
Naive Bayes

Carlos Carvalho and Rob McCulloch

1. Bayes Rule Classification
2. Naive Bayes Classification
3. Sentiment Analysis: Spam or Ham

1. Bayes Rule Classification

In linear regression we are trying to predict a numeric Y given
numeric x = (x1, x2, . . . , xp).

Let’s consider the very important problem of predicting a
categorical Y .

Many methods can be viewed as an attempt to estimate:

p(y |x)

the conditional distribution of Y given X = x .

For example, in logistic regression Y is 0 or 1 and we have:

p(Y = 1|x) ∼ Bernoulli(p(x)), p(x) =
eβ0+

∑
βjxj

1 + eβ0+
∑

βjxj
.

β0 +
∑p

j=1 βjxj = β0 + β1x1 + β2x2 + . . .+ βpxp.
1

An alternative approach is to estimate the full joint distribution of
(X ,Y) by estimating the marginal for Y (p(y)) and the
conditional for X (p(x |y)).

We then have the joint via:

p(x , y) = p(y) p(x |y).

And classification is then obtained from Bayes Theorem:

p(y |x) = p(y)p(x |y)
p(x)

As usual we can predict the most probable y or make a decision
based on the probabilities.

2

For discrete y and x we have:

p(y |x) = p(y , x)

p(x)
=

p(y , x)∑
y p(y , x)

=
p(y)p(x |y)∑
y p(y)p(x |y)

For binary y (y is 0 or 1) we have:

p(Y = 1|x) = p(Y = 1) p(x |Y = 1)

p(Y = 0) p(x |Y = 0) + p(Y = 1) p(x |Y = 1)

3

Recall our Disease testing example.

Let D = 1 indicate you have a disease.
Let T = 1 indicate that you test positive for it
We know the marginal of D and the conditional of T given D.

>?)=7*5

0'15)15"(51('%/!

H5("0"IJ"'%&'<)(5"8$3"9);5"(95"&'15)15!
H5("NIJ"'%&'<)(5"(9)("8$3"(51("7$1'(';5"B$."'(!

-$1("&$<($.1"(9'%:"'%"(5.=1"$B"7P&Q")%&"7P(U&Q!

/42

/7G

0IJ

0IK

NIJ

NIK

/73

/43

NIJ

NIK

/4+

/77

"

0

K""""""""""""""""""""""""J

N
K"""!bRKWI!b^Z!bb"""""!KKJ

J"""!KKb^""""""""""""""""""!KJb

4

p(Y = 1|x) = p(Y = 1) p(x |Y = 1)

p(Y = 0) p(x |Y = 0) + p(Y = 1) p(x |Y = 1)

In the disease testing example Y is D and X is T :

p(D = 1|T = 1) = p(T=1|D=1)p(D=1)
p(T=1|D=1)p(D=1)+p(T=1|D=0)p(D=0)

p(D = 1|T = 1) = 0.019
(0.019+0.0098) = 0.66

5

Odds Ratios

Note that for binary Y , a nice way to look at Bayes theorem is
with the odds ratio:

p(Y = 1|x)
p(Y = 0|x)

=
p(Y = 1)

p(Y = 0)

p(x |Y = 1)

p(x |Y = 0)

p(Y=1)
p(Y=0) : the prior odds ratio.

p(x |Y=1)
p(x |Y=0) : the likelihood ratio.

p(Y=1|x)
p(Y=0|x) : the posterior odds ratio.

Disease testing:
posterior odds: .66/(1-.66) = 1.941176
prior odds: .02/.98 = 0.02040816
likelihood ratio: .95/.01 = 95

prior odds x likelihood ratio: .0204*95 = 1.938

6

Probability from odds:

p(Y = 1|x) = p(Y = 1) p(x |Y = 1)

p(Y = 0) p(x |Y = 0) + p(Y = 1) p(x |Y = 1)

Divide top and bottom by p(Y = 0) p(x |Y = 0):

p(Y = 1|x) = odds

1 + odds

Disease testing:
1.938/(1 + 1.938) = 0.6596324

7

2. Naive Bayes Classification

Naive Bayes classification uses the Bayes Theorem approach to
classification.

The tricky part is that we would like this to work for large x!!!

x = (x1, x2, . . . , xp)

where p may be large !!!!

In our application we will have p = 1, 136 !!

How do we get p(x |y) from the data when p is large???

8

Naive Bayes classification simplifies the problem by assumming
that the elements of X = (X1,X2, . . . ,Xp) are conditionally
independent given Y :

p(x , y) = p(y) p(x | y) = p(y)
∏
i

p(xi |y)

Each coordinate xi of x gets to multiply in it’s own contribution of
evidence about y depending on how likely xi would be if Y = y .

9

For example, suppose we just have x = (x1, x2) and each x is
binary (0 or 1).

p(Y = 1|X1 = 1,X2 = 0) =

=
p(Y = 1)p(X1 = 1,X2 = 0|Y = 1)

p(Y = 1)p(X1 = 1,X2 = 0|Y = 1) + p(Y = 0)p(X1 = 1,X2 = 0|Y = 0)

=
p(Y = 1)p(X1 = 1|Y = 1)p(X2 = 0|Y = 1)

p(Y = 1)p(X1 = 1|Y = 1)p(X2 = 0|Y = 1) + p(Y = 0)p(X1 = 1|Y = 0)p(X2 = 0|Y = 0)

Same idea works with p x variables instead of 2 !!!
You just have to estimate p(Xi = 1|y) for each i!!!

10

NB has some key advantages:

▶ We only have to estimate the low dimension p(xi |y) instead of
the high dimensional p(x |y) !!!!

▶ Many small bits of information from each xi can be combined.

▶ It is simple.

The main disadvantage is that the conditional independence
assumption often seems inappropriate. However, this does not
seem to keep from working very well in practice !!!

According to Mladen Kolar,
NB is the single most used classifier out there. NB often
performs well, even when the assumption is violated.

11

3. Sentiment Analysis: Spam or Ham

Sentiment analysis tries to understand text documents.

A popular approach is to combine “bag of words” with NB.

Each word in the document provides an additional independent
piece of evidence about the kind of document it is.

A simple example is trying to classify the document as spam or
not: “spam or ham”.

12

Bag of words means just that, we ignore the order of the words.

The document:
When the lecture is over, remember to wake up the person
sitting next to you in the lecture room.

is the same as the document,
in is lecture lecture next over person remember room
sitting the the the to to up wake when you

13

SMS Spam Data:

Note: this follows Chapter 4 of “Machine Learning with R”, by
Brett Lanz.

Note: sms: short message service.

Have 5,559 sms text message documents.

Each one is labelled as spam or ham.

Here is the first (ham) and fourth (spam) observation:

> smsRaw[1,]

type text

1 ham Hope you are having a good week. Just checking in

> smsRaw[4,]

type

4 spam

text

4 complimentary 4 STAR Ibiza Holiday or £10,000 cash needs your URGENT collection.

09066364349 NOW from Landline not to lose out! Box434SK38WP150PPM18+

14

Work flow:

▶ clean: tolower, kill numbers, punctuation, stopwords

▶ stem: (help,helped,helping,helps) becomes
(help,help,help,help)

▶ tokenization: split a document up into single words (or
“tokens” or “terms”).

▶ document term matrix (DTM): rows indicate documents
columns are counts for terms.

▶ train/test split.

▶ throw away low count terms.

▶ convert DTM to indicators: Yes if the word (term) is in the
document, 0 else.

▶ do Naive Bayes!!

15

Note:

Most of the work is processing the data !!!!!

This is often the case in real world applications.

Getting the data into a form that allows you to analysize it is time
consuming and very important.

Garbage in, garbage out !!!

In data science we talk about things like “data wrangling” and
“feature engineering”.

16

Clean and Stem

Here are the first two documents:

> smsRaw$text[1]

[1] "Hope you are having a good week. Just checking in"

> smsRaw$text[2]

[1] "K..give back my thanks."

Here are the first 2 docs after cleaning.
smsCC is the cleaned data in the Corpus data structure from the
tm R package. smsCC is for sms data as a Cleaned Corpus.

> smsCC[[1]][1]

$content

[1] "hope good week just check"

> smsCC[[2]][1]

$content

[1] "kgive back thank"

17

Tokenize and get DTM

Tokenization gives us 6518 words (or terms) from all the 5,559 sms
documents.

The i th row of the DTM gives us the count for each term in
document i .

> print(dim(smsDtm))

[1] 5559 6518

> library(slam) #for col_sums

> summary(col_sums(smsDtm)) #summarize total time a term is used.

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.000 1.000 1.000 6.776 4.000 658.000

> terms = smsDtm$dimnames$Terms

> nterm = length(terms)

> set.seed(14)

> ii = sample(1:nterm,20)

> terms[ii]

[1] "effect" "pinku" "wikipediacom" "mundh" "wwwsmsconet"

[6] "marsm" "voic" "itz" "logo" "hip"

[11] "transfr" "colin" "leo" "technolog" "text"

[16] "scratch" "graze" "prolli" "tech" "ofsi"

18

Average word frequencies for ham observations:

Average word frequencies for spam observations:

If the word (term) ”call” is in a document does that make it more
or less likely that it is spam?

19

Train/Test

We split our data into train/test:
train: we estimate/learn/train our model using the training data.
test: see how well we predict on the test data.

#train and test

creating training and test datasets

smsTrain = smsDtm[1:4169,]

smsTest = smsDtm[4170:5559,]

also save the labels

smsTrainy = smsRaw[1:4169,]$type

smsTesty = smsRaw[4170:5559,]$type

> prop.table(table(smsTrainy))

smsTrainy

ham spam

0.8647158 0.1352842

> prop.table(table(smsTesty))

smsTesty

ham spam

0.8683453 0.1316547

20

Throw Away Terms with Low Frequency

save frequently-appearing terms to a character vector

smsFreqWords = findFreqTerms(smsTrain, 5)

> str(smsFreqWords)

chr [1:1136] "abiola" "abl" "abt" "accept" "access" "account" ...

> length(smsFreqWords)

[1] 1136

create DTMs with only the frequent terms

smsFreqTrain = smsTrain[, smsFreqWords]

smsFreqTest = smsTest[, smsFreqWords]

> dim(smsFreqTrain)

[1] 4169 1136

> dim(smsTest)

[1] 1390 1136

21

Convert Counts to Indicators

Convert number of times a term is in a document to just whether
or not it is in the document.

#convert counts to if(count>0) (yes,no)

convertCounts <- function(x) {

x <- ifelse(x > 0, "Yes", "No")

}

apply() convert_counts() to columns of train/test data

these are just matrices

smsTrain = apply(smsFreqTrain, MARGIN = 2, convertCounts)

smsTest <- apply(smsFreqTest, MARGIN = 2, convertCounts)

> dim(smsTrain)

[1] 4169 1136

> smsTrain[1:3,1:5]

Terms

Docs abiola abl abt accept access

1 "No" "No" "No" "No" "No"

2 "No" "No" "No" "No" "No"

3 "No" "No" "No" "No" "No"

22

We are ready for NB!!!

library(e1071)

smsNB = naiveBayes(smsTrain, smsTrainy)

> smsNB$tables[1:3]

$abiola

abiola

smsTrainy No Yes

ham 0.998058252 0.001941748

spam 1.000000000 0.000000000

$abl

abl

smsTrainy No Yes

ham 0.994729542 0.005270458

spam 1.000000000 0.000000000

$abt

abt

smsTrainy No Yes

ham 0.995839112 0.004160888

spam 1.000000000 0.000000000

The tables are our p(xi |y) terms !!
y is ham or spam and xi are the words(terms): abiola, abl, abt,

That is p(abiola = Yes | y = ham) = 0.001941748.

23

What is the probability an sms is spam given the word age is in it

What is p(y = spam|age = Yes)?

Let’s use p(y = spam) = .14, the training data proportion.

And age given y is exactly the table:

$age

age

smsTrainy No Yes

ham 0.998613037 0.001386963

spam 0.978723404 0.021276596

24

25

p(y = spam|age = Yes) =

p(y=spam)p(age=Yes|y=spam)
p(y=spam)p(age=Yes|y=spam)+p(y=ham)p(age=Yes|y=ham)

> .14*0.021276596/(.14*0.021276596 + .86*0.001386963)

[1] 0.7140633

26

In [1]: priodds = .14/.86

In [2]: likerat = 0.021276596/0.001386963

In [3]: priodds

Out[3]: 0.16279069767441862

In [4]: likerat

Out[4]: 15.340420761044093

In [5]: postodds = priodds*likerat

In [6]: postodds

Out[6]: 2.497277798309504

In [7]: pspam = postodds/(1+postodds)

In [8]: pspam

Out[8]: 0.7140633207681201

age was 15 times more likely to be in the message if it was spam!!

27

Now let’s use two words and Naive Bayes !!!

$age

age

smsTrainy No Yes

ham 0.998613037 0.001386963

spam 0.978723404 0.021276596

$adult

adult

smsTrainy No Yes

ham 0.999445215 0.000554785

spam 0.994680851 0.005319149

What is p(y = spam|age = Yes, adult = Yes)?
(The prob the sms is spam given the word age is in it and the word
adult is in it).

p(y = spam|age = Yes, adult = Yes) =

p(y=spam)p(age=Yes|y=spam)p(adult=Yes|y=spam)
p(y=spam)p(age=Yes|y=spam)p(adult=Yes|y=spam)+p(y=ham)p(age=Yes|y=ham)p(adult=Yes|y=ham)

> .14*0.021276596*0.005319149/(.14*0.021276596*0.005319149 + .86*0.001386963*0.000554785)

[1] 0.9599091

28

Ok, let’s try it with all the terms (words) !!!

Out of Sample Confusion Matrix

yhat = predict(smsNB,smsTest)

library(gmodels)

CrossTable(yhat, smsTesty,

prop.chisq = FALSE, prop.t = FALSE, prop.r = FALSE,

dnn = c(’predicted’, ’actual’))

| actual

predicted | ham | spam | Row Total |

-------------|-----------|-----------|-----------|

ham | 1201 | 30 | 1231 |

| 0.995 | 0.164 | |

-------------|-----------|-----------|-----------|

spam | 6 | 153 | 159 |

| 0.005 | 0.836 | |

-------------|-----------|-----------|-----------|

Column Total | 1207 | 183 | 1390 |

| 0.868 | 0.132 | |

-------------|-----------|-----------|-----------|

Missclassification rate:
36/1390 = 0.02589928

% spam detected: .836.

> 153/(153+30)

[1] 0.8360656
29

