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1. The Simple Linear Regression Model

We have data on 128 houses.
For each house we have the size (thousands of square feet) and the
price (thousands of dollars).

Is there a relationship between size and price ??
Can we predict the price of a house from its size ??

Let’s plot size vs.
price.

First 6 observations:

size price

1 1.79 114.3

2 2.03 114.2

3 1.74 114.8

4 1.98 94.7

5 2.13 119.8
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The is an overall linear relationship between size and price.

Linear regression chooses a line to draw throught the points.

1.6 1.8 2.0 2.2 2.4 2.6

80
10

0
12

0
14

0
16

0
18

0
20

0

size

pr
ic

e

Suppose you knew the size of a house but not the price, how would
you predict the price?
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Here is the R regression output.

The fitted line is

Price = −10.1 + 70.23 size

Call:

lm(formula = price ~ size, data = ddf)

Residuals:

Min 1Q Median 3Q Max

-46.59 -16.64 -1.61 15.12 54.83

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -10.091 18.966 -0.532 0.596

size 70.226 9.426 7.450 1.3e-11 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 22.48 on 126 degrees of freedom

Multiple R-squared: 0.3058,Adjusted R-squared: 0.3003

F-statistic: 55.5 on 1 and 126 DF, p-value: 1.302e-11

Lot’s of stuff there to learn about: Std. Error, Pr(> |t|), Multiple
R-squared ....
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Prediction:

Suppose you knew the size of the house was 2.2.

Would be your prediction for the price?

Price = −10.1 + 70.23 size

> -10.091 + 70.226 *2.2

[1] 144.4062
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Price = −10.1 + 70.23 size
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To understand all the regression output we need to think more
deeply about the relationship.

There are some basic issues that need to be addressed, mostly
having to do with assessing the uncertainty in our fit of the line
and the corresponding prediction.
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As an example, I randomly sampled 10 of the houses and fit a
regression line using just those 10 houses.
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Which line is better for prediction, the line based on all the houses
or the line using just the sample of 10 houses?
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We would rather use the line chosen with all the data because it is
probably closer to the the “true line” that works for all houses!!
All the houses we have seen in the past, and will see in the future.

We feel like we know more with n = 128 houses than just 10
houses in our sample: how do we quantify our uncertainy.

We need a probability model to describe the true relationship
between Y and x .

The probability model has to capture the amount of information x
tells us about Y .
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What kind of model should we use?

In the housing data, the ”overall linear relationship” is striking.

Given x, y is approximately a linear function of x:

Y = linear function of x + error
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The Simple Linear Regression Model:

Yi = β0 + β1 xi + ϵi

ϵi ∼ N(0, σ2), IID.

If you knew the values of the parameters (β0, β1, σ):

β0 + β1 x : the part of Y you learn from x , the “signal” from x .

ϵ: the part of Y you can’t tell from x , the “noise”.
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What is the conditional distribution of Y given x ???

Y =

β0 + β1 x

+

ϵ ∼ N(0, σ2).
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Y | x ∼ N(β0 + β1 x , σ
2) ≈ β0 + β1 x ± 2 ∗ σ
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The role of σ
σ large σ small

We need σ in the model to describe how close
the relationship is to linear, how big the errors are.
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Example:

Every observation corresponds to a sold used car.
y = price, x=mileage.
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Is there a relationship between price and mileage?
Is the simple linear regression model a good way to think about the
relationship?
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2. Estimates and Plug-in Prediction

Our simple linear regression model has three parameters:
(β0, β1, σ).

When we “run” a regression using software we get estimates using
the information in the data.

The formulas are:

β̂1 =

∑
(xi − x̄)(yi − ȳ)∑

(xi − x̄)2
, β̂0 = ȳ − β̂1 x̄ .

for the least-squares slope and intercept.
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β̂0 is our estimator for β0 !!!

β̂1 is our estimator for β1 !!!

Note:

▶ Let’s not worry about where these formulas come from!

▶ The hat notation is commonly used in statistics to denote an
estimator of a parameter.

Note that
ȳ = β̂0 + β̂1x̄

makes sense.
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How do we estimate σ2?

Since σ2 is the variance of the of the errors we might think about
using the sample variance of the errors:

σ̂2 =
1

n − 1

∑
(ϵi − ϵ̄)2

However, we don’t directly observe the ϵi .
But we can estimate each error with:

ϵi = yi − β0 − β1xi

≈ yi − β̂0 − β̂1xi

= ei

Recall that ei is the residual.

16



We define the fitted values to be ŷi = β̂0 + β̂1xi so that

yi = ŷi + ei

blue: fits
red: resids.

Where is ϵi
in the picture?
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So,

σ̂2 ≈ 1

n − 1

∑
(ϵi − ϵ̄)2

≈ 1

n − 1

∑
(ei − ē)2

≈ 1

n − 2

∑
e2i

Where we have used ē = 0 (make sense??) and n − 2 instead of
n − 1 to adjust for the estimation of both β0 and β1.

The estimator for σ2 is:

σ̂2 =
1

n − 2

∑
e2i
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R Regression output for the housing data:

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -10.091 18.966 -0.532 0.596

sizethou 70.226 9.426 7.450 1.3e-11 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 22.48 on 126 degrees of freedom

Multiple R-squared: 0.3058, Adjusted R-squared: 0.3003

F-statistic: 55.5 on 1 and 126 DF, p-value: 1.302e-11

Our estimate of β0 is β̂0 = -10.091.
Our estimate of β1 is β̂1 = 70.226.
Our estimate of σ is σ̂ = 22.48.

The estimated model is:

price = −10.1 + 70.2 size + ϵ, ϵ ∼ N(0, 22.482).
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Interpret:

β̂1 = 70.226.

If one house is ∆x = .5 thousand square feet bigger than another,
we expect the price to be bigger by ∆y = 70.226 ∗ .5 = 35.113.

In general, your interpretation of the intercept is the Y you expect
when x = 0.

In this application, we do not want to consider a house of size 0,
so it does not make a lot of sense on its own.
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Predict:

Our estimated model is:

price = −10.1 + 70.2 size + ϵ, ϵ ∼ N(0, 22.482).

Suppose x = size = 2.2.
What is our prediction for y = price?

price = −10.1 + 70.2 (2.2) + ϵ

= 144.34 + ϵ

∼ N(144.34, 22.482)

≈ 144.34± 2(22.48)

≈ 144.34± 45

We call this plug-in prediction since we just “plug in” our
parameters estimates without worrying about possible estimation
error.
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The estimated plug-in conditional distribution is

Y | x ∼ N(β̂0 + β̂1 x , σ̂
2)

with plug-in 95% prediction interval

β̂0 + β̂1 x ± 2 ∗ σ̂
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Excel regression output for the housing data.

StErr of Est is σ̂ is 22.48.

Coefficient estimates are in the usual place.

Intercept estimate is -10.09 and slope estimate is 70.2263.Note:  StatPro prints out the CI's

2 bb * sr

Results of multiple regression for pricethou

Summary measures
Multiple R 0.5530
R-Square 0.3058
Adj R-Square 0.3003
StErr of Est 22.4755

ANOVA Table
Source df SS MS F p-value
Explained 1 28036.3627 28036.3627 55.5011 0.0000
Unexplained 126 63648.8516 505.1496

Regression coefficients
Coefficient Std Err t-value p-value Lower limit Upper limit

Constant -10.0911 18.9661 -0.5321 0.5956 -47.6245 27.4422
sizethou 70.2263 9.4265 7.4499 0.0000 51.5716 88.8810
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3. Confidence Intervals, Prediction, and Hypothesis Tests

With more data we expect we have a better chance that our
estimates will be close to the true (or ”population”) values.

The ”true line” is the one that ”generalizes” to the size and price
of future houses, not just the ones in our current data.

How big is our error in estimating β0 and β1?

We have standard errors and confidence intervals for our estimates
of the true slope and intercept.
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95% Confidence interval for β0:

β̂0 ± 2 se(β̂0)

95% Confidence interval for β1:

β̂1 ± 2 se(β̂1)

Let’s skip the formulas for the standard errors.
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Call:

lm(formula = price ~ size, data = ddf)

Residuals:

Min 1Q Median 3Q Max

-46.59 -16.64 -1.61 15.12 54.83

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -10.091 18.966 -0.532 0.596

size 70.226 9.426 7.450 1.3e-11 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 22.48 on 126 degrees of freedom

Multiple R-squared: 0.3058,Adjusted R-squared: 0.3003

F-statistic: 55.5 on 1 and 126 DF, p-value: 1.302e-11

se(β̂0) = 18.966.
se(β̂1) = 9.426.

Confidence interval for the slope (β1): 70.226 ± 2(9.426) =
70.226 ± 18.9
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Each lines goes through (x̄ , ȳ).
Middle line has slope equall to the regression estimate.
Other two lines have slopes equall to the two ends of the slope
confidence interval 70.226 ± 18.9.
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slope estimate
lower slope from confidence interval
upper slope from confidence interval

confidence interval for the slope
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Here is the regression output using just the sample of 10 houses:

Call:

lm(formula = price ~ size, data = ddfs)

Residuals:

Min 1Q Median 3Q Max

-29.093 -14.978 -5.801 18.725 35.112

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -140.79 100.12 -1.406 0.1973

size 135.50 49.77 2.723 0.0261 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 23.75 on 8 degrees of freedom

Multiple R-squared: 0.4809,Adjusted R-squared: 0.4161

F-statistic: 7.412 on 1 and 8 DF, p-value: 0.02615

What happens to the standard errors for the coefficient estimates
when we go from n = 128 to n = 10?
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The Predictive Interval:

If the confidence intervals for the slope and intercept are big the
plug-in predictive interval can be misleading!!

The predictive interval accounts for both our uncertainty about the
parameters (β0,β1,σ) and the part of price
not explained by size (ϵ).

The predictive interval is bigger than the plug-in predictive interval!

Some software (e.g. R) will give you the predictive interval.

29



Suppose we are predicting Y given x .

Our error in prediction is

E = Y − Ŷ

= (β0 + β1 x + ϵ)− (β̂0 + β̂1 x)

= (β0 − β̂0) + (β1 − β̂1) x + ϵ

The plug-in interval ignores the error due to estimation of the
coefficients and just says ϵ ≈ ±2σ̂.

The predictive interval accounts for all sources of uncertainty
(assuming the model is correct).
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Predictive and plug-in predictive intervals for the full data set (left)
and the subset of size 10 (right).
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When there is a lot uncertainty about the coefficents, the
predictive interval can be much bigger than the plug-in interval.

In practice, I use the plug-in interval a lot.

It gives me a simple quick way to see how well my regression is
working (bearing in mind that the full predictive interval may be
bigger). 31



Hypothesis Tests in Simple Linear Regression

For i equal 0 or 1, to test the null hypothesis:

Ho: βi = βo
i vs. Ha: βi ̸= βo

i

We reject at level .05 if

|t| > 2, where t =
β̂i − βo

i

se(β̂i )
.

Otherwise, we fail to reject.
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Note:

(1)

The t thing is called the t statistic, it is our test statistic.

(2)

If the null hypothesis is true, the t should look like a draw from
the standard normal (the t should look like a z).

(3)

(2) is actually an approximation that works for larger n (e.g. > 20).

For smaller n, the t actually is a draw from a t distribution but we
are skipping this.
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Note:

It is very common to let βo
1 = 0.

We test,

Ho : β1 = 0.

Why is this important?

Y |X = x ∼ N(β0 + β1 x , σ
2).

If β1 = 0 then the conditional of Y does not depend on x
so they are independent!!
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Housing regression in R:

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -10.091 18.966 -0.532 0.596

sizethou 70.226 9.426 7.450 1.3e-11 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 22.48 on 126 degrees of freedom

Multiple R-squared: 0.3058,Adjusted R-squared: 0.3003

F-statistic: 55.5 on 1 and 126 DF, p-value: 1.302e-11

To test β1 = 0 we have: t = 70.226−0
9.426 = 7.45.

We reject the null hypothesis β1 = 0.

Information related to testing β1 = 0 and β0 = 0 are commonly
included in regression output.

The t-value for testing β0 = 0 is -.532. Fail to reject.
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p-values:

Most regression packages automatically print out the p-values for
the hypotheses that β0 = 0 or that β1 = 0.

In the R and excel output we have:

Is the intercept 0?: p-value = .59, fail to reject.
Is the slope 0?: p-value = .0000, reject.

Note: 2* (standard normal cdf at -.532) = .594726.
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Example (the market model)

In finance, a popular model is to regress stock returns against 
returns on some market index, such as the S&P 500. 

The slope of the regression line, referred to as “beta”, is a 
measure of how sensitive a stock is to movements in the 
market.

Usually, a beta less than 1 means the stock is less risky than 
the market, equal to 1 same risk as the market and greater 
than 1, riskier than the market.
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We will examine the market model for the stock General 
Electric, using the S&P 500 as a proxy for the market. 

Three years of 
monthly data 
give 36 
observations.
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The regression equation is
ge = 0.00301 + 1.20 sp500

Predictor       Coef Stdev t-ratio        p
Constant    0.003013    0.006229       0.48    0.632
sp500         1.1995      0.1895       6.33    0.000

s = 0.03454     R-sq = 54.1%     R-sq(adj) = 52.7%

We can test the hypothesis that the slope is zero: 
that is, are GE returns related to the market?

minitab ouput:
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The test statistic is

t =
1.2− 0

.19
= 6.3

Clear reject.

This is the same value as in the regression output and the
associated p-value is basically 0.
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Now let’s test the hypothesis that GE has the “same risk” as the
market, that is, that the slope = 1.

We test: H0 : β1 = 1

t =
1.2− 1

.19
= 1.05.

So, we fail to reject.

What would the p-value be?
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Would we want to “accept” the hypothesis that β1 = 1?

The confidence interval is

1.2± 2(.2) = (.8, 1.6)

Is this a big interval?

Why do we “fail to reject”?
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4. Simple Linear Regression and Correlation

For random variables we have two summaries of the distribution,
the expected value and the variance/standard deviation.

For vectors of numbers we have corresponding summaries: the
sample mean or average and the sample standard deviation.

The average of the 500 cereal weights is 344.2.
This number summarizes the 500 cereal weights.

Given we have modeled the weights as IID N(µ, σ2) we can use
344.2 as an estimate of µ.

The sample averages estimate the expected values, or probability
weighted averages:

how often they happen in the data ≈ true probability weighted
average.
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The Sample Covariance and Correlation

For pairs of random variables, we summarized their dependence
with the covariance/correlation.

We have a sample versions, with the same names.

For data (xi , yi ):

Sample Covariance:

sx ,y =
1

n − 1

n∑
i=1

(xi − x̄)(yi − ȳ)

Sample Correlation:

rxy =
sxy
sx sy
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We have:

−1 ≤ rxy ≤ 1

The sample correlation summarizes how much you can see a line in
the scatter plot.

If rxy is close to 1, you see a line with a positive slope.

If rxy is close to -1, you see a line with a negative slope.
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For our housing data the correlation is .55.
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the correlation is :  0.55
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Correlation and Regression are Related

rxy =
sxy
sx sy

=
sxy
s2x

sx
sy

= β̂1
sx
sy

They both talk about the linear relationship between x and y .

Correlation: do you see a line?

Regression: what is the best line?

Correlation is symmetric: rxy = ryx .

However, we regress y on x and it matters which variable is y and
which variable is x .
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5. Back to Portolios
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We will assume the
pairs of random vari-
ables (IBMi ,ALCOAi )
are iid.

Then we estimate the
means, variances, and
covariances using the
sample quantities.

IBM ALCOA

X̄IBM = 12.5 X̄Alcoa = 14.9
sIBM = 10.5 sAlcoa = 14.0

corr(IBM,ALCOA) = 0.33
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Building Portfolios

Recall...

Let X and Y be two random variables:

▶ E (aX + bY ) = aE (X ) + bE (Y )

▶ Var(aX + bY ) = a2Var(X ) + b2Var(Y ) + 2ab × Cov(X ,Y )

where Cov(X ,Y ) is the covariance between X and Y .
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Back to Building Portfolios

So, by using what we learned about the means, variances and
covariance, we could try:

▶ estimate the true means, variances, and covariance using
sample quantities.

▶ plug them in to our formulas for means and variances of linear
combinations

Let’s suppose we put half our money into IBM and half into
ALCOA:

P = .5 IBM + .5ALCOA

E (P) ≈ 0.5X̄IBM + 0.5X̄Alcoa

Var(P) ≈ 0.52 ∗ s2IBM + 0.52 ∗ s2Alcoa + 2 ∗ 0.5 ∗ 0.5 ∗ Cov(IBM,Alcoa)
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Building Portfolios

Here are the results for different combinations of Alcoa and IBM...
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