
Multidimensional Monotonicity Discovery
with mBART

Robert McCulloch

Collaborations with:
Hugh Chipman

Ed

Tom Shively

In Honor of Ed’s 70th Birthday
December 10, 2021

1 / 46



Plan

I I) Review BART

I II) Introduce Monotone BART: mBART

I III) Monotonicity Discovery with mBART

2 / 46



Part I. BART (Bayesian Additive Regression Trees)

Data: n observations of y and x = (x1, ..., xp)

Suppose: Y = f (x) + ε, ε symmetric with mean 0

Bayesian Ensemble Idea: Approximate unknown f (x) by the form

f (x) = g(x ; θ1) + g(x ; θ2) + ...+ g(x ; θm)

θ1, θ2, . . . , θm iid ∼ π(θ)

and use the posterior of f given y for inference.

BART: each g(x ; θj) is a regression tree.

Key data calibration: Using y , set π(θ) so that Var(f ) ≈ Var(y).

3 / 46



Beginning with a Single Tree Model

4 / 46



Bayesian CART: Just add a prior π(M ,T )

Bayesian CART Model Search
(Chipman, George, McCulloch 1998)

π(M,T ) = π(M |T )π(T )

π(T ): Stochastic process to generate tree skeleton plus uniform
prior on splitting variables and splitting rules.

π(M |T ) : (µ1, µ2, . . . , µb)′ ∼ Nb(0, τ2I )

Closed form for π(T | y) facilitates MCMC stochastic search for
promising trees.

5 / 46



Moving on to BART

Bayesian Additive Regression Trees
(Chipman, George, McCulloch 2010)

The BART ensemble model

Y = g(x ;T1,M1)+g(x ;T2,M2)+. . .+g(x ;Tm,Mm)+σz , z ∼ N(0, 1)

Each (Ti ,Mi ) identifies a single tree.

For each x , Y is the sum of m bottom node µ’s, plus noise.

Number of trees m can be much larger than sample size n.

g(x ;T1,M1), g(x ;T2,M2), ..., g(x ;Tm,Mm) is a highly redundant
“over-complete basis” with many many parameters.

6 / 46



Complete the Model with a “Regularization” Prior

π((T1,M1), (T2,M2), . . . , (Tm,Mm), σ)

π applies the Bayesian CART prior to each (Tj ,Mj) independently
so that:

I Each T small.

I Each µ small.

I σ will be compatible with the observed variation of y .

The observed variation of y is used to guide hyperparameter
settings for the µ and σ priors.

π keeps the contribution of each g(x ;Ti ,Mi ) small, to explain only
a small portion of the fit.

7 / 46



Build up the fit, by adding up tiny bits of fit ..

8 / 46



Simple prior for a complex model !!!!!

Y = g(x ;T1,M1)+g(x ;T2,M2)+. . .+g(x ;Tm,Mm)+σz , z ∼ N(0, 1)

For each x , f (x) is the sum of m bottom node µ’s.

µ ∼ N(0, τ2), iid .

⇒ f (x) ∼ N(0,m τ2), ∀x .

When people try the R package it works just by doing
res = BART::wbart(X,y).

9 / 46



Connections to Other Modeling Ideas

Bayesian Nonparametrics: 
     Lots of parameters (to make model flexible) 
     A strong prior to shrink towards simple structure (regularization) 
     BART shrinks towards additive models with some interaction 

Dynamic Random Basis: 
     g(x;T1,M1), ..., g(x;Tm,Mm) are dimensionally adaptive 

Gradient Boosting: 
     Overall fit becomes the cumulative effort of many “weak learners” 

Connections to Other Modeling Ideas 

Y = g(x;T1,M1) + ... + g(x;Tm,Mm) + & z 
 plus   

#((T1,M1),....(Tm,Mm),&) 

12 

Bayesian Nonparametrics:
I Lots of parameters (to make model flexible)

I A strong prior to shrink towards simple structure (regularization)

I BART shrinks towards additive models with some interaction

Boosting:

I Fit becomes the cumulative effort of many weak learners

Dynamic Random Basis Elements:

I g(x ;T1,M1), ..., g(x ;Tm,Mm) are dimensionally adaptive

10 / 46



A Sketch of the BART MCMC Algorithm

Bayesian Nonparametrics: 
     Lots of parameters (to make model flexible) 
     A strong prior to shrink towards simple structure (regularization) 
     BART shrinks towards additive models with some interaction 

Dynamic Random Basis: 
     g(x;T1,M1), ..., g(x;Tm,Mm) are dimensionally adaptive 

Gradient Boosting: 
     Overall fit becomes the cumulative effort of many “weak learners” 

Connections to Other Modeling Ideas 

Y = g(x;T1,M1) + ... + g(x;Tm,Mm) + & z 
 plus   

#((T1,M1),....(Tm,Mm),&) 

12 

Bayesian Backfitting: Outer loop is a “simple” Gibbs sampler

(Ti ,Mi ) | Y , all other (Tj ,Mj), and σ

σ | Y , (T1,M1, . . . , . . . ,Tm,Mm)

To draw (Ti ,Mi ) above, subtract the contributions of the other
trees from both sides to get a simple one-tree model.

We integrate out M to draw T and then draw M |T .

... as the MCMC runs, trees in the sum will grow and shrink,
swapping fit amongst them ....

11 / 46



Using the MCMC Output to Draw Inference

Each iteration d results in a draw from the posterior of f

f̂d(·) = g(·;T1d ,M1d) + · · ·+ g(·;Tmd ,Mmd)

To estimate f (x) we simply average the f̂d(·) draws at x

Posterior uncertainty is captured by variation of the f̂d(x)
eg, 95% credible region estimated by middle 95% of values

12 / 46



Out of Sample Prediction

Predictive comparisons on 42 data sets.
Data from Kim, Loh, Shih and Chaudhuri (2006) (thanks Wei-Yin Loh!)

I p = 3 to 65, n = 100 to 7,000.
I for each data set 20 random splits into 5/6 train and 1/6 test
I use 5-fold cross-validation on train to pick hyperparameters (except

BART-default!)
I gives 20*42 = 840 out-of-sample predictions, for each prediction, divide rmse

of different methods by the smallest

+ each boxplots represents
840 predictions for a
method

+ 1.2 means you are 20%
worse than the best

+ BART-cv best

+ BART-default (use default
prior) does amazingly
well!!

R
on

do
m

 F
or

es
ts

N
eu

ra
l N

et
B

oo
st

in
g

B
A

R
T

−
cv

B
A

R
T

−
de

fa
ul

t

1.0 1.1 1.2 1.3 1.4 1.5

13 / 46



Automatic Uncertainty Quantification

A simple simulated 1-dimensional example

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

y

95% pointwise posterior intervals, BART

posterior mean
true f

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

y

95% pointwise posterior intervals, mBART

Note: mBART on the right plot to be introduced next

14 / 46



Part II. Monotone BART - mBART

mBART: Multidimensional Monotone BART
(Chipman, George, McCulloch, Shively 2021)

Key Idea:

Approximate multivariate monotone functions by the sum of many
single monotonic tree models.

15 / 46



This works because

1. We can easily define a notion of “monotonic” for a single tree.

2. Because trees are simple, we can construct an MCMC which
respects the constraints.

So,

we can still use the BART approach

but now complex montonic functions are built as the sum of many
single tree models, each of which is monotonic.

16 / 46



An Example of a Monotonic Tree

x1

x2

f(x)

Three different views of
a bivariate monotonic
tree.

17 / 46



In what sense is this tree monotonic?

x1

x2

f(x)

A function g is said to be monotonic in xi if for any δ > 0,

g(x1, x2, . . . , xi + δ, xi+1, . . . , xk ;T ,M)
≥ g(x1, x2, . . . , xi , xi+1, . . . , xk ;T ,M).

For simplicity and wlog, let’s restrict attention to monotone

nondecreasing functions.
18 / 46



Constraining a tree to be monotone is easy: we simply constrain
the mean level of a node to be greater than those of its
“below-neighbors”, and less than those of its “above-neighbors”.

0.2 0.4 0.6 0.8

0.
2

0.
4

0.
6

0.
8

x1

x2

4

10

11

12

13

7

The mean level of node 13 must be greater than those of 10 and
12 and less than that of node 7.

19 / 46



The mBART Prior

Recall the BART parameter

θ = ((T1,M1), (T2,M2), . . . , (Tm,Mm), σ)

Let S = {θ : every tree is monotonic in a desired subset of x ′i s}

To impose the monotonicity we simply truncate the BART prior
π(θ) to the set S

π∗(θ) ∝ π(θ) IS(θ)

where IS(θ) is 1 if every tree in θ is monotonic.

20 / 46



A New BART MCMC “Christmas Tree” Algorithm

π((T1,M1), (T2,M2), . . . , (Tm,Mm), σ | y))

Bayesian Backfitting again: Iteratively sample each (Tj ,Mj) given
(y , σ) and other (Tj ,Mj)’s

Each (T 0,M0)→ (T 1,M1) update is sampled as follows:

I Denote move as
(T 0,M0

Common,M
0
Old)→ (T 1,M0

Common,M
1
New )

I Propose T ∗ via birth, death, etc.
I If M-H with π(T ,M | y) accepts (T ∗,M0

Common)
I Set (T 1,M1

Common) = (T ∗,M0
Common)

I Sample M1
New from π(MNew |T 1,M1

Common, y)

Only M0
Old → M1

New needs to be updated.

Works for both BART and mBART.

21 / 46



the joy of working with Ed !!!!!!

22 / 46



There is the math junk and the code junk.

But what is it like working with Ed???
//--------------------

// how does node n relate to this

//’a’: neighbor above, ’b’: neighbor below, ’d’: disjoint, ’x’: nothing

char tree::nhb(tree_p n, xinfo& xi, std::vector<int>& vc)

//note:

// each node is a region of the form \cap [Lv,Uv] v=0,1,..,(p-1)

{

if(this==n) return ’s’; //s means self

size_t p = xi.size(); //need to loop over the p variables

int mL,mU,oL,oU; //my range, other range

short nind=0;

//first loop over all variables to see if n is disjoint from this

for(size_t v=0;v<p;v++) {

mL=0; oL=0;

mU = oU = xi[v].size()-1;

rg(v,&mL,&mU);

n->rg(v,&oL,&oU);

//a neighbor will be 2 away since [L,U] are the usable ones,

//for example: ’b’: [oL,oU] used cut point=C, [mL,mU]

//would have oU,C,mL in sequence

if(oU < mL-2 || oL > mU+2 ) return ’d’;

}

// now loop over all variables in vc to see if n is above or below this

for(size_t i=0;i<vc.size();i++) {

v = vc[i];

mL=0; oL=0;

mU = oU = xi[v].size()-1;

rg(v,&mL,&mU);

n->rg(v,&oL,&oU);

//a neighbor will be 2 away since [L,U] are the usable ones,

//for example: ’b’: [oL,oU] used cut point=C, [mL,mU]

//would have oU,C,mL in sequence

if(oU < mL-2 || oL > mU+2 ) return ’d’;

if(oU == mL-2) nind = 1;

if(oL == mU+2) nind = 2;

}

if(nind==1) return ’b’;

if(nind==2) return ’a’;

return ’x’;

}

23 / 46



It’s fun !!!!!!!!!!!!!!!!!!!!!!!!!!!!

24 / 46



Example: Product of two x ’s

Let’s consider a very simple simulated monotone example:

Y = x1 x2 + ε, xi ∼ Uniform(0, 1).

Here is the plot of the true function f (x1, x2) = x1 x2

0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

x1

x2

f(x)

25 / 46



First we try a single (just one tree), unconstrained tree model.

Here is the graph of the fit.

0.2 0.4 0.6 0.8

0.
2

0.
4

0.
6

0.
8

x1

x2

x1

x2

f(x)

The fit is not terrible, but there are some aspects of the fit which
violate monotonicity.

26 / 46



Here is the graph of the fit with the monotone constraint:

0.2 0.4 0.6 0.8

0.
2

0.
4

0.
6

0.
8

x1

x2

x1

x2

f(x)

We see that our fit is monotonic, and more representative of the
true f .

27 / 46



Here is the unconstrained BART fit:

0.2 0.4 0.6 0.8

0.
2

0.
4

0.
6

0.
8

x1

x2

x1

x2

f(x)

Much better (of course) but not monotone!

28 / 46



And, finally, the constrained BART fit:

0.2 0.4 0.6 0.8

0.
2

0.
4

0.
6

0.
8

x1

x2

x1

x2

f(x)

Not Bad!

Same method works with any number of x’s!

29 / 46



Example: MSE Reduction by Monotone Regularization

Y = x1 x
2
2 + x3 x

3
4 + x5 + ε,

ε ∼ N(0, σ2), xi ∼ Uniform(0, 1).

For various values of σ, we simulated 5,000 observations.

30 / 46



RMSE improvement over unconstrained BART

●●●

●

●

●

●

●●

●
●●

●

●●

●

●

bart−1 mbart−1 bart−2 mbart−2 bart−3 mbart−3 bart−4 mbart−4

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

σ = 0.2, 0.5, 0.7, 1.0

31 / 46



Part III. Discovering Monotonicity with mBART

Suppose we don’t know if f (x) is monotone up, monotone down or
even monotone at all.

Of course, a simple strategy would be simply compare the fits from
BART and mBART.

Good news, we can do much better than this!

As we’ll now see, mBART can be deployed to simultaneously
estimate all the monotone components of f .

With this strategy, monotonicity can be discovered rather than
imposed!

32 / 46



The Monotone Decomposition of a Function

To begin simply, suppose x is one-dimensional and f is of bounded
variation.

Any such f can be uniquely written (up to an additive
constant) as the sum of a monotone up function and a
monotone down function

f (x) = fup(x) + fdown(x)

where

I when f (x) is increasing, fup(x) increases at the same
rate and is flat otherwise,

I when f (x) is decreasing, fdown(x) decreases at the
same rate and is flat otherwise.

33 / 46



More precisely, when f is differentiable,

f ′up(x) =

{
f ′(x) when f ′(x) > 0

0 when f ′(x) ≤ 0

and

f ′down(x) =

{
f ′(x) when f ′(x) < 0

0 when f ′(x) ≥ 0

Notice the orthogonal decomposition of f ′

f ′(x) = f ′up(x) + f ′down(x)

34 / 46



The Monontone Discovery Strategy with mBART

Key Idea: To discover the monotone decomposition of f , we
embed f (x) as a two-dimensional function in R2,

f (x) = f ∗(x , x) = fup(x) + fdown(x).

Letting x1 = x2 = x be duplicate copies of x , we apply mBART to
estimate f ∗(x1, x2)

I constrained to be monotone up in the x1 direction, and

I constrained to be monotone down in the x2 direction.

We are effectively estimating monotone projections of f ∗(x1, x2)
onto the x1 and x2 axes

I P[x1]f
∗(x1, x2) = fup(x1)

I P[x2]f
∗(x1, x2) = fdown(x2)

35 / 46



Example: Suppose Y = x3 + ε.

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●
●
●

●●

●

●

●

●●

●●
●

●

●

●
●

●

●

●●

●

●

●

●
●
●
●

●●

●

●
●

●

●
●●

●

●

●

●
●

●

●

●

●

●●●●

●●

●

●

●

●

●

●
●

●
●
●

●

●

●

●
●●

●●

●

●

●

●●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

● ●●

●
●

●

●
●

●●
●
●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

x

y

BART and mBART

BART

mBART

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●
●
●

●●

●

●

●

●●

●●
●

●

●

●
●

●

●

●●

●

●

●

●
●
●
●

●●

●

●
●

●

●
●●

●

●

●

●
●

●

●

●

●

●●●●

●●

●

●

●

●

●

●
●

●
●
●

●

●

●

●
●●

●●

●

●

●

●●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

● ●●

●
●

●

●
●

●●
●
●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

x

y

mBARTD, fup, fdown

mBART: fup

mBART: fdown

mBARTD: overall fit

Note that f̂down ≈ 0 (the red in the right plot), as we would expect
when f is monotone up.

36 / 46



Example: Suppose Y = x2 + ε.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

BART and mBART

BART

mBART

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

mBARTD, fup, fdown

mBART: fup

mBART: fdown

mBARTD: overall fit

I On the left, BART is good, but simple mBART is not.

I On the right, f̂up and f̂down are spot on.

I And mBARTD = f̂up + f̂down seems better than BART!

37 / 46



Example: Suppose Y = sin(x) + ε.

●●
●●●
●
●●●●

●
●●●
●

●

●●

●
●
●
●
●●
●●●
●●
●●●
●●
●
●

●●
●
●●
●
●
●
●●●
●

●
●
●
●
●
●●●●●●●●

●
●●●
●●●
●

●

●

●
●
●●●
●●●●●●●●●

●
●●●●●
●
●
●●●●
●●●●●
●
●
●
●
●●●●

●
●
●●●●
●
●●●
●

●
●
●●●
●●
●●
●

●
●
●●●
●
●
●
●
●●●
●
●
●
●●
●
●
●●●●
●
●●●●●●●

●
●
●

●●
●●●
●
●

●●●
●
●
●
●

●
●
●●●
●
●
●

●
●●●●
●
●●
●
●●
●
●
●●
●●
●
●
●●●
●●
●
●●●
●●

●
●

●

●●

●
●

●
●●
●●
●●●●

●
●●
●●●●
●●
●
●

●
●●
●
●
●
●
●

●●
●
●
●
●
●●
●
●
●●
●●●

●

●

●●
●
●●
●
●●●
●●●
●
●●●●●●

●

●●

●
●●●●
●
●●●●
●●●●

●●●
●●●●●●

●●
●
●
●●●●●●●

●●●●
●
●●
●
●

●

●
●

●
●●
●
●●●
●●
●●
●
●
●
●●●
●

●

●
●●
●●
●
●●
●●●
●
●●
●
●●
●●●●●

●●●●
●●●
●
●●●
●

●●●
●
●

●
●
●

●
●●●
●

●
●
●●
●●●●●
●
●
●
●
●●
●
●●●
●

●●
●
●●●
●●●
●●●
●
●●
●
●●●●●
●
●
●
●
●

●
●
●●
●●●●●
●
●
●●
●
●●●●●
●●●
●

●

●●●●

●
●
●●●
●
●
●●●
●●
●●●
●●
●

●
●
●
●●

−10 −5 0 5 10

−
3

−
2

−
1

0
1

2
3

x

y

BART and mBART

BART
mBART

●●
●●●
●
●●●●

●
●●●
●

●

●●

●
●
●
●
●●
●●●
●●
●●●
●●
●
●

●●
●
●●
●
●
●
●●●
●

●
●
●
●
●
●●●●●●●●

●
●●●
●●●
●

●

●

●
●
●●●
●●●●●●●●●

●
●●●●●
●
●
●●●●
●●●●●
●
●
●
●
●●●●

●
●
●●●●
●
●●●
●

●
●
●●●
●●
●●
●

●
●
●●●
●
●
●
●
●●●
●
●
●
●●
●
●
●●●●
●
●●●●●●●

●
●
●

●●
●●●
●
●

●●●
●
●
●
●

●
●
●●●
●
●
●

●
●●●●
●
●●
●
●●
●
●
●●
●●
●
●
●●●
●●
●
●●●
●●

●
●

●

●●

●
●

●
●●
●●
●●●●

●
●●
●●●●
●●
●
●

●
●●
●
●
●
●
●

●●
●
●
●
●
●●
●
●
●●
●●●

●

●

●●
●
●●
●
●●●
●●●
●
●●●●●●

●

●●

●
●●●●
●
●●●●
●●●●

●●●
●●●●●●

●●
●
●
●●●●●●●

●●●●
●
●●
●
●

●

●
●

●
●●
●
●●●
●●
●●
●
●
●
●●●
●

●

●
●●
●●
●
●●
●●●
●
●●
●
●●
●●●●●

●●●●
●●●
●
●●●
●

●●●
●
●

●
●
●

●
●●●
●

●
●
●●
●●●●●
●
●
●
●
●●
●
●●●
●

●●
●
●●●
●●●
●●●
●
●●
●
●●●●●
●
●
●
●
●

●
●
●●
●●●●●
●
●
●●
●
●●●●●
●●●
●

●

●●●●

●
●
●●●
●
●
●●●
●●
●●●
●●
●

●
●
●
●●

−10 −5 0 5 10

−
3

−
2

−
1

0
1

2
3

x

y

mBARTD, fup, fdown

mBART: fup
mBART: fdown
mBARTD: overall fit

I BART is great, but simple mBART reveals nothing.

I f̂up and f̂down have discovered the monotone decomposition.

I And mBARTD = f̂up + f̂down is great too.

To extend this approach to multidimensional x, we simply
duplicate each and every component of x !!!

38 / 46



Example: House Price Data

Let’s look at a simple real example where y = house price,
and x = three characteristics of each house.

> head(x)

nbhd size brick

[1,] 2 1.79 0

[2,] 2 2.03 0

[3,] 2 1.74 0

[4,] 2 1.98 0

[5,] 2 2.13 0

[6,] 1 1.78 0

> dim(x)

[1] 128 3

> summary(x)

nbhd size brick

Min. :1.000 Min. :1.450 Min. :0.0000

1st Qu.:1.000 1st Qu.:1.880 1st Qu.:0.0000

Median :2.000 Median :2.000 Median :0.0000

Mean :1.961 Mean :2.001 Mean :0.3281

3rd Qu.:3.000 3rd Qu.:2.140 3rd Qu.:1.0000

Max. :3.000 Max. :2.590 Max. :1.0000

> summary(y)

Min. 1st Qu. Median Mean 3rd Qu. Max.

69.1 111.3 126.0 130.4 148.2 211.2

y: dollars (thousands).
x: nbhd (categorial), size (sq ft thousands), brick (indicator).

39 / 46



Call:

lm(formula = price ~ nbhd + size + brick, data = hdat)

Residuals:

Min 1Q Median 3Q Max

-30.049 -8.519 0.137 7.640 36.912

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 18.725 10.766 1.739 0.0845 .

nbhd2 5.556 2.779 1.999 0.0478 *

nbhd3 36.770 2.958 12.430 < 2e-16 ***

size 46.109 5.527 8.342 1.25e-13 ***

brickYes 19.152 2.438 7.855 1.69e-12 ***

---

Residual standard error: 12.5 on 123 degrees of freedom

Multiple R-squared: 0.7903,Adjusted R-squared: 0.7834

F-statistic: 115.9 on 4 and 123 DF, p-value: < 2.2e-16

If the linear model is correct, we are monotone up in all three
variables.

Remark: For the linear model we have to dummy up nbhd, but for
BART and mBART we can simply leave it as an ordered numerical
categorical variable.

40 / 46



Just using x = size, y = price appears to be marginally increasing
in size. (f̂down ≈ 0).

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

1.6 1.8 2.0 2.2 2.4 2.6

80
10

0
12

0
14

0
16

0
18

0
20

0

x

y

BART, mBART, and mBARTD

BART

mBART

mBARTD

linear

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

1.6 1.8 2.0 2.2 2.4 2.6

80
10

0
12

0
14

0
16

0
18

0
20

0
x

y

mBARTD:  y on  (x up, x down)

mBARTD: monotone up fit

mBARTD: monotone down fit

mBARTD

linear

mBART and mBARTD seem much better than BART.

41 / 46



Let’s now look at the effect of size conditionally on the six possible
values of (nbdh, brick)

1.7 1.8 1.9 2.0 2.1 2.2 2.3

10
0

12
0

14
0

16
0

18
0

size

pr
ic

e

N

N
N

N N
N

N
N

N
N

N

N

N

N

N

N

N
N

N N
N

N
N

N
N

N

N

N

N

N

N

N
N

N N
N

N
N

N
N

N

N

N

N

N

B

B
B

B B
B

B B

B
B

B
B

B

B

B

B

B
B

B B
B

B
B

B
B

B
B

B

B

B
B

B
B

B B
B

B
B

B
B

B
B

B

B

B

BART: conditional effect of size

NBHD1
NBHD2
NBHD3

1.7 1.8 1.9 2.0 2.1 2.2 2.3

10
0

12
0

14
0

16
0

18
0

size

pr
ic

e

N
N N

N N N N N

N
N N N N

N
N

N
N N

N N N N N

N
N N N N

N
NN

N N
N N N N N

N
N N N N

N
N

B
B B

B B B B B

B
B B B B

B
B

B
B B

B B B B B

B
B B B B

B
B

B
B B

B B B B B

B
B B B B

B
B

mBART: conditional effect of size

1.7 1.8 1.9 2.0 2.1 2.2 2.3

10
0

12
0

14
0

16
0

18
0

size

pr
ic

e

N
N N

N N N N N

N
N N N N

N
N

N
N N

N N N N N

N
N N N N

N
N

N
N N

N N N N N

N
N N N N

N
N

B
B B

B B B B B

B
B B B B

B
B

B
B B

B B B B B

B
B B B B

B
B

B
B B

B B B B B

B
B B B B

B
B

mBARTD: conditional effect of size

The conditionally monotone effect of size is becoming clearer!

42 / 46



And finally, the effect of size conditionally on the six possible
values of (nbdh, brick) via f̂up and f̂down

1.7 1.8 1.9 2.0 2.1 2.2 2.3

80
10

0
12

0
14

0
16

0
18

0
20

0

size

pr
ic

e

N
N N N N N N N

N
N N N N

N N

N
N N N N N N N

N
N N N N

N NN
N N N N N N N

N
N N N N

N N

B
B B B B B B B

B
B B B B

B B

B
B B B B B B B

B
B B B B

B BB
B B B B B B B

B
B B B B

B B

mBART, fup: conditional effect of size

1.7 1.8 1.9 2.0 2.1 2.2 2.3

80
10

0
12

0
14

0
16

0
18

0
20

0

size

pr
ic

e

N N N N N N N N N N N N N N NN N N N N N N N N N N N N N NN N N N N N N N N N N N N N NB B B B B B B B B B B B B B BB B B B B B B B B B B B B B BB B B B B B B B B B B B B B B

mBARTD, fdown: conditional effect of size

Price is clearly conditionally monotone up in all three variables!

By simultaneously estimating f̂up + f̂down, we have discovered
monotonicity without any imposed assumptions!!!

43 / 46



Concluding Remarks

I mBARTD = f̂up + f̂down provides an assumption free approach
for the discovery of the monotone components of f in
multidimensional settings.

I Discovering such regions of monotonicity may of scientific
interest in real applications.

I We have used informal variable selection to identify the
monotone components here. More formal variable selection
can be used in higher dimensional settings.

I As a doubly adaptive shape-constrained regularization
approach,
I mBARTD will adapt to mBART when monotonicity is present,

I mBARTD will adapt to BART when monotonicity absent,

I mBARTD seems at least as good and maybe better, than the
best of mBART and BART in general.

44 / 46



Concluding Remarks

I Having come to be widely regarded as a successful approach
for Bayesian machine learning, new extensions and
generalizations of BART are flourishing.

I For a wonderful recent survey of many of these developments,
see Hill, Linero and Murray (2020) in the Annual Review of
Statistics and its Applications.

45 / 46



Happy Birthday Ed!

A true leader!

46 / 46


	What is BART?
	Monotonically Constrained BART
	 Monotonic Trees
	 Monotonic Trees
	A New BART MCMC ``Christmas Tree'' Algorithm
	Example: Product of two x's
	A 5-Dimensional Example

