervals are tighter!
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Example: RMSE Reduction by Monotone Regularization

Y = x1 x2
2 + x3 x3

4 + x5 + ϵ,

ϵ ∼ N(0, σ2), xi ∼ Uniform(0, 1).

For various values of σ, we simulated 5,000 observations.
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RMSE improvement of mBART over BART
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Part III. Discovering Monotonicity with mBART

Suppose we don’t know if f (x) is monotone up, monotone down or
even monotone at all.

Of course, a simple strategy would be to simply compare the fits
from BART and mBART.

Good news! We can do even better than this by deploying mBART
to simultaneously estimate all the monotone components of f .

With this strategy, monotonicity can be discovered rather than
imposed!
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The Monotone Decomposition of a Function

To begin simply, suppose x is one-dimensional and f is of bounded
variation.

The Jordan Decomposition Theorem: Any such f can be
uniquely written (up to an additive constant) as the sum
of its monotone up and monotone down components

f (x) = fup(x) + fdown(x)

where
▶ when f (x) is increasing, fup(x) increases at the same

rate and is flat otherwise,
▶ when f (x) is decreasing, fdown(x) decreases at the

same rate and is flat otherwise.

20 / 42



The Monotone Discovery Strategy with mBART

Key Idea: To discover the monotone decomposition of f , we treat
f (x) as embedded in a two-dimensional function

f ∗(x1, x2) = fup(x1) + fdown(x2).

Letting x1 = x2 = x be duplicate copies of x , we simply estimate
f ∗(x1, x2) with mBART
▶ constrained to be monotone up in the x1 direction, and
▶ constrained to be monotone down in the x2 direction.

Thus, we are estimating the monotone “projections” of f ∗(x1, x2)
along the x1 and x2 axes, i.e.
▶ P[x1]f ∗(x1, x2) = fup(x1)
▶ P[x2]f ∗(x1, x2) = fdown(x2)
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Example: Suppose Y = x3 + ϵ.
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Note that f̂down ≈ 0 (the red in the right plot), as we would expect
when f is monotone up.

Remark: mBARTD = f̂up + f̂down is an alternative estimate of f
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As the sample size is increased from 200 to 1,000, f̂down gets even
flatter.
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mBARTD: overall fit

Suggests consistent estimation of the monotone components!!
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Example: Suppose Y = x2 + ϵ.
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mBART: fup

mBART: fdown

mBARTD: overall fit

▶ On the left, BART is good, but simple mBART is not.
▶ On the right, f̂up and f̂down are spot on.
▶ And mBARTD = f̂up + f̂down seems even better than BART!
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Example: Suppose Y = sin(x) + ϵ.
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mBART: fup
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mBARTD: overall fit

▶ BART is great, but simple mBART reveals nothing.
▶ f̂up and f̂down have discovered the monotone decomposition.
▶ And mBARTD = f̂up + f̂down is great too.

To extend this approach to multidimensional x , we simply
duplicate each and every component of x !!!
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Example: House Price Data
n = 128 houses, y = house price ($ thousands),
x = (nbhd (1,2 or 3), size (sq ft thousands), brick (B or N)).
Call:
lm(formula = price ~ nbhd + size + brick, data = hdat)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 18.725 10.766 1.739 0.0845 .
nbhd2 5.556 2.779 1.999 0.0478 *
nbhd3 36.770 2.958 12.430 < 2e-16 ***
size 46.109 5.527 8.342 1.25e-13 ***
brickYes 19.152 2.438 7.855 1.69e-12 ***
---

Residual standard error: 12.5 on 123 degrees of freedom
Multiple R-squared: 0.7903,Adjusted R-squared: 0.7834
F-statistic: 115.9 on 4 and 123 DF, p-value: < 2.2e-16

If the linear model is correct, we are monotone up in all three
variables.

Remark: For the linear model we have to dummy up nbhd, but for
BART and mBART we can simply leave it as an ordered numerical
categorical variable.
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Let’s first compare BART, mBART (constrained up), and
mBARTD to estimate the effect of size conditionally on the six
possible values of (nbdh, brick)
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Note how mBARTD = f̂up + f̂down adaptively shrinks the estimates
towards the mBART estimates.
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The full picture emerges from estimates of the effect of size via f̂up
and f̂down conditionally on the six possible values of (nbdh, brick)

1.7 1.8 1.9 2.0 2.1 2.2 2.3

80
10

0
12

0
14

0
16

0
18

0
20

0

size

pr
ic

e

N
N N N N N N N

N
N N N N

N N

N
N N N N N N N

N
N N N N

N NN
N N N N N N N

N
N N N N

N N

B
B B B B B B B

B
B B B B

B B

B
B B B B B B B

B
B B B B

B BB
B B B B B B B

B
B B B B

B B

mBART, fup: conditional effect of size
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Price is clearly conditionally monotone up in all three variables!

By simultaneously estimating f̂up and f̂down, we have discovered
monotonicity without any imposed assumptions!!!
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This can all be most conveniently done using the mBART variable
importance strategy to gauge the relationships between y = price
and x = (sizeUp, sizeDn, nbhdUp, nbhdDn, brickUp, brickDn)
y = price and
x = (UpBrick, UpNbhd , UpSize, DnBrick, DnNbhd , DnSize).

x = (sizeUp, sizeDn, nbhdUp, nbhdDn, brickUp, brickDn).
This frequency-of-use variable importance strategy reveals clearly
that price is conditionally monotone up in all three variables:
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Proceeding in this way is essential for larger problems!
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Example: The Diabetes Data
Benchmark Dataset used in Least Angle Regression
Efron, Hastie, Johnstone, Tibshirani (2004, AOS)

n = 442 diabetes patients, y = disease progression measure,
x = (age, bmi, glu, hdl, ldl, ltg, map, sex, tc, tch)

The mBART variable importance strategy identifies six important
variables together with the direction of their conditional effects
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bmi-U, ltg-U, map-U, glu-U, hdl-D, sex-D.
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▶ Discovery variable importance: put in x and -x.
▶ BART Prior: put tight prior on σ saying you want the same

kind of σ as you got from classic BART.
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bmi-U, ltg-U, map-U, glu-U, hdl-D, sex-D.

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.710e-08 2.576e+00 0.000 1.000000
age -4.768e-01 2.845e+00 -0.168 0.867000
sex -1.142e+01 2.915e+00 -3.917 0.000104 ***
bmi 2.475e+01 3.168e+00 7.813 4.30e-14 ***
map 1.545e+01 3.115e+00 4.958 1.02e-06 ***
tc -3.772e+01 1.984e+01 -1.901 0.057947 .
ldl 2.270e+01 1.614e+01 1.406 0.160389
hdl 4.812e+00 1.012e+01 0.475 0.634720
tch 8.432e+00 7.689e+00 1.097 0.273456
ltg 3.578e+01 8.186e+00 4.370 1.56e-05 ***
glu 3.220e+00 3.142e+00 1.025 0.305998
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 54.15 on 431 degrees of freedom
Multiple R-squared: 0.5177,Adjusted R-squared: 0.5066
F-statistic: 46.27 on 10 and 431 DF, p-value: < 2.2e-16

Not the same !!!!

which one is more useful !!!????
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Hockey Penalties

We’ll use the hockey penalty data.

The response is 1 if the current penalty is not on the same team as
the previous penalty and 0 otherwise.

The response is called revcall or oppcall.

x is a bunch of stuff about the game situation
(the score ...).

The x values refer to the team that had the previous penalty.
For example, goaldiff=1 means the team that had the previous
penalty is ahead by one goal.

Our response is binary and some of our predictors are categorical
as well.

P(oppcall = 1) = .6.
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Some of the important x variables:

▶ inrow2: 1 of the last two penalties where on the same team.

▶ goalidff: the lead of the last penalized team.

▶ timespan: how long since the last penalty

▶ laghome: 1 if the last penalty was on the home team.

n ≈ 60, 000.
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Here is the tree.

goaldiff < .5 means the last penalized team is not winning.
Do you want to give them a another penalty ???

|
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▶ Each bottom node gives the fraction of training data in the two outcome
categories. Think of it as p̂ for the kind of x associated with that bottom node.

▶ The form of the decision rule can’t be x < c for categorical variables.
We pick a subset of the levels to go left. inrow2:0 means all the observations
with inrow2 in the category labeled 0 go left.
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There is a lot of fit!!!

Suppose “you” got the last penalty.
if:

▶ if you are not winning
▶ you had the last two penalties
▶ it has not been long since the last call
▶ and there is only 1 referee

then:
there is a 72% chance the next call will be on the other team.

|
goaldiff < 0.5

inrow2: 0

numpen < 2.5

time < 22.775 goaldiff < −0.5

laghome: 0

timespan < 6.79167

numrefs: 1

timespan < 3.39167

inrow2: 0
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time < 37.6917
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Whilst there is another game situation where the chance the next
call is on the other team is only 41%.
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We’ll use a simple subset of the data:

> dim(dhy)
[1] 5000 5
> head(dhy)

oppcall timespan laghome goaldiff inrow2
1 0 14.750000 0 -1 0
2 0 6.900000 1 2 0
3 1 8.450000 1 2 1
4 0 11.750000 0 0 0
5 1 6.300000 1 1 0
6 1 3.333333 1 -1 1

> mean(dhy$oppcall)
[1] 0.5904
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We ran wbart with 40 trees.
wbart works well (in prediction) since the probability of an oppcall
never gets close to 0 or 1.

All 4 variables seem useful.
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BART variable selection, number of trees = 40
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Ok, now let’s do the discovery variable selection !!
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▶ Only used 20 trees in the BART ensemble.
▶ BART Prior:

Put a strong prior that the σ value is very close to the
posterior mean from a default wbart run.

▶ Discovery: each of the 4 variable comes in as x and −x
giving 8 variable, all 8 constrained to be monotonic.
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▶ goaldiff:
If the last penalized team is ahead they are more like to be
penalized again => oppcall = 0.

▶ inrow2:
If the same team has the last two penalties it more likely that
the next penaly will be on the other team => oppcall = 1.
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Discovery variable selection, BART prior,  number of trees = 20
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▶ laghome:
If the last penalized team was the home time, visitors will get
the next one => oppcall = 1

▶ timespan:
It is has been a while since the last penalty, the referee is off
the hook => oppcall =0.
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