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1 Homework for Section 3

1.1 SLR Model

Suppose we are modeling house price as depending on house size. Price is measured in
thousands of dollars and size is measured in thousands of square feet.

Suppose our model is:
P = 20 + 50s+ ε, ε ∼ N(0, 152).

That is, suppose that somehow we know the parameters:
β0 = 20,
β1 = 50, and
σ = 15.

(a)

Given you know that a house has size s = 1.6, give a 95% predictive interval for the price of the house.

(b)

Given you know that a house has size s = 2.2, give a 95% predictive interval for the price.

(c)

In our model the slope is 50. What are the units of this number?

(d)

What are the units of the intercept 20?

(e)

What are the units of the standard deviation 15?

(f)

Suppose we change the units of price to dollars and size to square feet.
What would the values and units of the intercept, slope, and error standard deviation?

(g)

If we plug s = 1.6 into our model equation (with the original units), P is a constant plus the normal random
variable ε.

Given s = 1.6, what is the distribution of P ?
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Solution

(a)

The point prediction is Pf = 20 + 50 ∗ 1.6 = 100 (Pf is the “future P”).

The prediction interval is (100± 2 ∗ 15) = (70, 130).

(b)

The point prediction is Pf = 20 + 50 ∗ 2.2 = 130 The prediction interval is [130± 2 ∗ 15] = [100, 160].

(c)

$1,000 / 1,000 Sq. Feet = $/Sq. Feet

(d)

Same as the units of the response P , thousands of dollars.

(e)

$1,000 (same as P )

(f)

Intercept: 20,000 $ Slope: 50 $/Sq. Feet error standard deviation: 15,000 $

(g)

When s = 1.6 the mean of house prices is 20 + 50 ∗ 1.6 = 100. The error standard deviation is the same, 15.
Therefore

P |S = 1.6 ∼ N(100, 152)
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1.2 The Shock Absorber Data

The data comes from a company which supplies a major automobile manufacturer with shock absorbers. An
important characteristic is the “force transferred through the shock absorber when the shank is forced out of
the cylinder”. If you don’t know what that really means, don’t worry, neither do I.

What we do need to understand is that the manufacturer only considers the shock to be an acceptable part if
the force measurement is between 485 and 585.

The shock manufacturer and the auto manufacturer are arguing over the following issue. Before the shock is
finally shipped, it is filled with gas. After it is filled with gas, it becomes very difficult to measure the force
characteristic we are interested in. The shock manufacturers would like to make the measurement before the
shock is filled with gas. The auto maker is concerned that there may be a difference in the force before and
after the shock is filled with gas and so would like to make the measurement after it is filled.

The shock maker claims that there is little difference between the before and after measurement so that the
before measurement can be used.

To investigate this we have the before (column 1, reboundb) and the after (column 2, rebounda) measurements
on 35 shocks (in shock.csv).

Get the shock data (shock.csv) from the webpage.

(a)

Plot reboundb vs. rebounda.

Does this look like the kind of data the simple linear regression model is designed to capture?

R:
sdat = read.csv("http://www.rob-mcculloch.org/data/shock.csv")
plot(sdat)

(b)

Run the regression of y=rebounda on x=reboundb.

What is the estimate of the true slope?

(c)

Given reboundb = 535, give the plug-in predictive interval for rebounda.

(d)

Give the 95% confidence interval for β1.

(e)

Give the 95% confidence interval for β0.

(f)
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Test the null hypothesis (level .05) that β0 = 0.

(g)

Test the null hypothesis (level .05) that β1 = 0.

(h)

Test the null hypothesis (level .05) that β1 = 1.

Why is this an interesting hypothesis to test?

(i)

Is it ok to use the before measurement as a proxy for the after measurement? What does the simple linear
regression model tell us about this?
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Solution

(a)
sdat = read.csv("http://www.rob-mcculloch.org/data/shock.csv")
plot(sdat)
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Yes, really looks like line +- error !!

(b)
lmsa = lm(rebounda~reboundb,sdat)
summary(lmsa)

##
## Call:
## lm(formula = rebounda ~ reboundb, data = sdat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -16.931 -4.246 -1.692 6.250 15.940
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 18.2259 23.8852 0.763 0.451
## reboundb 0.9495 0.0438 21.675 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7.67 on 33 degrees of freedom
## Multiple R-squared: 0.9344, Adjusted R-squared: 0.9324
## F-statistic: 469.8 on 1 and 33 DF, p-value: < 2.2e-16

β̂1 = 0.9495.
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(c)
18.2259 + 0.9495*535 + 7.67*2*c(-1,1)

## [1] 510.8684 541.5484

(d)
0.9495 + 2*0.0438*c(-1,1)

## [1] 0.8619 1.0371

(e)
18.2259 + 2* 23.8852*c(-1,1)

## [1] -29.5445 65.9963

(f)

pval = .451, fail to reject

(g)

pval = 0, reject

(h)
t = ( 0.9495-1)/0.0438
t

## [1] -1.152968

fail to reject. slope=1 and intercept=0 would be consistent with using the before as a proxy for the after.

(i)
plot(sdat,xlim=c(485,600),ylim=c(485,600))
abline(h=485,col="red",lwd=2)
abline(h=585,col="red",lwd=2)
abline(v=485,col="red",lwd=2)
abline(v=585,col="red",lwd=2)
abline(lmsa$coef,col="blue")
points(sdat$reboundb,lmsa$fitted + 2*7.67,col="green")
points(sdat$reboundb,lmsa$fitted - 2*7.67,col="green")
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Red is tolerance limits of (485,585).
Green is plug-in predictive intervals.
Blue is fitted line.

Short answer is yes.
If before is in, you can be pretty sure after is in.
Might want to double check if before is close to one of the limits.
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1.3 Predictive Interval for the Shock Data

Let’s compare the plug in predictive interval with the “correct” predictive interval
(the one the accounts for our estimation error) for the shocks data.

Is there enough information in the data to make the plug-in interval similar to the predictive interval??

Here is the R code to get and plot the predictive and plug-in intervals.
sd = read.csv("http://www.rob-mcculloch.org/data/shock.csv")
lms = lm(rebounda~reboundb,sd)

#note: try > ?predict.lm

predint = predict(lms,sd,interval="prediction")

plot(sd,ylim=c(470,620))
points(sd$reboundb,predint[,"fit"],col="red") #note predint is a matrix, not a data.frame
points(sd$reboundb,predint[,"lwr"],col="green",pch=16)
points(sd$reboundb,predint[,"upr"],col="green",pch=16)

sigmahat = summary(lms)$sigma #estimate of sigma
ab = coef(lms) #estimates of intercept and slope
abline(ab[1]+2*sigmahat,ab[2],col="magenta",lwd=2)
abline(ab[1]-2*sigmahat,ab[2],col="magenta",lwd=2)
abline(ab[1],ab[2],col="red",lwd=2)
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Solution

Wow! The plug-in interval coincides very closely with the predictive interval, so YES!!
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1.4 Beta for Fidelity Funds

Get the data in the file fidrets.csv.

The data is monthly returns on: sp500: the s&p 500.
FidInc: a Fidelity income fund.
FidVal: a Fidelity “value” fund.
FidTech: a Fidelity Tech fund.

From the names, we might expect the value fund to be riskier than the income fund and the tech fund to be
riskier than the value fund.

(a)

For each of the three funds plot sp500 vs. fund return.
Is linear regression a good way to think about the relationship between
the market returns and the fund returns?

So that you can compare the different funds, make sure each plot is on the same scale.

(b)

For each of the three funds compute the 95% confidence interval for the slope.

What do these intevals test us about the risk of the funds?

(c)

This is not well motivated in the example, but just as an excercise for each of the three funds test β1 = 0 and
β1 = 1 (the slope is 0 and the slope is 1).
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Solution

(a)

Let’s read in the data:
ff = read.csv("http://www.rob-mcculloch.org/data/fidrets.csv")
print(names(ff))

## [1] "sp500" "FidInc" "FidVal" "FidTech"
print(dim(ff))

## [1] 35 4
head(ff)

## sp500 FidInc FidVal FidTech
## 1 0.03350438 0.017451720 0.051467541 0.050443459
## 2 -0.02745619 -0.018095238 -0.008285643 0.028232190
## 3 -0.04384097 -0.020368574 -0.039230674 -0.033872209
## 4 0.01256281 0.000980198 0.022921557 -0.019657371
## 5 0.01674628 0.002977280 0.014164306 0.001628289
## 6 -0.02501533 -0.005927022 -0.001015744 -0.084663240

And not let’s plot all three:
# first get limits for the plots, we want them on the same scale
xlim = range(ff$sp500)
ylim = range(ff[,2:4])

# three plots in same figure
plot(ff$sp500,ff$FidInc,xlim=xlim,ylim=ylim)

−0.04 −0.02 0.00 0.02 0.04 0.06

−
0.

15
−

0.
05

0.
05

ff$sp500

ff$
F

id
In

c

plot(ff$sp500,ff$FidVal,xlim=xlim,ylim=ylim)
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plot(ff$sp500,ff$FidTech,xlim=xlim,ylim=ylim)
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Very dramatic how different relationship to the market is for each of our three funds.!!

(b)
lmFidInc = lm(FidInc~sp500,ff)
summary(lmFidInc)

##
## Call:
## lm(formula = FidInc ~ sp500, data = ff)
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##
## Residuals:
## Min 1Q Median 3Q Max
## -0.0127402 -0.0034358 -0.0009288 0.0041676 0.0109666
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0006729 0.0011224 -0.599 0.553
## sp500 0.3550981 0.0356225 9.968 1.75e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.005842 on 33 degrees of freedom
## Multiple R-squared: 0.7507, Adjusted R-squared: 0.7431
## F-statistic: 99.37 on 1 and 33 DF, p-value: 1.753e-11

Confidence Interval for Income beta is:
.355 + 2*.0356*c(-1,1)

## [1] 0.2838 0.4262

Regression for FidVal:
lmFidVal = lm(FidVal~sp500,ff)
summary(lmFidVal)

##
## Call:
## lm(formula = FidVal ~ sp500, data = ff)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.033008 -0.006692 -0.000823 0.009432 0.023928
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0005589 0.0025190 0.222 0.826
## sp500 0.8052956 0.0799444 10.073 1.35e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.01311 on 33 degrees of freedom
## Multiple R-squared: 0.7546, Adjusted R-squared: 0.7472
## F-statistic: 101.5 on 1 and 33 DF, p-value: 1.348e-11

Confidence Interval for Value beta is:
.8 + 2*.08*c(-1,1)

## [1] 0.64 0.96
lmFidTech = lm(FidTech~sp500,ff)
summary(lmFidTech)

##
## Call:
## lm(formula = FidTech ~ sp500, data = ff)
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##
## Residuals:
## Min 1Q Median 3Q Max
## -0.166180 -0.033587 0.005578 0.037878 0.075195
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.005604 0.009821 -0.571 0.572
## sp500 1.506359 0.311696 4.833 3.02e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.05112 on 33 degrees of freedom
## Multiple R-squared: 0.4144, Adjusted R-squared: 0.3967
## F-statistic: 23.36 on 1 and 33 DF, p-value: 3.017e-05

Confidence Interval for Tech beta is:
1.5 + 2*.311*c(-1,1)

## [1] 0.878 2.122

The intervals are big as a practical matter, but there are small enough to strongly suggest that the beta’s are
increasing, suggesting FidInc is less risky than FidVal and FidVal is less risky that FidTech, which makes
sense.

(c)

For testing slope=0 all the p-values are tiny => reject.

For testing =1:

> #Income t
> (0.3550981-1)/0.0356225
[1] -18.10378
> #reject
>
> #Value t
> (0.8052956-1)/0.0799444
[1] -2.435498
> #reject
>
> #Tech t
> (1.506359-1)/0.311696
[1] 1.624528
> #fail to reject at usual levels.
> 2*pnorm(-1.624528)
[1] 0.1042632
> #p-value is about .1
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1.5 Correlation in Simple Linear Regression, the shock absorber data

Let’s use correlation to think about the regression we ran for the shock absorber example.
sdat = read.csv("http://www.rob-mcculloch.org/data/shock.csv")
cor(sdat)

## reboundb rebounda
## reboundb 1.0000000 0.9666268
## rebounda 0.9666268 1.0000000

(a)

We see that the correlation betweeen reboundb and rebounda is .966.

What does this tell us about the relationship?

(b)

Get the fitted values ŷ = β̂0 + β̂1xi for y=rebounda x=reboundb.

What is the correlation between x and the fitted values ?

Plot x vs. the fitted values.

Note that in R we could compute the fits directly from the formula:
lmsh = lm(rebounda~reboundb,sdat)
bhat = lmsh$coef
bhat

## (Intercept) reboundb
## 18.2258676 0.9494632
fits = bhat[1] + bhat[2] * sdat$reboundb

Or, we can get the fits directly from the regression results:
names(lmsh)

## [1] "coefficients" "residuals" "effects" "rank"
## [5] "fitted.values" "assign" "qr" "df.residual"
## [9] "xlevels" "call" "terms" "model"
fits1 = lmsh$fitted.values
summary(fits-fits1) ## check that they are the same

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -1.137e-13 -5.684e-14 0.000e+00 -3.086e-14 0.000e+00 1.137e-13

The fits and resids play an important role in regression modeling, so they are included in the results in R.
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(c)

Plot the fitted values vs y and x vs y.
How do these plots compare?

What is the correlation between the fitted values and y?
How does this compare to the correlation between x and y?

(d)

Square the correlation between x and y.
How does this compare to the “Multiple R-squared” in the regression summary?

(e)

What is the correlation between x and the residuals? What is the correlation between the fits and the
residuals?
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Solution

(a)

The correlation is very close to one. In our application, this would make us optimistic that the relationship is
linear and strong enough for the before measurement to be a good proxy. But only the regression anlysis
gives us a real answer!!

(b)
cor(sdat$reboundb,fits)

## [1] 1

Because the fitted values are an exact linear function of x, the correlation between the fits and x is 1!!!
plot(sdat$reboundb,lmsh$fitted.values)
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(c)
cor(fits,sdat$rebounda)

## [1] 0.9666268

cor(y, ŷ) = cor(x, y) in simple linear regression!!

This is because ŷ is an exact linear function of x, the fits are just x rescaled to look like y!!
plot(fits,sdat$rebounda)
abline(0,1,col="red",lwd=3) #line with intercept 0, and slope 1!!
title(main=" red line has intercept 0 and slope 1!!")
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a
 red line has intercept 0 and slope 1!!

The plot of fits vs y=rebounda looks just like the plot of x vs y, but note the the scale on the x axis is
different.
With one x, the fits are just x shifted (intercept) and scaled (slope) to look like y.

(d)

They are the same!!
In simple linear regression, R-squared is r squared!!

(e)
print(cor(lmsh$residuals,sdat$reboundb))

## [1] -7.511949e-16
print(cor(lmsh$residuals,fits))

## [1] -9.576525e-16

They are both 0!!
plot(sdat$reboundb,lmsh$residuals)
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plot(fits, lmsh$residuals)
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No linear relationship! The resids are the part of y the does not look like a linear function of x!!

Again, these look the same because the fits are just x rescaled.
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1.6 Correlation and the Countries Returns

Get the returns data for various countries (conret.csv).
Based on the correlations, what countries move together?
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Solution
cdat = read.csv("http://www.rob-mcculloch.org/data/conret.csv")

cor(cdat[,c(4,6,8,9)])

## belgium denmark france germany
## belgium 1.0000000 0.5342116 0.7335749 0.6909786
## denmark 0.5342116 1.0000000 0.4877015 0.6166755
## france 0.7335749 0.4877015 1.0000000 0.7090513
## germany 0.6909786 0.6166755 0.7090513 1.0000000
cor(cdat[,c('canada','usa')])

## canada usa
## canada 1.0000000 0.6511531
## usa 0.6511531 1.0000000

Makes sense!
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1.7 Portolio of Fidelity Returns

Use the data fidret.csv.

Using the sample quantities as estimates for the true means, variances, and covariance what is your plug in
estimate of the mean and standard deviation of a portfolio which puts 25% into the value fund and 75% into
the tech fund?
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Solution
fr = read.csv("http://www.rob-mcculloch.org/data/fidrets.csv")
names(fr)

## [1] "sp500" "FidInc" "FidVal" "FidTech"
muhatVal = mean(fr$FidVal); sighatVal = sd(fr$FidVal)
muhatTec = mean(fr$FidTech); sighatTec = sd(fr$FidTech)
cVT = cov(fr$FidVal,fr$FidTech)
cat("two means, two sds, and cov:",muhatVal,muhatTec,sighatVal,sighatTec,cVT)

## two means, two sds, and cov: 0.01261904 0.01695538 0.02607556 0.06581641 0.001074193
EPhat = .25*muhatVal + .75*muhatTec
VPhat = .25^2 * sighatVal^2 + .75^2 * sighatTec^2 + 2*.25*.75*cVT
cat("estimated mean, var, and sd of Porftolio:",EPhat,VPhat,sqrt(VPhat),"\n")

## estimated mean, var, and sd of Porftolio: 0.0158713 0.002881956 0.05368385
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