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1. Goals

Predict

Simple approach to predicting the monthly cross section of firm
returns using variables obtained in the previous month.

Use ensembles of trees.

Interpret

fit the fit
Summarize E(R) = f(x) by searching for simple fits of the fit.

E.g. Variable selection: Can | find a function of a subset of the
variables the approximates f(x) well.



Dusty Corners:

We think there are small parts of the predictor space where
“interesting” nonlinearities kick in.

We will try to indentify variables that contribute to nonlinearity
and interactions in the dusty corners.



Data:

> 629 months of data, 1963-06 - 2015-12.

» Each month we have a cross section of firm returns, and 33
firm characteristics measured in the previous month.

» threw out “tinies”

» on a monthly basis express each x as a quantile in (0,1).

P regression impute missing values

» monthly demean returns, so we are predicting amount above
average

W ey

> colnames (TrxI)

[1] "me" g qn

[3] "r12_2" "r12_7"
[6] "industrymom" "r60_13"

[31] "ln_cvvol" "ln_turn"



Some Key Predictor Variables
Our variable selection results will lead us to focus on these 10.

me:
market equity. “small stocks tend to earn higher average returns
than big stocks.”

ri_1:
prior one month return. “short term reversals”.

r12_2:
prior one year return, skipping a month. “momentum effect”.

industrymom (imom):
industry momentum, prior six month's return on the stock'’s
industry.

seasonality (seas):
Stock’s average return over the prior 20 years in the same month.



idiosyncraticvol (ivol):
idiosyncratic volatility. volatility of residual from three-factor
model, estimated using one month of daily data.

an_booktomarket (btm):
“value effect”.

an_assetgrowth (AaGr):
percentage year-to-year growth in total assets.

an_cbprofitability” (AcbProf):
Cash-based operating profitability.

In_turn:

number of shares traded divided by the number of shares
outstanding in the previous month.

A high value means there is a lot of trading activity.



R;: cross section of returns, month t.
x¢: predictor variables used for R; (measured at time t — 1).

Approach:
Our overall approach is the following:

> For each month t fit a model giving R = f(x).
> Roll the fitted models: £R(x) = Y°_; w; fr_j(x).
» Check that ftR(x) has reasonable predictive performance.
> Inspect {£R} to learn about the relationship,
(e.g., what variables are used).

» Also consider fA(X) = % thvzl ft(X)

For example, we often use v = 120, w; = 1/120.



Choice of “Learner”

We have to fit a model each month so we want to use approaches
that do not require a lot of tuning. In addition, our x variables are
“messy” so we need methods that perform well in this case.

We focus on methods based on trees and ensembles of trees:

» Trees are capable of uncovering any kind of non-linearity and interaction.

» Trees handle messy x variables: they are invariant to monotonic transformations
of the predictor variables.

> Single trees partition the x space into rectangular subsets somewhat reminiscent
of what you obtain by sorting stocks into portfolios

» Ensembles of trees, in which many trees are combined to get an overall fit, are
the best “off-the-shelf” models.

> We will use Random Forests and BART (Bayesian Additive Regression Trees)
which is an ensemble method related to boosting. Generally, BART requires less
tuning than other boosting type approaches. Random Forests is well known for
performing well with minimal tuning.

We ran default BART and default random forests.



Our goal is to have some understanding of what the non-linear
fitted relationship is.

With a two-dimensional x,
we can plot.

5555
E(R) vs
4 20RK%
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x1: me = market equity
x2: bm =book-to-market.

Hard in high
dimensions!!!
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» Looks pretty linear for most of the middle.
» big me and small bm really interact to give you low returns.

» A little non-linear upturn for big bm, especially at small me.
At big me, small bm , there is a dusty corner.



Note:

Most of the of the methods could be used with estimates of
E(R | x) from any learner.

For example, Gu, Kelly and Xiu have some interesting results with
neural nets.

Most of our results just examine the fit E(R | x), but we are
working on capturing the uncertainty.
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2. Predictability

Is there any predictive ability?

Are the Machine Learners any better than linear?

11



Stacked Correlations

Stack all the R for each month and all the out-of-sample R for
each month and compute the simple pearson correlations.

rf is Random Forests.

abart uses the average f from all months.

*10 uses just 10 variables we got from our variable selection.
tree used 25 bottom nodes.

R linear tree rf bart bartl0 abart abartl0
R 1.0000 0.0482 0.0409 0.0468 0.0553 0.0572 0.0706 0.0693
linear 0.0482 1.0000 0.5929 0.7160 0.7993 0.7589 0.7850 0.7536
tree 0.0409 0.5929 1.0000 0.7288 0.6414 0.6278 0.5613 0.5565
rf 0.0468 0.7160 0.7288 1.0000 0.7611 0.7147 0.6580 0.6380
bart 0.0553 0.7993 0.6414 0.7611 1.0000 0.8565 0.8338 0.7825
bart10 0.0572 0.7589 0.6278 0.7147 0.8565 1.0000 0.7913 0.8505
abart 0.0706 0.7850 0.5613 0.6580 0.8338 0.7913 1.0000 0.9297
abart10 0.0693 0.7536 0.5565 0.6380 0.7825 0.8505 0.9297 1.0000



BART predictions compared to linear and Random Forests:

BART is much more like
linear.

Different everywhere,
but most different at small
returns.

fandom forests

Out of Sample Predictons: bar vs. andom forests
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Regress out-of-sample R on R each month

monthly regression coefficients, Rhat on R, bart10
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Compare bartl0 and linear, slopes and correlations, each month

Rhat on R, monthly, bart10 vs. linear correlations, monthly, bart10 vs. linear
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P> some predictability
» big picture, bartl0 like linear

But when is the nonlinear fit different?

Where are the dusty corners??? 15



3. Variable Selection

A key issue is

what are the important predictors 77

Tree based methods have a set tools for variable selection but we
think they are all flawed.

We will use Carvalho, Hahn, McCulloch:

Fitting the fit:
variable selection using surrogate models and decision analysis

16



Let X be the set of all x of interest, f(X) = {f(x),x € X }.

CHM assume that f is essentially the true function and then look
for an approximate function

vs(X) =~ £(X),

where vs(X) uses a subset S of the predictor variables.

17



Approximating the Fit with Functions Using a Subset of the
Variables:

Let |S| be the size of the set S (number of variables in our case).

Foreachj=1,2,...,p—1:

m|n|m|ze]|f( ) 75(Xf)||2,
S |S|_J

where (of course),
Iavai 2
1F(XT) = s(XDIP =" (F(x (x))*.
xeXf
For each j, we need a subset S of j variables and an approximating
function ~ys using only those variables.

Remember, we don't want to make assumptions about f and

hence ~s. 18



We can’t solve this so, as usual, we approximate our problem with
a computationally feasible strategy:

(1):

Use backwards and forwards selection to search for subsets.
As in the linear case, can do all subsets for moderate p.

(2):

Rather than run our nonparametric method (e.g. BART) using
subsets of the x variables to get vs(X"), fit a big tree to f(XT)
using subsets of the x variables.

(2) is the one simple useful idea in the work.

19



A big tree fit to the data is a terrible idea (unless you bag).
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A big tree fit to the fit is a great idea !!
Forwards selection on the fit is a great idea !!
and it is pretty fast 11!
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So, for example, the first step in forwards is to fit a big tree to
each data set:

(vy=F(XNH,x=x), j=1,2,....p

and then pick the x; that gives you the best fit.

Note:

You would not want to fit BART at each xjf, it is not engineered
to fit perfectly.

You would not want to fit an deep neural net at each xjf.

21



We use CHM two ways:

Let X be all x over all months and assets, let f be fA.

That is, use the overall average f and all the x's.

Do the variable selection for each month.

Xe = {xit}, f, = ftR for each month ¢t.

22



|. Results using 2

The value on the x-axis is the number of variables in S.

The value reported on the y-axis is:

0.9

R-squared = cor(fA(X), vs(X))?.

variable susbset search, forward and backward
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As we introduce variables, going left to right, our ability to reproduce the fit using all
the variables improves. After about 10 variables, there is no improvement. The results

from the forward and backward searches are very similar.
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forward variable selection
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Gu, Kelly, Xiu:

"The most successful predictors are

price trends, liquidity, and volatility."

24

We agree on those and add a few more.



Forward and Backward Variables

Here are the variables
listed in order. So ri_1
was first in with forwards
and last left with back-
wards.

From 10 variables on we
have the same results
from forward and back-
ward search.

[1,]

[2,]

[3,]

[4,]

[5,]

[6,]

7,1

[8,]

[9,1
[10,]
[11,]
[12,]
[13,]
[14,]
[15,]
[16,]
[17,]
[18,]
[19,]
[20,]
[21,]
[22,]
[23,]
[24,]
[25,]
[26,]
[27,1
[28,]
[29,]
[30,1]
[31,]
[32,]
[33,]

namesforward

nrq_qn

nr12_o"
"idiosyncraticvol"
"industrymom"
"an_assetgrowth"
"an_cbprofitability"
"an_booktomarket"
"seasonality"

et

"ln_turn"
"an_shareissuanceb"
"r60_13"

"r12_7"
"an_salestoprice"
"an_earningsprice"
"an_abnormalinvestment"
"an_inventorygrowth"
"ln_dvol"
"an_shareissuancel"
"an_operatingprofitability"
"an_accruals"
"an_chs_distress"
"an_invgrowthrate"
"an_grossprofitability"
"an_zscore"
"an_sustainablegrowth"
"marketbeta"
"an_leverage"
"ln_cvvol"

"an_oscore"
"ln_cvturn"
"an_taxtoincome"
"an_salesgrowth"

namesbackward

"ri_1"

"r12_2"
"idiosyncraticvol"
"industrymom"
"an_cbprofitability"
"an_booktomarket"
"seasonality"

"me"

"1n_turn"
"an_assetgrowth"
"an_shareissuance5"
"r60_13"

"r12_7"
"an_salestoprice"
"an_earningsprice"
"an_abnormalinvestment"
"an_inventorygrowth"
"ln_dvol"
"an_shareissuancel"
"an_operatingprofitability"
"an_accruals"
"an_chs_distress"
"an_invgrowthrate"
"an_grossprofitability"
"an_zscore"
"an_sustainablegrowth"
"marketbeta"
"an_leverage"
"1n_cvvol"

"an_oscore"
"ln_cvturn"
"an_taxtoincome"
"an_salesgrowth"

25



II. Rolled Variable Selection
Now we present results for the rolled variable selection.

For each month we seek a nonlinear function of a subset of the
variables the approximates the predictions for that month.

26



The value reported on the y-axis is R?:
corr(F(X), vs(X))2.

The x-axis is |S|, the number of variables used.

sEan NERRRRRERARRERRANRERD

+ median of monthly R-squared
« R-squared from overall fit

\. T T T T T T T T T T T T T T T T T T T T T T T T T T T T T 1

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 26 28 30 32
Black dots (the overall 1?) suggest that the correlations don't get close to 1, but |
tuned it to run fast.

Red is the median R? over all the months, blue is 50% of months, black is 90% of
months. 27



We'll use the rank of a variable to summarize its importance.

We are using a version of CHM that is like backwards greedy
search so rank 1 means the variable was the “last man standing”.

Rank 33 means the variable was the first to be thrown out.

28



Here are the monthly and overall rankings for each variable.
Again, blue is 50% of months, black is 90%.

Red dot is the median over months, and black triangle is from the
overall fit.

| had to shorten the variable names to fit them in.
Overall and monthly disagree on cash profitability and
book-to-market.

29



Here is the monthly time series of rankings for each variable.
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So, it is not completely clear where to draw the line. There is some disagreement on a
couple variables (e.g. book to market). However, everyone agrees about the top 13.
30



Bartl0 is:

> print(colnames (TrxI) [v110])

[1] "me" "r1_qn
[4] "industrymom" "seasonality"
[7] "an_booktomarket" "an_assetgrowth"

[10] "1ln_turn"

np1o_on
"idiosyncraticvol"
"an_cbprofitability"

31



Note:

Usually, with simple (X, y) data, it looks like this:

fit measure
093 094 095 096 097 098 0.99

[E—
/ forwards,
-l

subset

But in this problem we don't get up to .99.
The y=R is very funky, and bart10 did well out of sample.

32



Note:

In a regular BART fit to (X, y) we can assess the uncertainty using
the BART MCMC draws {f4} of the function.

At each subset size we have the posterior distribution of the
approximation error.

distance
3000

4000

2000

1000

5000

ro0t mean squared error
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4. Fit-the-Fit:
Where are the nonlinearities and interactions ??

In this section we will use abart10 which is R = fA using the 10
selected x variables and BART.

In order to understand the fit, we fit trees to the fit.

Could use the out of sample predictions.
Could roll the procedure, could ...

To understand the nonlinearities:
we try pulling out the linear fit from R and fit trees to the residuals.

To understand the interactions:
we try pulling out the GAM fit from R and fit trees to the residuals.

Note: returns multiplied by 100.
34



Fit a simple tree to fit = R

We have no idea what R means in terms of the role that the
explanatory variables play!!

We first fit a simple tree to the fit R.

Note: There are a lot of trees in R = fA:
(number of trees in each ensemble) x (number of posterior draws)
x (number of months) =

In [2]: 200%10000%629
Out [2]: 1258000000

35



Fit a simple tree to fit = R

simple tree to Rhat

r1_1>=0.56 ‘

r12_2<0.57 ivol >= 0.92 ‘
>=0.57 ‘ <0.92

ivol >= 0.9 ‘ r1i2_2<0.82 ‘ imom < 0.47 ‘ r1_1>=0.28
<0.9 >=0.82 >=0.47 <0.28

\ \ ‘
imom < 0.5 rl 1>=0.82 AaGr >=0.79 imom < 0.68 imom < 0.33 ‘
>=0.5 <0.82 <0.79 >= 0 68 >= 0.33
ivol >= 0.8 ri2_: 2<077
>= 0 77

Now we have some idea about the relationship between R and x!!
variables used: rl1_1, r12_2, ivol, imom, AaGr.
Of course, we may have oversimplified.

36



simple tee to Rhat

1 1>-056 ‘

<0.56
12, 2<057 wo\> 0.92

>—057 <092
WD\> 2 2<082 |mom<047 ‘ 1 1>‘_028 ‘
>=0.82 >=0.47 < 0.28
imom < 0.5 1. 1> 0.82 AaGr >: 079 ImOm(OSB \m0m<033
>=05 <0.82 <0.79 >=0.68 >:O.33
WD\> 0.8 r2_: 2<U77
L >=0.77
@d QD 3D 020 @1® @O @D 1D Q1D @4 o> @D L
To get a low return you need To get a high return you need
(going down the left part of the tree): (going down the right part of the tree):
> ri_1 big. > ri_1 small
> r12_2 small. > ri12_2 big.
> ivol big. > ivol not too big.
> imom small. » imom not too small.

But there are some tricky parts to the tree, nonlinearities,
interactions ....

37



P sort bottom nodes by mean fit.

» display the distribution of each x (row) at each mean fit for a
bottom node (column).

LT
e
1 o e
Ll LT
ICTTLET

38



Looking for Non-linearities: Fit-the-Fit, Linear residuals

Looking long and hard at the trees can give you a sense of the
relationship, but figuring out what is linear and not, is hard.

Our idea is that mostly the fit R is well approximated by a linear fit.

But, there are important “dusty” corners where there are
departures from linearity.

To find the dusty corners, we regress the fit R on x and then seek
to understand the residuals.

39



Figuring out the tree relating the fit to x can be hard.

(the coefficients for the linear fit of the fit).

Coefficients:
(Intercept) me ri 1 ri2_2 imom
-0.004287 -0.006047 -0.015658 0.008134 0.007388
btm AaGr AcbProf 1n_turn
0.007095 -0.003096 0.008067 0.006008

seas
0.005134

ivol
-0.007636

40



A

Get the linear and nonlinear parts of the fit = R

predicted values vs. linear part

x axis: fit = R.

y axis:
fit from linear regression of
R on x. o

linear part

We call the residuals
“the nonlinear part of the fit".

Note the asymmetry:
Linear misses the low
more than the high. 1

0
Rhat: predicted values

41



Simple tree fit to the nonlinear part of R

AaGr >:

ivol >= 0.93

I
rl_1<0.65 ivol < 0.

=0.81 r12_2

<081

In_tum >=0.88
<0.88

>=0.65

>=0.73

@ @ D aD @ @D @D @ i

<0.73 r12_2>=0.43

<0.93
2 |
>=0.24
r12_2 <0.95
<0.43 >=0.95
ivol >= 0.89
<0.89
I I
AaGr >=0.82 r12_: 2> 0.42
< O 82 <0.42
ivol <051 |vo|> 0.81 ‘

>-051

Now ivol is killer, and 1n_turn comes in.

Lilil

<0.81

<0.57

42



-1.
-1.
-0.

-0.
-0.

-0.
-0.

o

o oooo

Tree as rules:

Can be easier to understand the tree if we write it out as rules.

when
when
when
when
when
when
when
when
when
when
when
when
when
when
when

ivol
ivol
ivol
ivol
ivol
ivol
ivol

ivol i
ivol i

ivol
ivol

ivol i

ivol
ivol

ivol i

o

Ooooooooo

89
24
89
24
81
24
24
51

24

.24

o oocoooo

oo ooo

.93
.93
.93
.93
.93

.93
.51
.89

.81
.89
.93
.81
.93

Frrrrrerreeee

ri2_2
ri2_2
ri2_2
ri2_2
ri2_2
ri2_2
ri2_2
ri2_2
ri2_2
ri2_2
ri2_2
ri2_2

o

ocooooo

.73

95

95
42
42
43
42
42

42

S

R

5%

("
AAA

2
=
(N
v
i

o ooo

.57

.65
.57

& AaGr >
& AaGr
& AaGr
& AaGr >

& AaGr <

0.81

0.81 & 1n_turn >= 0.88

0.81 & 1n_turn <

0.82

0.82

0.88
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How dusty are the corners??

Here we include the number of observations (and percent) in each
bottom node.

simple tree to Nonlinear part of Rhat

T
ivol >=0.93

<0.93
1
T
rl_1<0.65 ivol < 0.24
‘ >=0.65 ‘ >=0.24
1
T T l T
AaGr >=0.81 ‘ r12_2<0.73 ri2_2>=0.43 ‘ ri2_2<0.95
<0.81 >=0.73 <0.43 >=0.95
In_turn >= 0.88 ivol >= 0.89
<0.88 <0.89

-3 - 57 053 013 022 0.0091
=123 19%)(=11e+3 190 )0=20e+3 206)\=25e+3 206 g=12e48 296l =166e+3 1494 0=107e43 9%,
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N

trees of various sizes fit to nonlinear part of R

Trees of size 15, 25, 40.

=]
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Looking for Interactions: Fit-the-Fit, GAM Residuals

We have found the parts of predictor space where the nonlinear fit
seems to be different from the linear fit.

But how are they different??
Something we often think about are interactions.
Do certain variables combine to produce an effect.

We will pull out a GAM fit and look at the resids to find the
interactions.

46



What is a GAM?

p
f(x1,x0,...,Xp) = Z fi(x;).

j=1
where we are very flexible in the fitting of each f;.

So we can be as nonlinear as we like in each variable, but there are
no interactions.

Pretty popular in applied statistics.

a7



Rhat: R using abart10.

RhLin: fits from regression of R on x.
RhNLin: residuals from regression of R on x.
RhGam: fits from GAM fit of R on x.

RhNGam: residuals from GAM fit of R on x.

> print (round(cor (dfM) ,digits=3))
Rhat RhLin RhNLin RhGam RhNGam

Rhat 1.000 0.857 0.516 0.933 0.525
RhLin 0.857 1.000 0.000 0.912 0.184
RhNLin 0.516 0.000 1.000 0.294 0.714
RhGam 0.933 0.912 0.294 1.000 0.185
RhNGam 0.525 0.184 0.714 0.185 1.000

48



GAM fit of R

Much better fit
than linear.

Still asymmetric,
but not as much.

RhGam

predicted values vs. gam part

Rhat

49



Tree with 15 bottom nodes: fit the resids from GAM fit to R.

f
11.1>=0.14
<0.14

In_turn < 0.82 ‘ In_turn >= 0.88
<0.88
rl 1>=0.86 rl 1<051 r11 =0.04

<0.86 >_051 <0.04
In lum<055 rl_1>=0.52 ivol >= 089 12 2 <045 ivol >= 057
>=0.56 <0.52 <0.89 >= 045 <0.67
ivol >= 0.7 |VOI<08A
>=0.84
112 2> 0.56
<0.56

> 1n turn and ivol are huge.

P interesting tree, look where -.43 and .49 are!
they both have 1n_turn > .82 and big ivol !!

50



ril_1, ivol, 1n_turn, and r12_2 are wild !!!
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Rules for tree with 15 bottom
fit the resids from GAM fit to

172

495

when
when
when
when
when
when
when
when
when
when
when
when
when
when
when

ri 1i

ri 1
ri_ 1
ri_ 1
ri_1
ri_1

ri 11
ri 1 i
ri_1 i

ri_1

ri_1 i
ri_1 i

ri 1
ri 1
ri 1

.14
.14

14

14
52
04
14

14

.04

.04

o

o

OO0 O0OO0OO0O0O0O0OO0O0Oo

PRI

1n_turn
1n_turn
In_turn
1n_turn
1n_turn
1n_turn
1n_turn
1n_turn
1n_turn
1n_turn
1n_turn
1n_turn
1n_turn
1n_turn
1n_turn

nodes:

R from abart10.

.56
.56
.82
.88
.82

.82
.88

.88

.82
.88

.82
.82

.82

.82

.82

e &

&

ivol

ivol

ivol

ivol
ivol
ivol
ivol

ivol

ivol

AAA

.89

.70

.89

.67
.70

.70
.67
.84

.84

&

ri2_2
ri2_2
ri2_2
ri2_2

ri2_2
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Rules for tree with 25 bottom
fit the resids from GAM fit to

RhNGam

-0
-0
-0

-0.
276
.238

-0
-0

-0.
-0.
.095
.072
.070
.068
.047
.015
.014
.016

-0
-0
-0
-0
-0
-0
-0

0

coocoococooo

.845
.621
.424

305

193
192

089
172
173
247
264
266
285
380
684

when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when

is
is

cooo

coooo

.14

14

.14

14
14

14
14
14

04
14

14
04

.04

to
to
to
to

to
to
to
to
to

oo

COOOPPOOOPODOO OO O

& n_turn
.51 & ln_turn

& ln_turn
86 & ln_turn

& ln_turn

& 1n_turn
86 & ln_turn
51 & ln_turn
52 & ln_turn
51 & ln_turn
86 & ln_turn
86 & ln_turn
51 & ln_turn
14 & n_turn
52 & ln_turn
86 & ln_turn
52 & ln_turn
14 & 1n_turn
51 & ln_turn
51 & ln_turn
79 & ln_turn
86 & ln_turn

& ln_turn
.79 & ln_turn
.79 & ln_turn

coo

o

o

cooo

cooo

nodes:
R from abart10.

.88

88

88

82
82

.82

82

.82

.82

82

82
82

82
.82

e e e

[N

e

X3

ivol
ivol
ivol

ivol
ivol
ivol
ivol
ivol

ivol
ivol

ivol
ivol

ivol
ivol
ivol

ivol
ivol

>=
>=

>=
>=

[o¥-)

oo

[o¥-3

coo

.84

81

.81

.81

3

89

89

e

67

.70 &

ri2 2

r12_ 2
ri2 2

riz 2
riz 2
ri2 2
ri2 2
ri2 2
ri2 2

r12_ 2
ri2 2

>=

o

o

cooo

.48

& AaGr >= 0.
& AaGr >= 0.
& AaGr < 0.

& AaGr < 0.

& AaGr >= 0.

& AaGr < 0.

66
63
66

63

63

63

& imom < 0.5

& imom < 0.5

& imom <
& imom >=

oo
LRt}

& imom < 0.5
& imom >= 0.5
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How dusty are the corners ?7!!

Each bottom node indicates the number of observations.
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Rules 40 bottom nodes:

RhNGam

-1.0389 when r1 1< 0.14 & ln_turn >= 0.81 & AaGr >= 0.66 & imom < 0.50 & AcbProf < 0.59
-0.6206 when r1_1 is 0.14 to 0.51 & ln_turn >= 0.89 & AaGr >= 0.63

-0.5655 when r1 1< 0.14 & In_turn >= 0.81 & AaGr >= 0.66 & imom < 0.50 & AcbProf >= 0.59
-0.4530 when rl 1 is 0.14 to 0.52 & ln_turn < 0.82 0.86 & AaGr >= 0.59 & imom < 0.65

-0.4235 when r1_1 < 0.14 & In_turn >= 0.81 & AaGr < 0.66 & imom < 0.50

-0.3966 when r1 1 >= 0.92 & ln_turn < 0.56

-0.2760 when r1 1< 0.14 & In_turn >= 0.88 & ivol < 0.81 & imom < 0.50

-0.2415 when r1_1 is 0.04 to 0.14 & ln_turn < 0.88 & ivol >= 0.67 & AaGr >= 0.50 & AcbProf < 0.36
-0.2376 when r1 1< 0.14 & In_turn >= 0.88 & imom >= .50

-0.2273 when rl 1 is 0.86 to 0.92 & ln_turn < 0.56

-0.1930 when r1_1 >= ©.86 & Ln_turn is 0.56 to 6.82 &r12.2< 0.48

-6.1918 when r11 is 0.14 to 0.51 & ln_turn >= 0.82 & ivol >= 0.89 & AaGr < 0.63

-0.1868 when rl 1 >= 0.51 & ln_turn >= 0.82 &r122< 0.45 & AaGr >= 0.63 & AcbProf < 0.45
-0.1462 when r1_1 is 0.14 to 0.52 & ln_turn < 0.82 & ivol >= 0.86 & AaGr < 0.59 & imom < 0.65

-0.1228 when r11 is 0.73 to 0.86 & ln_turn < 0.48

-6.0766 when rl 1 is 0.14 to 0.52 & ln_turn < 0.82 & ivol is 0.70 to 0.86 & imom < 0.65

-0.0719 when r1_1 is 0.14 to 0.51 & ln_turn >= 0.82 & ivol < 0.89

-0.0683 when r1 1 >= 0.86 & Ln_turn is 0.56 to 0.82 & ivol < 0.84 &r12.2 >= 0.48

-0.0447 when rl 1 is 0.52 to 0.73 & ln_turn < 0.48

-0.0403 when r1_1 is 0.14 to 0.52 & ln_turn < 0.82 & ivol < 0.70 &r12.2 >= 0.56 & AaGr < 0.66

-6.0228 when r1 1 is 0.52 to 0.86 & ln_turn is 0.48 to 0.82 &ri22< 0.35 &me < 0.41
-0.0157 when rl 1 is 0.52 to 0.86 & ln_turn is 0.48 to 0.82 & me >= 0.41
-6.0100 when r1_1 is 0.04 to 0.14 & ln_turn < 0.88 & 0.67 & AaGr >= 0.50 & AcbProf >= 0.36
0.0089 when rl 1 is 0.14 to 0.52 & ln_turn < 0.82 & 0.70 & imom >= .65

0.0618 when rl 1 is 0.14 to 0.52 & ln_turn < 0.82 & & 122 >= 0.56 & AaGr >= 0.66

0.0637 when r1_1 >= 0.51 & n_turn >= 0.82 &r122< 0.45 & AaGr >= 0.63 & AcbProf >= .45
0.0719 when rl1 1 is 0.14 to 0.52 & ln_turn < 0.82 & ivol < 0.70 & r12.2 is .16 to 0.56

0.1049 when rl 1 is 0.04 to 0.14 & ln_turn < 0.88 & ivol >= 0.67 & AaGr < 0.50

0.1336 when r1_1 is 0.04 to 0.14 & ln_turn < 0.88 & ivol < 0.67 &r12.2 >= 0.27

0.1378 when rl1 1 is 0.52 to 0.86 & ln_turn is 0.48 to 0.82 & 1122 >= 0.35 &me < 0.41
0.1610 when rl 1 < 0.04 & n_turn is .66 to 0.88

0.1733 when r1_1 >= 0.51 & n_turn >= 0.82 &r12.2 < 0.45 & AaGr < 0.63

0.1734 when rl1 1 is 0.14 to 0.52 & ln_turn < 0.82 & &r122< 0.16

0.2472 when r1 1 >= 0.51 & ln_turn >= 0.82 & & 122 >= 0.45

0.2641 when r1_1 is 0.51 to 0.79 & ln_turn >= 0.82 & 0.84 & r12.2 >= 0.45

0.2659 when r1 1 >= 0.86 & Ln_turn is 0.56 to 0.82 & 0.84 & r12 2 >= 0.48

0.2889 when rl 1 is 0.04 to 0.14 & ln_turn < 0.88 & &ri22< 0.27

0.3802 when r1_1 >= ©.79 & n_turn >= 6.82 & ivol >= 0.84 & r12.2 >= 0.45 & imom < 0.50

0.3882 when r1 1< 0.04 & ln_turn < 0.66

0.6840 when rl 1 >= 0.79 & ln_turn >= 0.82 & ivol >= 0.84 & r12. 2 >= 0.45 & imom >= .50
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Use rpart Variable Importance

» for the fit R, resids from linear, and resids from GAM.
> fit a tree of size 1,000 using rpart.
> use the variable importance from rpart.
» divide each importance by the max (over variables) so
numbers are in (0,1].
3 F N N
G
@ |
[ ° F explain Fit
o N explain nonlinear
g © | G G explain interactions
s O
£ G
2 < | F
.§ o N ﬁ G s
N N N ¢ N
o
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me ri_1 r12_2 imom seas ivol btm AaGr  AcbProf In_turn

variable



CHM variable selection

top:
resids from linear.

bot:
resids from GAM.

R-squared

R-squared

09

08

08

04

lin-resids, forward var sel

ivol

g o S g o H £
g = o 2 g ] =
= €
gam-esics, onvardvar sel
] H N g § 2 £
o 2 g 2 £ ]
< g
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5. How often they are in the same tree?

The BART model is like boosting in that the function is
represented as a sum of binary trees.

To get an interaction between two variables, you need them in the
same tree.

Unlike boosting, BART gives you the full Bayesian posterior of the
tree ensemble.

We sort pairs of variables by how often they are in the same tree.
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[1,1
[2,]
[3,]
[4,]
[s5,]
[s,]
7,1
[8,]
[9,1]
[10,]
[11,]
[12,]
[13,]
[14,]

[42,]
[43,]
[44,]
[45,]

[,11
"idiosyncraticvol"
"idiosyncraticvol"
"idiosyncraticvol"
"idiosyncraticvol"
"an_assetgrowth"
"an_booktomarket"
"ln_turn"
"industrymom"
"r12_2"
"an_cbprofitability"
"idiosyncraticvol"
"ln_turn"
"seasonality"
"ln_turn"

"an_assetgrowth"
"an_assetgrowth"
"an_cbprofitability"
"an_cbprofitability"

[,2]

"industrymom"
"ri_1"

"ri12_2"
"seasonality"
"idiosyncraticvol"
"idiosyncraticvol"
"idiosyncraticvol"
"r12_2"

"ri_1"
"idiosyncraticvol"
"me"

nr1g_gn

nrq2_on
"industrymom"

"me"
"an_booktomarket"
et
"an_assetgrowth"

This says ivol is killer.
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6. Sliced Inverse Regression

We use A computed at all n =1,153,117 x vectors.

We split the data into 200 groups using the quantiles of the
{fA(x)} values. That is, group 1 contains the stocks with the
lowest predicted returns; group 200 contains those with the highest
predicted returns.

Within each group we look at the distribution of the predictor
variables, in particular we compute the median of each x.

We graphically display how the predictor variables vary over the
quantiles of E(R) ~ fA.
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We use this “inverse-regression” methodology to ask what kind of
x do we get given R.

Note that these are not “conditional plots” that report the change
in expected R due to a change in one variable with the others help
fixed. All the variables move jointly given changes in E(R).
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Just me:

SIR: boxplots from BART fit, colored points are medians for BART and linear

2. sart
+ linear
0049 -0043 -0037 -0031 -0024 -0018 -0012 -0005 0 0003 0009 0014 002 0025 003 0034 004
SIR: boxplots from linear fit, colored points are medians for BART and linear
2. sart
+ linear

0049 -0043 -0.037 -0031 -0.024 -0018 -0012 -0.005

00003 0009 0014 002 0025 003 0034 004
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Top 5 variables:
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Next 5 variables:
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7. Notes on the Data

Start with 3,018,077 observations.
33 “X" variables.

Months:
196306 - 201512.

> print(dim(anond))

dg " f
Throw out “tiny” firms, (1] so18077 37
. > print (names (anomd) )
throw out missing on [ "yyyymm" "permno"
. [3] "size_cat" "retnm"
y=return: [5] "me" ng1 1o
[7] "r12_2" "r12_7"
| . [9] "industrymom" "r60_13"
€aves: [11] "seasonality" "marketbeta"
_ [13] "idiosyncraticvol" "an_booktomarket"
n = 1v1931625 [15] "an_accruals" "an_assetgrowth"
[17] "an_abnormalinvestment" "an_grossprofitability"
630 months' [19] "an_operatingprofitability" "an_cbprofitability"
[21] "an_earningsprice" "an_salestoprice"
[23] "an_inventorygrowth" "an_leverage"
[25] "an_oscore" "an_zscore"
ThreW OUt 199509' [27] "an_chs_distress" "an_salesgrowth"
ect [29] "an_shareissuancel" "an_shareissuance5"
too many mISSIng Val_ [31] "an_sustainablegrowth" "an_taxtoincome"
ues: [33] "an_invgrowthrate" "1ln_dvol"
: [35] "1ln_cvvol" "ln_turn"
" "
629 months [37] "ln_cvturn
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Number of firms in each month:
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For each month:

» demean the returns (subtract off the average)

» transform each x using the empirical CDF,
= each x value € [0,1].
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Missing Values:

average of % missing over 630 months, by variable

an_salesgrouth

[eyP—
- an_invgrovahrate.

w013

vl inowum
9 ot
i an_assetgrowtn  A0_COPIOMBIY a0 iericryorowt
i assel imerione an_sustanatiegrowth
IS}
an sharessuancel
an_ohs dtress

an_booktomarket -

average monthly % missing

= o Y ————
o

0 n_dvol
o P seasonalty ol in_trn
1220127

1 dosyncratcvol

=3
S 4 ndusiymom
(S

0 5 10 15 20 25 30
Index

Imputed missing values using linear regression.



8. Concluding Remarks

We have focused on a simple Machine Learning approach to get a
feeling for the nonlinear relationship between excess returns and
predictors.

In a “fairly” simple way we can see things like ivol and 1n_turn
are hugely nonlinear, particular in the dusty corners.

There is not going to be an easy way to do this!!!
That is why some folks cling to linear.

Could be kidding myself since | may not want trust by fit in the
dusty corners!!

Should do nonlinear investigation with more that 10!!
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a quote from Gu, Kelly, Xiu:

"The most successful predictors are
price trends, liquidity, and volatility."

So, big picture we agree with Gu et. al. but add a few more.

Nice confirmation since much of what we done is different and we
have much more of a feeling for what kinds or roles the key
variables play.
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Much more to do:
Will have to try rolling monotone BART, DPMBART, and nnets.
Maybe the basic tree approaches overreact to all the outliers.

Can we assess the uncertainty? DPMBART?
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