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1. Discrete Random Variables

Probability and statistics let us talk about things we are unsure
about.

» How much will Amazon sell next quarter?

» What will the return of my retirement portfolio be next year?
» How often will users click on a particular Facebook ad?
>

If | give a patient a certain drug, how long are they likely to
live?
» Will the Leafs win the Stanley Cup any time soon?

All of these involve inferring or predicting unknown quantities!!



Random Variables are numbers that we are NOT sure about but we
might have some idea of how to describe its potential outcomes.

Example:

Suppose we are about to toss two coins.
Let X denote the number of heads.

We say that X, is the random variable that stands for the number
we are not sure about.



» We describe the behavior of random variables with a
Probability Distribution

» Example: If X is the random variable denoting the number of
heads in two coin tosses, we can describe its behavior through
the following probability distribution:

P(X = x)
.25
5
.25

N = O X

x: a possible outcome
P(X = x): the probability X turns out to be x.



In general
A random variable is a number we're not sure about.

Its distribution describes what we think it might turn out to be.

For a discrete random variable, we specify the distribution by:

» Listing all the possible numbers it can turn out to be.
P Assigning a probability to each possible outcome.

» Each probability is between 0 and 1.

» The probabilities add up to 1.

Note: “discrete” refers to the situation where can make the list
(we have a countable set of possible outcomes).

Later we will look at continuous random variable where such a list
is not practical.



The Bernoulli Distribution

A very common situation is that we are wondering whether
something will happen or not.

Heads or tails, respond or don't respond, .....

It turns out to be very convenient to code up one possibility as a 0,
and the other possibility as a 1.

The gives us the Bernoulli distribution.

X ~ Bernoulli(p) means:

x P(X=x)
0 1-p
1 P



Example:

| am about to toss a single coin.

X is the random variable which is 1 if the coin turns out to be
heads and 0, if it is tails.

X ~ Bernoulli(.5)



Example:
Wall Street Journal, June 23, 2022.
Fed Chair Jerome Powell Says Higher Interest Rates Could Cause a
Recession, by Nick Timiraos
Economists surveyed by the Wall Street Journal last week

saw a 44% likelihood of a U.S recesssion in the next 12
months..

R is 1 if recession in the next 12 months, 0 otherwise.

R ~ Bernoulli(.44)

Powell: “You should know that no one is very good at forecasting
recessions very far out.”



Example:

L is the random variable which is 1 if the Leafs win the Stanley
Cup and 0, if not.

it's a nightmare ...



Probability gets used in all kinds of ways.

Two key ways it is used are:
» We build models probabilistically.

» We measure our uncertainy given the information in the data
and our model.

For example, in our fundamental regression model will have a
random “error term” representing the part of y we cannot predict
from the information in x.

We will use confidence intervals to probabilistically assess our
uncertainty about key model parameters given the information in
the data.



2. Conditional, Joint and Marginal Distributions

In general we want to use probability to address problems involving
more than one variable at the time.

Let's suppose you are thinking about your sales next quarter.

Let S denote your sales (in thousands of units sold).

S is a number you are not sure about !!

In thinking about what S, you find you are thinking about what
will happen next quarter for the overall economy.

We need to think about two things we are uncertain about, the
economy and sales!

10



Let E denote the performance of the economy next quarter.

Let E =1 if the economy is expanding and E = 0 if the economy
is contracting (what kind of random variable is this?).

Let's assume P(E =1) =0.7.
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Let S denote my sales next quarter... and let's suppose we have
the following probability statements:

s P(S=slE=1)|s P(S=slE=0)
1 0.05 1 0.20
2 0.20 2 0.30
3 0.50 3 0.30
4 0.25 4 0.20

These are called Conditional Distributions, they describe our beliefs
about S conditional on knowing what happens for E.
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s P(S=slE=1)|s P(S=slE=0)
1 0.05 1 0.20
2 0.20 2 0.30
3 0.50 3 0.30
4 0.25 4 0.20

» In blue is the conditional distribution of S given E =1
» In red is the conditional distribution of S given E = 0

» We read: the probability of Sales of 4 (S = 4) given(or
conditional on) the economy is growing (E =1) is 0.25

Our probability model for (E,S) captures the relationship between
E and S through the difference in the two conditional distributions.
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The conditional distributions tell us about about what can happen
to S for a given value of E... but what about S and E jointly?

P(S=4 and E=1) = P(E=1)xP(S=4]E=1)
— 0.70 X 0.25 = 0.175

In english, 70% of the times the economy grows and 1/4 of those
times sales equals 4... 25% of 70% is 17.5%
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here is a display
of the whole
process:

4  p(S=4and E=1) =.7*.25 = .175

3  p(s=3and E=1)=.7%5=.35
2 p(S=2andE=1)=.7-2=.14

1 p(S=1 and E=1) = .7*.05 = .035

S=4 p(S=4 and E=0) = .3*.2 =.06

E=0
(down)

S=3 p(S=3 and E=0) = .3*.3 =.09

There
are 8 possible
outcomes for (S,E)

S=2 p(S=2 and E=0) =.3*.3 =.09

S=1 p(S=1 and E=0) = .3*.2 = .06
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We can specify the distribution of the pair of random variables
(S, E) by listing all possible pairs and the corresponding probability.

(s,e) p(S=s,E=c¢e)
(1,1) .035
(2,1) 14
(3,1) .35
(4,1) 175
(1,0) .06
(2,0) .09
(3,0) .09
(4,0) .06

Question: What is P(S =1) ?
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We call the probabilities of E and S together the joint distribution
of E and S.
In general the notation is...
» P(Y =y, X = x) is the joint probability of the random
variable Y equal y AND the random variable X equal x.

» P(Y = y|X = x) is the conditional probability of the random
variable Y takes the value y GIVEN that X equals x.

» P(Y =y) and P(X = x) are the of
Y=yand X =x
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Warning:
The notation can get tricky.

Sometimes rather than writing
PX=x,Y=y)

someone might write just,

p(x,y)

for the same thing!!

Usually, but not always, capitals are used for random variables and
small case is used for possible values.
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Marginals from Joint

Or,

Example

> temp = c(.035,.14,.35,.175)
> sum(temp)
[1] 0.7
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Conditional, Joint and Marginal Distributions and

Two-way Tables
Why we call marginals marginals... the table represents the joint
and at the margins, we get the marginals.

S
1 2 3 4

0 .06 .09 .09 .06 |3

E
1 035 .14 .35 .175/| -7

095 23 44 235| 1
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Conditionals from Joints

We derived the joint distribution of (E, S) from the marginal for E
and the conditional S | E.

You can also calculate the conditional from the joint by doing it
the other way

P(Y=y,X=x)=P(X=x)P(Y=y|X=x)

P(Y =y, X =x)
P(X = x)

P(Y=y|X=x)=
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Example... Given E = 1 what is the probability of S = 47

0 .06 .09 .09 .06 |-3

11035 14 .35 @ 7

095 23 44 235| 1

P(S=4E=1 1
(S =4, ):O 7520'25

P(S=4]E=1)=
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Example... Given S = 4 what is the probability of E = 17

S
1 2 3 4
0 .06 .09 .09 .06 || -3
E
1 .035 .14 .35 @ 7
095 23 44 235| 1
P(E:1|S:4):P(5:4,E:1)_0.175

P(S =4)

©0.235

= 0.745
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What is the conditional distribution of S| E = 17

We just compute P(S = s|E = 1) for each s = 1,2, 3, 4.

s P(S=s|E=1)
1 .035/.7
2 14/.7
3 .35/.7
4 175/.7
> pv = ¢(.035,.14,.35,.175)
> pv = pv/sum(pv)
> pv

[1] 0.05 0.20 0.50 0.25

P(S=s|E=e)x P(S=s,E=c¢)
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In general, for X and Y
Given X = x,

P(lY=y|X=x)xP(X=x,Y =y).

where we think of x as fixed and y as varying over all possible
values.
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Independence

Two random variables X and Y are independent if
P(Y =ylX =x)=P(Y =)
for all possible x and y.

In other words,

knowing X tells you nothing about Y'!

e.g.,tossing a coin 2 times... what is the probability of getting H in
the second toss given we saw a T in the first one?
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Example:

You are about to toss two coins.

Let X7 be 1 if the first coin is a head and 0 if tails.
Let X> be 1 if the second coin is a head and 0 if tails.

X1 ~ Bernoulli(.5), Xo ~ Bernoulli(.5)
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What is the probability of getting two heads in a row?

PXi=1,X=1) = PXi=1)PX,=1|X =1)
= P(X =1)P(Xp =1)
= (.5) x (.5)
= 25

28



1D

Our two coins X; and X both have the same distribution and they

are independent.

We say they are |ID:
P |: independent

» ID: identically distributed

This terminology gets used a lot in statistics.
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Example:
We say the two coins are |ID Bernoulli with p = .5.
Suppose | am about to toss two dice.

Y1 is the number on the face of the first die.
Y5 is the number on the face of the second die.

Are Y1, Y, 1ID?

Are Y7y, Yo IID Bernoulli?
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Note:

If X and Y are independent then,

P(X=x,Y=y) = P(X=x)P(Y=y|lX=x)
= P(Y=y)P(X=x]Y =)
— PX=x)P(Y =)

The joint is the product of the marginals.
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Bayes Theorem

Disease Testing Example
You are about to be tested for a disease.

Let D = 1 indicate you have a disease
Let T =1 indicate that you test positive for it

9514 D
T=0
0 .9702=.98*99 .001

01 1o T
o DZOQ 1 .0098 019
T=0

If you take the test and the result is positive, you are really

interested in the question: Given that you tested positive, what is
the chance you have the disease?
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0 1
0 .9702 001
1 |.0098

PD=1T=1)= 20 ____ g6

(0.019 + 0.0098)
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Note:

In this example the sensitivity is .95.

The probability of a true postitive.

In this example the specificity is .99.

The probability of a true negative.
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Bayes Theorem:

In the disease testing problem we formulated our understanding of
the variables T and D using

p(t,d) = p(d)p(t|d).

Then we use probability theory to compute the quantity we really
want which is

p(d | t).

This process of getting the probability “the other way” from how
the modeling describes things is called Bayes Theorem.
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We can develop a more formal statement of Bayes Theorem by
writing things out using our basic properties of probability.

Suppose we have p(y) and p(x | y).
Py x) Py x) p(y)p(xly)

WMZMﬂzzﬂmngwﬂWM

For binary y (y is 0 or 1, as in our Disease testing problem), we
have:

o p(Y =1)p(x|Y =1)
p(Y = 1|X) - p(y:())p(x|y :0)+P(Y: 1)p(X|Y = 1)
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p(Y = 1)p(x|Y = 1)

PLY =1 = S =0 p(x|Y = 0) + p(Y = 1) p(x]¥ = 1)

In the disease testing example Y is D and X is T:

T 1y T=1|D=1)p(D=1
p(D = 1T = 1) = Sr=rm=tis(Do) 0 T B=0js(D=0)

— — — .95%.02 _ 0.019 —_
p(D - 1| T = 1) T .95%.024+.01%.98 — (0.01940.0098) 0.66
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4. More Than Two Random Variables

Of course, we may want to think about more than two uncertain
quantities at a time!!

Our ideas extend nicely to any number of variables.

For example with three random variables Xj, X5, and X3 we might
want to think about:

P(X1 = x1, X2 = x2, X3 = x3)

The probability that Xj turns out to be x; and X; turns out to be
xp and X3 turns out to be x3.
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We can immediately extend our basic inutitive ideas:

P(X1 = x1,Xo = x2, X3 = x3) =
P(X1i=x1)P(Xa=x | X1 =x1) P(X3 = x3 | X1 = x1, X2 = x2).
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Example:

Suppose we have 10 voters.
4 are republican and 6 are democratic.

We “randomly” choose 3.

Let Y; be 1 if the ith voter is a democrat and 0 otherwise,
i=1,23.

What is

P(Yi=1,Ya=1,Ys=1)

What is the probability of getting three democrats in a row 77
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P(Yi=1,Y,=1Ys=1)=
P(le]-)p(Y2:1‘ Y1:1)P(Y3:1 | Y1:1,Y2:1)
= (6/10)(5/9)(4/8)

= (1/6) = .167.
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When we randomly pick a person from a population of people, and
then randomly pick a second from the ones left, and so on, we call
it sampling without replacement.

If we put the person back each time and randomly choose from the
whole group each time, then we call it sampling with replacement.
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Random Sampling in R

>x =1:10
> x
[1] 1 2 3 4 5 6 7 8 910
>
> set.seed(99)
> sample(x,5)
[11 16953
> sample(x,5)
[1] 10 2 8 6 5
>

> set.seed(99)

> sample(x,5)

[11 16953

>

> sample(1:10000,20)

[1] 2922 7102 3200 358 8973 9188 7071 6724 6409 5278 4694 5972 1533 6560 398
[16] 4228 78 7 4818 6343
>
> set.seed(34)
> sample(1:10,5,replace=TRUE)
[1] 1 910 2 8
> sample(1:10,5,replace=TRUE)
[11 66433
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Example:

Suppose we are tossing 100 coins.
Let X; be 1 if the it" coin is a head and 0 otherwise.

What is the probability of 100 heads in a row?

PXi=1,X=1,..., X100 =1) =

P(Xl:l)P(X2:1‘X1:1)P()(I:]_‘X1:17X2:177)(171:1)
o P(Xio=1]X1=1,..., X9 =1)

= 5100 — 7.888609e — 31.

The 100 X; are IID Bernoulli, with p = .5.
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Question:
Suppose | get 100 heads in a row.

What is the probability the next one is a head?
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Example:

Suppose | toss 100 dice.

Let Y; be number on the ith die.
Are the Y; IID?

Are the Y; IID Bernoulli?
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Probability and Decisions

Suppose you are presented with an investment opportunity in the
development of a drug... probabilities are a vehicle to help us build
scenarios and make decisions.

You make a 1 million invest-
ment to develop the drug.

If “no cure” (drug does not
work) you get 250,000 back
you don't spend.

If you do find a cure you have
to worry about whether it is ap-
proved and whether a competi-
tor beats you out.
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We basically have a new random variable, i.e, our revenue, with

the following probabilities...

Note:
3*%6*%9 =0.162

Revenue P(Revenue)
$250,000 0.7
$0 0.138
$25,000,000 0.162

The expected revenue is then $4,225,000...

So, should we invest or not?
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What if you could choose this investment instead?

Revenue | P(Revenue)
$3,721,428 0.7
$0 0.138
$10,000,000 0.162

The expected revenue is still $4,225,000...

What is the difference?
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Here is a plot of the two distributions for the two drug discovery
scenarios.

~
S = - — First scenario
— Second scenario
© |
S
o
5 S
£
g =
S o
g
o |
S
|
S
b .
T T T T T T
0.0e+00 5.0e+06 1.0e+07 1.5e+07 2.0e+07 25e+07

Revenue



Target Marketing

It costs you 80 cents to send out a promotion.
If the customer responds, you get a profit of 40 dollars.

Should we send the promotion 777

Well, it depends on how likely it is that the customer will respond!!
If they respond, you get 40-0.8=%$39.20.

If they do not respond, you lose $0.80.

Let's assume your “predictive analytics” team has studied the
conditional probability of customer responses given customer

characteristics... (say, previous purchase behavior, demographics,
etc)
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Suppose that for a particular customer, the probability of a
response is 0.05.

Profit | P(Profit)
$-0.8 0.95
$39.20 0.05

Should you do the promotion?
.95%(-.8) + .05*39.20 = 1.2.

How low can the probability of a response be so that it is still a
good idea to send out the promotion?



6. Mean and Variance of a Random Variable

The Mean or Expected Value is defined as (for a discrete X):
E(X) =) P(x)x xi
i=1

We weight each possible value by how likely they are... this
provides us with a measure of centrality of the distribution... a
“good" prediction for X!
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Suppose X ~ Bernoulli(p),

X 1 with prob. p
| 0 withprob. 1—p

E(XX) = > P(x)xx
i=1

= 0_><(1—p)+1><p
E(X) = p
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The Variance is defined as (for a discrete X):

n

Var(X) = Z P(xi) x [x; — E(X)]2

i=1
Weighted average of squared prediction errors... This is a measure

of spread of a distribution. More risky distributions have larger
variance.
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Suppose

X 1 with prob. p
1 0 withprob. 1—p

n

Var(X) = Z P(x;) x [xi — E(X)]2
i=1

0 pPx(-p) (- xp
p(1—p) x[(1—p)+p]
Var(X) = p(1-p)

Question: For which value of p is the variance the largest?
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The Standard Deviation

» What are the units of E(X)? What are the units of Var(X)

» A more intuitive way to understand the spread of a
distribution is to look at the standard deviation:

sd(X) = +/ Var(X)

» What are the units of sd(X)?

7
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Mean and Variance for Drug Development Example

Previously we computed the expected value for the drug
development examples.

Let's review those calculations and compute the variances as well.
> pv = ¢(.7,.138,.162)

>
> d1 = c(250000,0,25000000)
> d2 = c(3721428,0, 10000000)
>
> cat("E1:",sum(pv*dl),"\n")
Same mean E1: 4225000
! > cat("E2:",sum(pv*d2),"\n")
E2: 4225000
>
Different > M = sum(pv*d1)
>
standard deviations!! > Vi = sun(pvk(di-#)-2)
> v2 = sum(pv*(d2-M)"2)
> sl = sqrt(vl)
> 52 = sqrt(v2)
>
> cat("s1,s2: ",s1,", ",s2,"\n")

sl,s2: 9134721 , 2836141
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Example:

https://www.vegasinsider.com /nhl/odds/futures/,
June 17th, 2022.

NHL FUTURES

2022 NHL STANLEY CUP 0DDS

0DDS TO WIN 2022 NHL STANLEY CUP FINAL

NHL STANLEY CUP 0DDS

e G, . g
1.z [ 2
il P12 S B z
a |32 £8 & 2

@ colorado Avalanche 2 275 | <270 270

@ Tampa Bay Lightning 4228 4225 | 4230 +230

What do these “odds” mean.

59



https://www.thelines.com/betting/moneyline/

San Francisco 49ers (-380) at Detroit Lions (4290)

» Lions are the underdog, 49ers are favored to win.

> A $100 wager at +290 would pay $290 in profit if the Lions
had won the game.

» In this example, the moneyline on the favored 49ers was -380.
A bettor would need to wager $380 to win $100.
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How do we figure out the implied probability from a moneyline?
Substitute the absolute value of the American odds
for "x" into these equationms:

Negative odds: x/(x+100)
Positive odds: 100/ (x+100)

Then, multiply the result by 100.

In the above example, San Francisco has a 79.16), to beat Detroit
while the Lions have a 25.64), chance of pulling the upset.

> 380/(380+100)
[1] 0.7916667
> 100/(290+100)
[1] 0.2564103
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https://www.thelines.com /betting/moneyline/

"Hang on," you may be saying to yourself.
"Those percentages add up to more than 100."

Good eye. That brings us to:
How does the sportsbook earn money booking moneyline bets?

Notice the "gap" between the two numbers in San Francisco vs.

For example, San Francisco is -380 while Detroit is +290,
instead of Detroit being +380.

That difference in the numbers represents the vigorish,
commonly called the vig or the "juice"

{ what the bookmaker charges for accepting your action.

An easy way to see this is to imagine betting both sides.
If you put $380 on San Francisco and $100 on Detroit,

you would get back your original $480 no matter which team
won if Detroit was +380 instead of +290.

Detroit.
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back to hockey ....

Tampa was +230.
So they are the underdog.

What is the probability (approximately)??

> 100/(230+100)
[1] 0.3030303
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how would you get those formulas 777.

A bet is often called a fair bet if the expected value of winnings is
0.

Suppose we have an underdog.
With probability p the underdog wins so you win x if you bet on

them.
With probability (1 — p) you “win” (-100).

Solve for expected value of winnings equals 0.

px + (1 — p)(—100) = 0

p(x + 100) = 100

_ 100
P = 33100

Of course, your probability that the underdog wins may be much

higher and that is why you bet might bet on them !! 64



x = seq(from=100,t0=1000, length.out=500)
Prob = 100/ (x+100)
plot(x,Prob,type="1",col="blue’,ylim=c(0,.5))

0.3 0.4 0.5
1 |

Prob

0.1

0.0
|

200 400 600

800

1000
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Odds Ratio
A simple way to think about this is with the odds ratio.

Again assume we have an underdog. Again let p be the probability
of winning on an underdog.

Let g = (1 — p).
Then our equation is

p 100 gq
~100g=0= P22 9_ X
px q q x ' p 100

The quantity g is often called the odds ratio (or just the odds).

So if something is 4200, the odds is 200/100 = 2 against the
underdog winning.
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June 19, 2023:

0dds

Colorado Avalanche +800
Toronto Maple Leafs +1100
Edmonton Oilers +1100

New Jersey Devils +1300
Boston Bruins +1300

Vegas Golden Knights +1300

Carolina Hurricanes +1300

So Leafs are 11 to 1, the odds is 11

(against the Leafs winning the Stanley Cup).
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7. Covariance and Correlation

» A measure of dependence between two random variables...

» It tells us how two unknown quantities tend to move together

The Covariance is defined as (for discrete X and Y):

Cov(X, Y) ZZPx,,yJ [xi — E(X)] x [y; = E(Y)]

i=1 j=1

» What are the units of Cov(X,Y) ?
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Example:

X
.05 15
px =.1, py=.1
ox = .05, oy = .05. 05| 4 1
Y

A5 .1 4

X y prob x-E(X) y-E(Y) prod

0.05 0.05 0.4 -0.05 -0.05 0.0025

0.15 0.05 0.1 0.05 -0.05 -0.0025

0.05 0.15 0.1 -0.05 0.05 -0.0025

0.15 0.15 0.4 0.05 0.05 0.0025

COV()(7 Y) = OXY
= 4% .0025 + .1 % (—.0025) + .1 % (—.0025) + .4 % .0025 = .0015.

Intuition: There is an 80% chance X and Y move in the same direction.
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Example:

X
.05 15
ux = .1, Hny = 1.
ox = .05, oy =.05. 05 .1 4
Y
15| 4 1

X y prob x-E(X) y-E(Y) prod
0.05 0.05 0.1 -0.05 -0.05 0.0025
0.15 0.05 0.4 0.05 -0.05 -0.0025
0.05 0.15 0.4 -0.05 0.05 -0.0025
0.15 0.15 0.1 0.05 0.05 0.0025

COV(X, Y) = 0OXY
= .1%.0025 + .4 % (—.0025) 4 .4 % (—.0025) + .1 % .0025 = —.0015.

Intuition: There is an 80% chance X and Y move in opposite directions.
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Ford vs. Tesla

P> Assume a very simple joint distribution of monthly returns for
Ford (F) and Tesla (T):

t=-7% t=0% t=7% | P(F=f)
f=4% 0.06 0.07 0.02 0.15
f=0% 0.03 0.62 0.02 0.67
f=4% 0.00 0.11 0.07 0.18
P(T=t) | 0.09 0.80 0.11 1

Let's summarize this table with some numbers...
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t=-7% t=0% t=7% | P(F=f)
f=4% 0.06 0.07 0.02 0.15
f=0% 0.03 0.62 0.02 0.67
f=4% 0.00 0.11 0.07 0.18
P(T=t) | 0.09 0.80 0.11 1

» E(F)=0.12, E(T)=0.14
> Var(F) = 5.25, sd(F) = 2.29, Var(T) = 9.76, sd(T) = 3.12

» What is the better stock?
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t=7% t=0% t=7% | P(F=f)
=-4% 0.06 0.07 0.02 0.15
f=0% 0.03 0.62 0.02 0.67
f=4% 0.00 0.11 0.07 0.18
P(T=t) | 0.09 0.80 0.11 1

Cov(F, T) =(—7 — 0.14)(—4 — 0.12)0.06 + (—7 — 0.14)(0 — 0.12)0.03+
(=7 — 0.14)(4 — 0.12)0.00-(0 — 0.14)(—4 — 0.12)0.07+
(0 —0.14)(0 — 0.12)0.62 + (0 — 0.14)(4 — 0.12)0.11+

(7 — 0.14)(—4 — 0.12)0.02 + (7 — 0.14)(0 — 0.12)0.02+

(

7-0.14)(4 — 0.12)0.07 = 3.063

Okay, the covariance in positive... makes sense, but can we get a
more intuitive number?
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Correlation

Cov(X,Y)

Corr(X,Y) = Sd(X)sd(Y)

» What are the units of Corr(X, Y)? It doesn't depend on the
units of X or Y!

» —1 < Corr(X,Y)<1
In our first example:
Corr(X,Y) = .0015/(.05*.05) = 0.6

In our second example:
Corr(X,Y) = -.0015/(.05*.05) = -0.6
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In our Ford vs. Tesla example:

Corr(F, T) = 3.063

220 x 3.12

= 0.428 (not too strong!)
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8. Linear Combination of Random Variables

Is it better to hold Ford or Tesla? How about half and half?
What do we mean by “half and half"?

We mean the portfolio where we put half of our money into Ford
and half into Tesla.

Return On a Portfolio:

Suppose we form a portfolio in which we put fraction wy of our
wealth into an asset with return R; and fraction wy of our wealth
into an asset with return R>. Let P be the return on the portfolio.

P =w; Ry + w>y R»
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In our Ford/Tesla use use Ry = Ford, Ry = Tesla, and
w1, = Wo = 5.

Since the return on Ford and Tesla are random variables, so of
course is the return on the portfolio!

Here is the joint distribution of (Ry, R;) = (F, T) and
P=5F+5T.

Ford Tesla P prob
1 -4 -7 -5.5 0.06
2 0 -7 -3.5 0.03
3 4 -7 -1.5 0.00
4 -4 0 -2.0 0.07
5 0 0 0.0 0.62
6 4 0 2.00.11
7T -4 7 1.5 0.02
8 0 7 3.5 0.02
9 4 7 5.5 0.07



Is it better to hold Ford or Tesla? How about half and
half?

We can compare the random returns based on the means and
variances:

big mean: good, big variance: bad.

We could could compute the mean and variance of P directly from
its distribution, but there are some very handy formulas for the
mean and variance of a linear combination of random variables.

Let X and Y be two random variables, a, b, and ¢ are known
constants:

» E(c+aX+ bY)=c+aE(X)+ bE(Y)
» Var(c+aX +bY) = a?Var(X)+b?>Var(Y)+2ab x Cov(X, Y)
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Applying this to the Ford vs. Tesla example...

> E(0.5F +0.5T) = 0.5E(F) + 0.5E(T) =
0.5 x 0.12+ 0.5 x 0.14 = 0.13

» Var(0.5F +0.5T) =

(0.5)2Var() + (0. 2)2 ar(T) +2(0.5)(0.5) x Cov(F, T) =

(0.5)2(5.25) + (0.5)2(9.76) + 2(0.5)(0.5) x 3.063 = 5.28
> sd(0.5F +0.5T) = 1/5.28 = 2.207

so, what is better? Holding Ford, Tesla or the combination?

asset: Ford, Tesla, Portfolio
mean: .12, .14, .13
sd: 2.29, 3.12, 2.297
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Let's check the mean and variance of P from our basic formulas by

computing them in R.

> head(ddf)

Ford Tesla P prob
1 -4 -7 -5.5 0.06
2 0 -7 -3.5 0.03
3 4 -7 -1.5 0.00
4 -4 0 -2.0 0.07
5 0 0 0.0 0.62
6 4 0 2.00.11

> EP = sum(ddf$prob * ddf$P)

> cat("Expected value of port: ",EP,"\n")
Expected value of port: 0.13

> VP = sum(ddf$prob * (ddf$P-EP)"2)

> cat("Variance of port: ",VP,"\n")
Variance of port: 5.2931

Same numbers!!
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probability

Let's see what is going on graphically!
» plot the three distributions for Ford, Tesla, and the portfolio
P possible values on the x axis, probabilities on the y axis
P easy to see that Tesla has a higher variance than Ford.
P not so easy to see the difference in the means, this is realistic
>

you can see you the diversification killed the tails

2 -+ Porttolio A
= Ford
4 Tesla n
©
=
<
=
N
o - L
A .
- — J \ P
> | . . .
° T T T T T T
-6 -4 -2 0 2 4

outcomes



Note:
If X and Y are independent, then Cov(X,Y) = 0.

Covariance measures linear dependence.

If they have nothing to do with each other (independence), then
they certainly have nothing to do with each other linearly.
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More generally...

> E(Wo + w1 X1+ wo Xo + ...Wpo) =
W0—|-W1E(X1)+W2E(X2)+...+WPE(XP) = wy + Z?:l W,'E(X,')

> Var(wo+wi X1 +waXo+..wpXp) = w2 Var(X1)+w3 Var(X2) +
vt Wg Var(Xp)+2wiws x Cov(Xi, X2) + 2wy w3 Cov (X, X3) +
= 200 WP Var(Xi) + 2P j#i wiwj Cov(X;, X)
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Example:
Ford, Tesla, GM.
P = W1F—|— wy T + W3G

E(P) = wiE(F)+ woE(T) + w3E(G)

Var(P) = w?Var(F) + w3 Var(T) + w3 Var(G)
+ 2wywp Cov(F, T)+2wyws Cov(F, G) + 2waws Cov(T, G).
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With lots of assests this gets complicated!! There many possible
pairs of assests and corresponding covariance pairs representing the
high dimensional dependence of the many input assets.

In practice you have to estimate all the covariances from data,
another good reason to index!!
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Example, Sum and Mean of |ID

Suppose you play a game n times and the winning from the ith
play is represented by the random variable X;, i =1,2,...,n.

We assume the each play of the game is indepedent of the others
and it is the same game each time.

So, the X; are IID.
What are the mean and variance of the total winnings?

T:X1+X2+X3++Xn

Let E(X;) = p and Var(X;) = o2
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T=X1+Xo+X34+...4+X,.

The Mean:
E(T) = E(X1)+E(X2)+...+E(Xp)
= pt+tput+...+p
e nM

The variance:

For the variance note that because all the X; are independent, the

Var(T) = Var(X1)+ Var(X2) + ...+ Var(X,)
= o2+0%+.. . 402
= no?
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And the average:

- 1 1 1 1
X==-X1+-Xo+-"Xz+...+ =X,
n n n n
The Mean:
S 1 1 1
E(XX) = —E(X)+_E(X)+...+ —E(X,)
1
= —ut+—-p+...+-p
n n
1
= ”(;)M—M
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The variance:

Var(X)
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Note:
We have, for X;, IID, E(X;) = p, Var(X;) = o2,

2
E(X)=p, Var(X)= "7

Intuitively this says the average of a lot of IID draws tends to be
closer to the mean p than an individual draw.
We do a lot of averaging in statistics !!

This will turn out to be important !!
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Portfolio vs. Single Project (from Misbehaving)

In a meeting with 23 executives plus the CEO of a major company
economist Richard Thaler poses the following question:

Suppose you were offered an investment opportunity for your
division (each executive headed a separate/independent division)
that will yield one of two payoffs. After the investment is made,
there is a 50% chance it will make a profit of $2 million, and a
50% chance it will lose $1 million. Thaler then asked by a show of
hands who of the executives would take on this project. Of the
twenty-three executives, only three said they would do it.
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Then Thaler asked the CEQO a question. If these projects were
independent, that is, the success of one was unrelated to the
success of another, how many of the projects would he want to
undertake? His answer: all of them!

What 7277771111

How can we understand this?
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for an individual executive:

Xi,i=1,2,...,23.

p: 5x(—1)+.5%x2=0.5

0% 5% (—=1—.5)2 4+ .5%(2—.5)2=2.25
o: 15
pjo: .5/1.5 = 0.3333333
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for CEO:

T=X1+Xo+X3+...+ X,
E(T): 23*5 = 115
Var(T) : 23*%2.25 = 51.75
sd(T): sqrt(51.75) = 7.193747
E(T)/sd(T): 11.5/7.193747 = 1.598611

For the CEO, the mean is much bigger relative to the standard
deviation that is it for the individual managers !!!
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Companies, CEQ’s, managers have to be careful in setting

incentives that avoid what psychologist and behavior economists
call “narrow framing” ... otherwise, what can be perceived to be
bad for one manager may be very good for the entire company!
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Note, the Sharpe Ratio

Wikipedia:

E(R, — Rp)

Oa

where:

» R, is a risky asset (and hence a random variable)

» Ry is the risk free return, and hence a constant (such as a
U.S. Treasury security)

» o, standard deviation of R; — Rp, which is the standard
deviation of R,.
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9. Continuous Random Variables

» Suppose we are trying to predict tomorrow’s return on the
S&P500...

» Question: What is the random variable of interest?

» Question: How can we describe our uncertainty about
tomorrow's outcome?

P Listing all possible values seems like a crazy task... we'll work
with intervals instead.

» These are called continuous random variables.

» The probability of an interval is defined by the area under the
probability density function, the “pdf”.
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The Normal Distribution

» A random variable is a number we are NOT sure about but
we might have some idea of how to describe its potential
outcomes.

» The probability the number ends up in an interval is given by
the area under the curve (pdf)

0.4

0.3

This is the pdf 2
for the E 5
standard normal §
distribution. % g
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Notation:
variable.

standard normal pdf

We often use Z, to denote a standard normal random

P(—1< Z <1)=0.68
P(—1.96 < Z < 1.96) = 0.95

N <
o o
S
@ 4 2 o
o © O
£
o~ o o
v e o
o EO
]
< 2
<) S o
»
o =
° T T © T
-4 4 4
z z
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Note:

For simplicity we will often use P(—2 < Z < 2) ~ 0.95

Questions:

» What is P(Z < 1) ? How about P(Z <1)?
» What is P(Z < 0)7
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» The standard normal is not that useful by itself. When we say
“the normal distribution”, we really mean a family of
distributions.

> We obtain pdfs in the normal family by shifting the bell curve
around and spreading it out (or tightening it up).
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> We write X ~ N(u,0?).

» The parameter ;1 determines where the curve is. The center of
the curve is p.

» The parameter o determines how spread out the curve is. The

area under the curve in the interval (1 — 20, u + 20) is 95%.
P(u—20c <X <pu+20)=~0.95

W-20 UG W H+O p+20

X
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For the normal family of distributions we can see that the
parameter pu talks about “where” the distribution is located or
centered.

We often use p as our best guess for a prediction.

The parameter ¢ talks about how spread out the distribution
is. This gives us and indication about how uncertain or how
risky our prediction is.

Z ~ N(0,1).

103



Example:
> Below are the pdfs of
X1 ~ /V(O7 ].), X2 ~ N(3, 1), and X3 ~ N(O7 16).
» Which pdf goes with which X7

| N D I D O O
-8 6 -4 -2 0 2 4 6 8
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Mean and Variance of a Continuous Random Variable

Continuous random variables have expected values and variances
analogous to what we have defined for discrete random variables.

But, the definition requires calculus and we don’t want to have to
remember all that stuff.

Fortunately, our intuition is the samel!l!

» The expected value of a random variable is the probability
weighted average value.

» The variance of a random variable is the probability weighted
average squared distance to the expected value.
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Mean and Variance for a Normal

For
X ~ N(p,0%),

E(X)=p, Var(X)=o?

i is the mean and o2 is the variance !l

Note:
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The Normal Distribution — Example

» Assume the annual returns on the SP500 are normally
distributed with mean 6% and standard deviation 15%.
SP500 ~ N(6,225). (Notice: 15% = 225).

> Two questions:

(/) What is the chance of losing money on a given year?
(i) What is the value such that there's only a 2% chance that
the return is less than the value?

» Lloyd Blankfein: “I spend 98% of my time thinking about 2%
probability events!”

> (i) P(SP500 < 0) and (ii) P(SP500 <?) = 0.02
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The Normal Distribution — Example

prob less than 0 prob is 2%

0.010 0.020
1 1 1
0.010 0.020
1 1 1

1
1

0.000
0.000

T T T T T T T T T T T T
-40 -20 0 20 40 60 -40 -20 0 20 40 60

sp500 sp500

(i) P(SP500 < 0) = 0.35 and (i) P(SP500 < —25) = 0.02
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In R:

For X ~ N(p,02), pnorm(c,...) gives P(X < c), which is the

CDF (cumulative distribution function) evaluated at c.

gnorm(q, ...) gives the value ¢ such that P(X < ¢) = g.

> 1-2*pnorm(-1.96,mean=0,sd=1)
[1] 0.9500042
> 1-2%pnorm(-1.00,mean=0,sd=1)
[1] 0.6826895

> pnorm(0,mean=6,sd=15)
[1] 0.3445783

> pnorm(-25,mean=6,sd=15)
[1] 0.01938279

>

> gnorm(.02,mean=6,sd=15)
[1] -24.80623

In Excel see: NORMDIST and NORMINV
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The Probability of an Interval:

What is P(0 < SP500 < 20) ?

That is, what is the probability that the return value ends up being
in the interval (0,20)?

> pnorm(0,6,15)

[1] 0.3445783

> pnorm(20,6,15)

[1] 0.8246761

> 0.8246761 - 0.3445783
[1] 0.4800978

The probability of the interval (a, b) is CDF(b) — CDF(a).
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In general

If X is a random variable, then the cumulative distribution function
or CDFis

If X is a continuous random variable then

P(a< X < b)=F(b)— F(a), b> a.
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Standardization

X ~ N(u, o)
j is the mean and o2 is the variance.
Standardization: if X ~ N(u,o?) then
X—p
Z=—~N(0,1
(o, 1)

X1 should look like a Z !!

The number of standard deviations, X is away from the mean.
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Example:

Prior to the 1987 crash, monthly S&P500 returns (R) followed
(approximately) a normal with mean 0.012 and standard deviation
equal to 0.043. How extreme was the crash of -0.21767 The
standardization helps us interpret these numbers...

R ~ N(0.012,0.043?)

The month of the crash, R turned out to be r = —0.2176.
Correspondingly, for the crash,
~ —0.2176 — 0.012

_ — 507
z 0.043

which is pretty wild for a standard normal!!

5 standard deviations away from the mean!!
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The Normal Distribution — Approximating Combinations of RVs

Recall the Thaler example (Portfolios of projects vs. single project).

A linear combination of independent random variables is
approximately normal (the CLT: Central Limit Theorm), so

T ~ N(11.5,7.2%) approximately
> .5 * 23
[1] 11.5 :
> 2.25%23 :
[1] 51.75
> sqrt(51.75)
[1] 7.193747
> 1 - pnorm(0,11.5,7.2)
[1] 0.9448919

much more compelling than the simple Sharpe ratio we looked at before !!
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In summary, in many situations, if you can figure out the mean and
variance of the random variable of interest.

If the random variable is a combination of many variables (often
the case) it may be approximately normal.

If you know it is (approximately) normal and you know the mean
and variance, you know the distribution (approximately).
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Portfolios, once again...

» As before, let's assume that the annual returns on the SP500
are normally distributed with mean 6% and standard deviation
of 15%, i.e., SP500 ~ N(6,15%)

P Let's also assume that annual returns on bonds are normally
distributed with mean 2% and standard deviation 5%, i.e.,
Bonds ~ N(2,52)

» What is the best investment?

» What else do | need to know if | want to consider a portfolio
of SP500 and bonds?
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» Additionally, let's assume the correlation between the returns
on SP500 and the returns on bonds is -0.2.

» How does this information impact our evaluation of the best
available investment?

Recall that for two random variables X and Y

> E(aX + bY) = aE(X) + bE(Y)
» Var(aX + bY) = a?Var(X) + b?>Var(Y) + 2ab x Cov(X,Y)
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» What is the behavior of the returns of a portfolio with 70% in
the SP500 and 30% in Bonds?

» E(0.7SP500 + 0.3Bonds) = 0.7E(SP500) + 0.3E(Bonds) =
0.7x6+4+03x2=4.8

» Var(0.75P500 + 0.3Bonds) =
(0.7)?Var(SP500) + (0.3)? Var(Bonds) + 2(0.7)(0.3) x
Corr(SP500, Bonds) x sd(SP500) x sd(Bonds) =
(0.7)%(152) + (0.3)%(5%) +2(0.7)(0.3) x —0.2 x 15 x 5 = 106.2

Let's assume the linear combination is normal, which is often the
case when both of the input random variables are normal.

Portfolio ~ N(4.8,10.3?)
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Here are the normal pdfs for our three assets, SP500,

the portfolio.

pdf

0.08

0.06

0.04

0.02

0.00

SP500

Bonds

Portfolio

T T T T T
-40 -20 0 20 40

return

Bonds, and
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The Uniform Distribution

Suppose we think a random variable X can turn out to be any
number between -.25 and .25 and the numbers in (-.25,25) are
equally likely?

How would we describe this??

Suppose we think a random variable X can turn out to be any
number between 0 and 1 and the numbers are equally likely?

How would we describe this?

120



If X can be any number in (a, b) and the numbers are equally
likely, then we say X ~ Uniform(a, b)

X-Uniform(-.25,.25)

o ——  X-Uniform(01)

0.0

T T T T
-05 0.0 05 10

The density is 71 inside (a, b) and 0 elswhere.
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10. A Little Calculus

In the discrete case we have explicit formulas for things like the
expected value of a random variable.

In the continuous case we need calculus, in particular, the integral.
For the record we record the formulas for the continuous case.

However, it is just fine to get your intuition from the discrete case
and not worry about the integrals.
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With a bivariate (2 random variables) (X, Y') continuous
distribution we have the density f(x, y).

We can plot the density in 3D.

Bivarize Nomnal Density — r=0.0 Biariaie Momal Density = r=07 Bivarizte: Normal Density — r=09

This gives us a sense of what correlation means with continuous
random variables.
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The conditional density is proportional to the joint f(y|x) o f(x, y)

fylx) o< f(x, y)
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11. Making Decisions under Uncertainty

In our drug discovery example we traced out the key things that
could happen if we made the investment and assigned probabilities
to the branches of the path.

This gave us a random variable representing the uncertain revenue
we would get if we made the investment.

If we just go by the expected value, then our 1 million dollar

investment gives us a random variable with expected revenue
$4,225,000 so it seems like the investment is a good idea.
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However, we considered another scenario where the random
variable representing the revenue had the same expected value
even though the distributions were quite different.

We saw the standard deviations under the two scenarios were
9,134,721 and 2,836,141 which dramatically highlights the
difference between the two distributions, even though they have
the same mean.

In general, how do we make a decision when outcomes are
uncertain !!!
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If microeconomics, we often think of people as making decisions by
maximizing utility.

We often assume that all the parameters of our decision (prices,
budget....) are known.

This is often very unrealistic !!
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Maximize Expected Utility

A general formulation for decision making under uncertainty is to
again start with a utility function

U(Y,a)

representing your utility under the uncertain outcome represented
by the random variable Y and the action a € A, where A
represents a (possibly contrained) set of actions.

We then maximize expected utility over our possible actions:

max E(U(Y, a))

aceA

This is a fundamental idea in both economics and statistics.
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Minimize Expected Loss

In statistics/Machine Learning/Data Science/Predictive Analytics
is of common to the think in terms of the loss rather than the
utility.

We minimize our expected loss:

gneig E(L(Y,a))
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Minimizing Expected Squared Loss

Often people will want you got come with a single number as your
prediction for what Y will turn out to be.

Let a represent your prediction.

For a numeric Y, a commonly used loss function is squared error
loss, giving,

min E((Y — a)?)

a

The optimal choice of ais a* = E(Y).

The expected value is the optimal prediction under squared error
loss.
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