
Py_Hello-Word_Regression

January 19, 2021

1 Hello World Data Analysis in Python

In this notebook we will do a basic data analysis in python.
Our goal is to see how the price of a used car depends on characteristics of the car (features.)
We will:

• read in the data

• plot and tranform the data

• fit a simple multiple regression model, getting fits, predictions and standard inference.

1.1 Import Needed Modules

We need to import numpy, pandas, and matplot.pyplot (as np, pd, and plt).
numpy gives as vector/matrix/array operations, pandas gives us "data frames" data structures,
and matplot.pyplot give us graphics.

We also import LinearRegression from sklearn.linear_model to run the multiple regression.
We also import statsmodels.api (as sm) to get inference and summaries (e.g. R-squared, t-stats,

p-values) for multiple regression.

In [1]: import matplotlib.pyplot as plt
import seaborn; seaborn.set()

import numpy as np
import pandas as pd
from sklearn.linear_model import LinearRegression
import statsmodels.api as sm

#ipython magic function, helps display of plots in a notebook
%matplotlib inline

1.2 Read in the Data and Get the Variables We Want

We will

• read in the data to a pandas data frame

1

• pull off price, mileage, and year
• divide price and mileage by 1,000
• do some simple summaries

First we will read in the data from the file susedcars.csv on Rob’s data page.

In [2]: cd = pd.read_csv("http://www.rob-mcculloch.org/data/susedcars.csv") #cd for car data
print("*** the type of cd is:")
print(type(cd))
print("***number number of rows and columns is: ",cd.shape)
print("***the column names are:")
print(cd.columns.values)

*** the type of cd is:
<class 'pandas.core.frame.DataFrame'>
***number number of rows and columns is: (1000, 7)
***the column names are:
['price' 'trim' 'isOneOwner' 'mileage' 'year' 'color' 'displacement']

Each of the 1,000 rows corresponds to a used cars. price is what the car sold for. The other
variables are features describing the car. Our goal is to relate the price to the other features.

We can pull one column (variable) out of the data frame by name.

In [3]: temp = cd['mileage'] # pull out the variable mileage
temp[0:5] # print out the mileage of the first 5 cars, note the indexing!! [a,b)

Out[3]: 0 36858.0
1 46883.0
2 108759.0
3 35187.0
4 48153.0
Name: mileage, dtype: float64

The feature mileage is a numeric variable with units miles. We can summarize it using the
usual descriptive summaries:

In [4]: print(cd['mileage'][0:5]) # first 5 values of variable mileage
cd['mileage'].describe() # summary statistics of variable mileage

0 36858.0
1 46883.0
2 108759.0
3 35187.0
4 48153.0
Name: mileage, dtype: float64

2

Out[4]: count 1000.000000
mean 73652.408000
std 42887.422189
min 1997.000000
25% 40132.750000
50% 67919.500000
75% 100138.250000
max 255419.000000
Name: mileage, dtype: float64

The feature color is a categorical variable. Each car is in one of the color categories. We can’t
summarize a categorical variable the same way that we summarize a numeric variable. There is
no "average" color. To summarize a categorical variable we simply count how many observations
are in each category.

In [5]: print(cd['color'][0:5]) # colors of first 5 cars
cd['color'].value_counts() # how many cars have each color

0 Silver
1 Black
2 White
3 Black
4 Black
Name: color, dtype: object

Out[5]: Black 415
other 227
Silver 213
White 145
Name: color, dtype: int64

Let’s focus on the two numeric features mileage and year. Our goal will be to see how price
relates to mileage and year.
We will divide both price and mileage by 1,000 to make the results easier to understand.

In [6]: cd = cd[['price','mileage','year']]
cd['price'] = cd['price']/1000
cd['mileage'] = cd['mileage']/1000
print(cd.head()) # head just prints out the first few rows

price mileage year
0 43.995 36.858 2008
1 44.995 46.883 2012
2 25.999 108.759 2007
3 33.880 35.187 2007
4 34.895 48.153 2007

In [7]: print(cd.describe()) #summarize each column

3

price mileage year
count 1000.000000 1000.000000 1000.000000
mean 30.583318 73.652408 2006.939000
std 18.411018 42.887422 4.194624
min 0.995000 1.997000 1994.000000
25% 12.995000 40.132750 2004.000000
50% 29.800000 67.919500 2007.000000
75% 43.992000 100.138250 2010.000000
max 79.995000 255.419000 2013.000000

In [8]: print(cd.corr()) #compute the correlation between each column

price mileage year
price 1.000000 -0.815246 0.880537
mileage -0.815246 1.000000 -0.744729
year 0.880537 -0.744729 1.000000

Remember, a correlation is between -1 and 1.
The closer the correlation is to 1, the stronger the linear relationship between the variables,

with a positive slope.
The closer the correlation is to -1, the stronger the linear relationship between the variables,

with a negative slope.
So it looks like the bigger the mileage is, the lower the price of the car.

The bigger the year is, the higher the price of the car.
Makes sense!!

1.3 Y and x, Features

We often use "y" to generically denote the variable we trying to predict and "x" to denote the
variables we can use to predict y.

In our example y=price and x=(mileage,year).
x=(mileage,year) is the what we know about the car. Given this knowledge, what is our guess

for the price of the car.
As we have done above, x is also often called the features.

1.4 Get y=price and X=(mileage,year) as Numpy ndarrays

Let’s get a numpy array X whose 2 columns are the explanatory features mileage and year.
Let’s also get a numpy array with just the target variable y = price.

In [9]: X = cd[['mileage','year']].to_numpy() #mileage and year columns as a numpy array
print("*** type of X is",type(X))
print(X.shape) #number of rows and columns
print(X[0:4,:]) #first 4 rows
y = cd['price'].values #price as a numpy vector
print(len(y))
print(y[0:4])

4

*** type of X is <class 'numpy.ndarray'>
(1000, 2)
[[36.858 2008.]
[46.883 2012.]
[108.759 2007.]
[35.187 2007.]]

1000
[43.995 44.995 25.999 33.88]

1.5 Plot y vs each x

Now let’s plot year vs. price.

In [10]: plt.scatter(X[:,1],y)
plt.xlabel("year")
plt.ylabel("price")
plt.title("year vs. price")

Out[10]: Text(0.5, 1.0, 'year vs. price')

And mileage vs. price.
Let’s change the size of the plotted symbol and the color of the plotted symbol.

5

In [11]: plt.scatter(X[:,0],y,s=.5,c="red")
plt.xlabel("mileage")
plt.ylabel("price")
plt.title("mileage vs. price")

Out[11]: Text(0.5, 1.0, 'mileage vs. price')

Clearly, price is related to both year and mileage.
Clearly, the relationship is not linear !!!

What we really want to learn is the joint relationship betwee price and the pair of variables
(mileage,year) !!!

Essentially, the modern statistical tools or Machine Learning enables us to learn the relationships
from data without making strong assumptions.

In the expression:

price = f (mileage, year)

we would like to know the function f .

1.5.1 plot with pandas

You can do a lot of the plotting directly in pandas (without getting a numpy array).

In [12]: Xdf = cd[['mileage','year','price']]
Xdf.head()

6

Out[12]: mileage year price
0 36.858 2008 43.995
1 46.883 2012 44.995
2 108.759 2007 25.999
3 35.187 2007 33.880
4 48.153 2007 34.895

In [13]: Xdf.plot.scatter(0,2,c="blue") #access columns 0 and 2 = mileage and price

Out[13]: <AxesSubplot:xlabel='mileage', ylabel='price'>

In [14]: Xdf.plot.scatter('mileage','price',c="red",s=.5) # access columns using names

Out[14]: <AxesSubplot:xlabel='mileage', ylabel='price'>

7

1.6 Use iloc to subset a data frame

You can also use integers to pick off rows and columns using iloc.

In [15]: cd.columns.values

Out[15]: array(['price', 'mileage', 'year'], dtype=object)

In [16]: XXdf = cd.iloc[:,[2,0]] #year and price
XXdf.head()

Out[16]: year price
0 2008 43.995
1 2012 44.995
2 2007 25.999
3 2007 33.880
4 2007 34.895

In [17]: cd.iloc[0:3,[2,0]] #pick off rows and columns

Out[17]: year price
0 2008 43.995
1 2012 44.995
2 2007 25.999

8

1.7 Run The Regression of y=price on X=(mileage,year)

Let’s run a linear regression of price on mileage and year.
Our model is:

price = β0 + β1mileage + β2year + ϵ

This model assumes a linear relationship.
We already know this is a bad idea !!!
Let’s go ahead and fit the model.
Fitting the model to data will give us estimates of the parameters (β0, β1, β2).
The error term ϵ represents the part of price we cannot know from (mileage,year).

In [18]: lmmod = LinearRegression(fit_intercept=True)
lmmod.fit(X,y)
print("Model Slopes: ",lmmod.coef_)
print("Model Intercept:",lmmod.intercept_)

Model Slopes: [-0.1537219 2.69434954]
Model Intercept: -5365.489872256992

Note that there does not seem to be a simple regression summary in sklearn. Maybe that is a
good thing !!!!.

So, the fitted relationship is

price = −5365.49 − 0.154 mileage + 2.7 year

1.7.1 Looking at the LinearRegression object lmmod

Let’s have a quick look at the lmmod object.

In [19]: print(lmmod)

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)

Above we see the basic attributed you can set when using LinearRegression.
Some are obvious, like fit_intercept controls whether or not an intercept is included in the regres-
sion.
For others you would try (i) ?lmmod (ii) Read the sklearn documentation (iii) google it, (iv) read
a book.

In [20]: dir(lmmod) #you can always find out a lot about an object with dir() !!

Out[20]: ['__abstractmethods__',
'__class__',
'__delattr__',
'__dict__',
'__dir__',

9

'__doc__',
'__eq__',
'__format__',
'__ge__',
'__getattribute__',
'__getstate__',
'__gt__',
'__hash__',
'__init__',
'__init_subclass__',
'__le__',
'__lt__',
'__module__',
'__ne__',
'__new__',
'__reduce__',
'__reduce_ex__',
'__repr__',
'__setattr__',
'__setstate__',
'__sizeof__',
'__str__',
'__subclasshook__',
'__weakref__',
'_abc_cache',
'_abc_negative_cache',
'_abc_negative_cache_version',
'_abc_registry',
'_decision_function',
'_estimator_type',
'_get_param_names',
'_preprocess_data',
'_residues',
'_set_intercept',
'coef_',
'copy_X',
'fit',
'fit_intercept',
'get_params',
'intercept_',
'n_jobs',
'normalize',
'predict',
'rank_',
'score',
'set_params',
'singular_']

10

Some of the things in llmod are attributes (data structures) and some are methods (functions).

In [21]: print(type(lmmod.coef_))
type(lmmod.set_params)

<class 'numpy.ndarray'>

Out[21]: method

So, you could do ?lmmod.set_params at a python prompt.

1.8 Get and Plot the Fits

Let’s get the fitted values.
For each observation in our data set the fits are

ˆpricei = −5365.49 − 0.154 mileagei + 2.7 yeari, i = 1, 2, . . . , n.

You can think of the fit as the predicted price give the values of mileage and year according to
the model.

In [22]: yhat = lmmod.predict(X)
print("the length of yhat is",len(yhat))
print("the type of yhat is:")
print(type(yhat))

the length of yhat is 1000
the type of yhat is:
<class 'numpy.ndarray'>

In [23]: plt.scatter(y,yhat,s=.8)
plt.plot(y,y,c='red') #add the line
plt.xlabel("y"); plt.ylabel("yhat")

Out[23]: Text(0, 0.5, 'yhat')

11

Clearly, it is really bad !!!
Machine Learning will enable us to get it right fairly automatically.

1.9 Predictions

Let’s get predictions for x not in our training data.
We will make a numpy array whose rows have the x values we want to predict at.

In [24]: Xp = np.array([[40,2010],[100,2004]],dtype=float)
print(Xp)
print(type(Xp))
print(Xp.dtype)

[[40. 2010.]
[100. 2004.]]

<class 'numpy.ndarray'>
float64

So, the first car has 40 (thousand) miles on it and is a 2010, while the second car has 100
(thousand) miles on it and is a 2004.
Clearly, we expect the second car to sell for less!

In [25]: ypred = lmmod.predict(Xp)
print(ypred)

12

[44.00383414 18.61442272]

So we predict (based on the linear model) that the first car will sell for 44 (thou) and the second
car will sell for 18.6.

Let’s check the first one "by hand".
Model Slopes: [-0.1537219 2.69434954]

Model Intercept: -5365.489872256993
So the prediction for the first car in Xp should be:

In [26]: -5365.49 - .1537*40 + 2.69434954*2010

Out[26]: 44.00457540000025

which is correct.

1.10 In-sample/out of sample, training data

The data we used to "fit" our model, is called the training data.
When we look at predictions for observations in the training data (as we did for yhat) we say we
are looking at in-sample fits.

When we predict at observations not in the training data (as we did for ypred), then we are
predicting out of sample.

Out of sample prediction is always a more interesting test since you have not seen an example.
When you predict in-sample, the training data shows the model an example of what can happen
at the feature values.

1.11 scikit-learn

Linear Regression is a basic model.
There are many modeling approaches in Machine Learning !!
scikit-learn has a nice general approach to working with models: * a model will have a set of
hyperparameters (e.g. lmmod.fit_intercept) * given the hyparameters, the model can learn from
training data (e.g lmmod.fit(X,y)) * given a model has learned, it can make predictions (e.g. lm-
mod.predict(Xp))

All the predictive models in scikit-learn use the basic setup.

1.12 Standard Regression Output

From our linear regression fit using sklearn, we got estimates for the parameters.
Often we want to know a lot more about the model fit.
In particular, we might want to know the standard errors associated with the parameter esti-

mates.
To get the usual regression ouput we can us the python package statsmodels, imported above

as sm.

In [27]: X = sm.add_constant(X) #appends 1 to beginning of each row for the intercept
print(X[0:3,:]) # you can see the 1's
results = sm.OLS(y, X).fit() #run the regression
print(results.summary()) # print out the usual summaries

13

[[1.00000e+00 3.68580e+01 2.00800e+03]
[1.00000e+00 4.68830e+01 2.01200e+03]
[1.00000e+00 1.08759e+02 2.00700e+03]]

OLS Regression Results
==
Dep. Variable: y R-squared: 0.832
Model: OLS Adj. R-squared: 0.832
Method: Least Squares F-statistic: 2477.
Date: Tue, 19 Jan 2021 Prob (F-statistic): 0.00
Time: 06:14:52 Log-Likelihood: -3438.1
No. Observations: 1000 AIC: 6882.
Df Residuals: 997 BIC: 6897.
Df Model: 2
Covariance Type: nonrobust
==

coef std err t P>|t| [0.025 0.975]
--
const -5365.4899 171.567 -31.273 0.000 -5702.164 -5028.816
x1 -0.1537 0.008 -18.435 0.000 -0.170 -0.137
x2 2.6943 0.085 31.602 0.000 2.527 2.862
==
Omnibus: 171.937 Durbin-Watson: 2.021
Prob(Omnibus): 0.000 Jarque-Bera (JB): 294.618
Skew: 1.076 Prob(JB): 1.06e-64
Kurtosis: 4.562 Cond. No. 1.44e+06
==

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 1.44e+06. This might indicate that there are
strong multicollinearity or other numerical problems.

Lot’s of junk!!
In particular, the standard error associate with the estimate of the slope for mileage is .008.
The confidence interval for β1, the mileage slope is:

In [28]: -0.1537 + np.array([-2,2])*0.008

Out[28]: array([-0.1697, -0.1377])

Recall that R2 is the square of the correlation between y and ŷ:

In [29]: yyhat = np.column_stack([y,yhat])
print(yyhat.shape)
pd.DataFrame(yyhat).corr()

(1000, 2)

14

Out[29]: 0 1
0 1.00000 0.91239
1 0.91239 1.00000

In [30]: .91239**2

Out[30]: 0.8324555121

Which is the same as the R-squared in the regression output.

1.13 Regression In Matrix Notation

Let’s write our multiple regression model using vector/matrix notation and use basic matrix op-
erations to check the predicted and fitted values.

The general multiple regression model is written:

Yi = β0 + β1xi1 + β2xi2 + . . . βpxip + ϵi, i = 1, 2, . . . , n,

where i indexes observations and xij is the value of the jth x in the ith observation.
If we let

xi =

1

xi1
xi2
...

xip

 , X =

x′1
x′2
...

x′n

 , y =

y1
y2
...

yn

 , ϵ =

ϵ1
ϵ2
...

ϵn

 , β =

β0
β1
β2
...

βp

 (1)

,
then we can write the model in matrix form:

y = Xβ + ϵ.

In our data, the first three rows of X are

In [31]: X[0:3,:]

Out[31]: array([[1.00000e+00, 3.68580e+01, 2.00800e+03],
[1.00000e+00, 4.68830e+01, 2.01200e+03],
[1.00000e+00, 1.08759e+02, 2.00700e+03]])

Which correspond to the the first three rows of our data frame cd:

In [32]: cd.iloc[0:3,1:3]

Out[32]: mileage year
0 36.858 2008
1 46.883 2012
2 108.759 2007

15

Given our estimates:

β̂ =

β̂0

β̂1
...

β̂p

 (2)

We can get fitted values or predictions by matrix multiplication:

ŷ = X β̂, or, ŷp = Xp β̂.

In our example,

In [33]: bhat = np.hstack([lmmod.intercept_,lmmod.coef_])[:,np.newaxis]
print(bhat.shape)
bhat

(3, 1)

Out[33]: array([[-5.36548987e+03],
[-1.53721903e-01],
[2.69434954e+00]])

So we can get our predictions by multiplying Xp times β̂.
But first we have to add the column of ones:

In [34]: Xpp = np.hstack([np.ones((2,1)),Xp])
print("Xp:\n",Xp)
print("Xpp:\n",Xpp)

Xp:
[[40. 2010.]
[100. 2004.]]

Xpp:
[[1.000e+00 4.000e+01 2.010e+03]
[1.000e+00 1.000e+02 2.004e+03]]

Now we can matrix multiply Xpp times β̂:

In [35]: yhatp = Xpp @ bhat # Xpp * bhat, matrix multiplication
yhatp

Out[35]: array([[44.00383414],
[18.61442272]])

This is the same as what we got using the predict method on the lmmod object.
Let’s get the in-sample fitted values by multiplying Xβ̂:

16

In [36]: yhatm = X @ bhat
print(yhatm[0:3,:])
print(yhat[0:3]) #got these ones using the predict method

[[39.09812927]
[48.33446537]
[25.3510212]]

[39.09812927 48.33446537 25.3510212]

In [37]: dyhat = yhatm.flatten() - yhat
dyhat.shape

Out[37]: (1000,)

In [38]: dyhat.mean()

Out[38]: 0.0

In [39]: dyhat.var()

Out[39]: 0.0

dyhat has 0 mean and variance, so it must be all zeros.
Just for fun we can plot yhat vs yhatm:

In [40]: plt.scatter(yhat,yhatm)
plt.scatter(yhat,yhat,color='red',s=.5)
plt.show()

17

	Hello World Data Analysis in Python
	Import Needed Modules
	Read in the Data and Get the Variables We Want
	Y and x, Features
	Get y=price and X=(mileage,year) as Numpy ndarrays
	Plot y vs each x
	plot with pandas

	Use iloc to subset a data frame
	Run The Regression of y=price on X=(mileage,year)
	Looking at the LinearRegression object lmmod

	Get and Plot the Fits
	Predictions
	In-sample/out of sample, training data
	scikit-learn
	Standard Regression Output
	Regression In Matrix Notation

