Multiple Regression

Rob McCulloch

1. Multiple Regression Model
2. Estimates and Plug-in Prediction
3. Confidence Intervals and Hypothesis Tests
4. Fits, Resids, and R-squared
5. Categorical x and Dummy Variables

1. Multiple Regression Model

The plug-in predictive interval for the price of a house given its size is quite large $(\pm 2 * 22.5= \pm 45)$.

How can we improve this?

If we know more about a house, we should have a better idea of its price !!

Our data has more variables than just size and price:

The first 7 rows are:
(price and size /1000)

Home	Nbhd	Offers	SqFt	Brick	Bedrooms	Bathrooms	Price	pricethou	sizethou
1	2	2	1790	No	2	2	114300	114.3	1.79
2	2	3	2030	No	4	2	114200	114.2	2.03
3	2	1	1740	No	3	2	114800	114.8	1.74
4	2	3	1980	No	3	2	94700	94.7	1.98
5	2	3	2130	No	3	3	119800	119.8	2.13
6	1	2	1780	No	3	2	114600	114.6	1.78
7	3	3	1830	Yes	3	3	151600	151.6	1.83

Suppose we know the number of bedrooms
and bathrooms a house has as well as its size,
then what would our prediction for price be?

The Multiple Regression Model

$$
\begin{gathered}
Y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\ldots+\beta_{k} x_{i k}+\epsilon_{i} \\
\epsilon_{i} \sim N\left(0, \sigma^{2}\right)
\end{gathered}
$$

Y is a linear combination of the x 's + error.

The ϵ is the same as in simple linear regression, ϵ is the part of Y you can't predict from x !!!!

Example:

In our housing example, we might want to relate price to size, nbed, and nbath.
$\mathrm{y}=$ price: thousands of dollars
$\mathrm{x} 1=\mathrm{nbed}$: number of bedrooms
$\times 2=$ nbath: number of bathrooms
$\times 2=$ size: thousands of square feet

$$
\operatorname{price}_{i}=\beta_{0}+\beta_{1} \text { nbed }_{i}+\beta_{2} \text { nbath }_{i}+\beta_{3} \text { size }+\epsilon_{i}
$$

With $2 x$ variables our model is $y=($ a plane $)+$ error .

2. Estimates and Plug-in Prediction

Multiple Regression Model:

$$
Y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\ldots+\beta_{k} x_{i k}+\epsilon_{i}
$$

The parameters of the model are $\left(\beta_{0}, \beta_{1}, \ldots, \beta_{k}, \sigma\right)$.

Given data, we will have estimates:
$\hat{\beta}_{j}$: estimate of β_{j}.
$\hat{\sigma}$: estimate of σ.

House Price Example

price $_{i}=\beta_{0}+\beta_{1}$ nbed $_{i}+\beta_{2}$ nbath $_{i}+\beta_{3}$ size $+\epsilon_{i}, \quad \epsilon_{i} \sim N\left(0, \sigma^{2}\right)$

```
Call:
lm(formula = price ~ nbed + nbath + size, data = ddf)
Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q Median & 3Q & Max \\
-53.71 & -15.63 & -0.24 & 13.85 & 49.36
\end{tabular}
```

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
$\begin{array}{lllll}\text { (Intercept) } & -5.641 & 17.200 & -0.328 & 0.743504\end{array}$
$\begin{array}{lllll}\text { nbed } & 10.460 & 2.912 & 3.592 & 0.000472 \text { *** }\end{array}$
$\begin{array}{llll}\text { nbath } \quad 13.546 \quad 4.219 \quad 3.211 & 0.001685 \text { ** }\end{array}$
size $\quad 35.643 \quad 10.667 \quad 3.341 \quad 0.001102$ **
Signif. codes: $0{ }^{\prime * * * ’} 0.001$ '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 20.36 on 124 degrees of freedom
Multiple R-squared: 0.4396 ,Adjusted R-squared: 0.426
F-statistic: 32.42 on 3 and 124 DF, p-value: $1.535 \mathrm{e}-15$
$\hat{\beta}_{0}=-5.641, \hat{\beta}_{1}=10.46, \hat{\beta}_{2}=13.546, \hat{\beta}_{3}=35.643, \hat{\sigma}=20.36$.

Prediction:

The plug-in estimate of the model for the conditional distribution of Y given the x 's is

$$
\begin{aligned}
& \text { price }=-5.64+10.46 \text { nbed }+13.546 \text { nbath }+35.643 \text { size }+\epsilon \\
& \qquad \epsilon \sim N\left(0,20.36^{2}\right)
\end{aligned}
$$

Given nbed $=3$, nbath $=2$, and size $=2.2$.

$$
\begin{aligned}
\text { price } & =-5.64+10.46 * 3+13.546 * 2+35.643 * 2.2+\epsilon \\
& =131.2+\epsilon \\
& \sim N\left(131.2,20.36^{2}\right) \\
& \approx 131.2 \pm 2 * 20.36=131.2 \pm 40.72
\end{aligned}
$$

Note:

With just size, our plug-in predictive $+/-$ was

$$
2 * 22.467=44.952
$$

With nbath and nbed added to the model the $+/$ - is

$$
2 * 20.36=40.72
$$

The additional information makes our prediction more precise.
But not a whole lot, we still need better x's !!

Interpret:

$$
\text { price }=-5.64+10.46 \text { nbed }+13.546 \text { nbath }+35.643 \text { size }+\epsilon
$$

With size and nbath held fixed, if you add one bedroom the average price goes up by 10.46 (thousand dollars).

Note that it would not makes sense to add several bedrooms and imagine holding size and nbath fixed.

Note:

When we regressed price on size the coefficient was about 70 .
Now the coefficient for size is about 36 .
Without nbath and nbed in the regression, an increase in size can by associated with an increase in nbath and nbed in the background.

If all I know is that one house is a lot bigger than another I might expect the bigger house to have more beds and baths!

With nbath and nbed held fixed, the effect of size is smaller.

3. Confidence Intervals and Hypothesis Tests

Let $\operatorname{se}\left(\hat{\beta}_{j}\right)$ denote the standard error of $\hat{\beta}_{j}$.

95\% confidence interval for β_{j} :

$$
\hat{\beta}_{j} \pm 2 \operatorname{se}\left(\hat{\beta}_{j}\right)
$$

For small n (<20 or 30) use: qt (. $975, \mathrm{n}-\mathrm{k}-1$) in R or $=\operatorname{tinv}(.05, \mathrm{n}-\mathrm{k}-1)$ in excel instead of 2 .

House Price Example

$$
\operatorname{price}_{i}=\beta_{0}+\beta_{1} \text { nbed }_{i}+\beta_{2} \text { nbath }_{i}+\beta_{3} \text { size }^{2}+\epsilon_{i}, \quad \epsilon_{i} \sim N\left(0, \sigma^{2}\right)
$$

```
Call:
lm(formula = price ~ nbed + nbath + size, data = ddf)
Residuals:
\begin{tabular}{rrrr} 
Min & 1Q Median & 3Q & Max \\
-53.71 & -15.63 & -0.24 & 13.85 \\
49.36
\end{tabular}
```

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) $\quad-5.641 \quad 17.200 \quad-0.3280 .743504$
$\begin{array}{lllll}\text { nbed } & 10.460 & 2.912 & 3.592 & 0.000472 \text { *** }\end{array}$
$\begin{array}{lrrrr}\text { nbath } & 13.546 & 4.219 & 3.211 & 0.001685\end{array}$ **
$\begin{array}{lllll}\text { size } \quad 35.643 & 10.667 & 3.341 & 0.001102 \text { ** }\end{array}$
Signif. codes: 0 '***' 0.001 '**’ 0.01 '*’ 0.05 '.' 0.1 ' ' 1

Residual standard error: 20.36 on 124 degrees of freedom
Multiple R-squared: 0.4396 ,Adjusted R-squared: 0.426
F-statistic: 32.42 on 3 and 124 DF , p-value: $1.535 \mathrm{e}-15$
$\widehat{\beta}_{3}=35.74, \operatorname{se}\left(\widehat{\beta}_{3}\right)=10.7$.
Confidence Interval: $35.64 \pm 2 * 10.7=(14.24,57.04)$.

Hypothesis Tests:
To test the null hypothesis:

$$
\mathrm{Ho}: \beta_{j}=\beta_{j}^{o} \text { vs. } \mathrm{Ha}: \beta_{j} \neq \beta_{j}^{o}
$$

We reject at level . 05 if

$$
|t|>2, \text { where } t=\frac{\hat{\beta}_{j}-\beta_{j}^{\circ}}{\operatorname{se}\left(\hat{\beta}_{j}\right)} .
$$

Otherwise, we fail to reject.

For small n, t thing.
IF the null is true, the t should look like a z !!!

House Price Example

price $_{i}=\beta_{0}+\beta_{1}$ nbed $_{i}+\beta_{2}$ nbath $_{i}+\beta_{3}$ size $+\epsilon_{i}, \quad \epsilon_{i} \sim N\left(0, \sigma^{2}\right)$

```
Call:
lm(formula = price ~ nbed + nbath + size, data = ddf)
Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q Median & 3Q & Max \\
-53.71 & -15.63 & -0.24 & 13.85 & 49.36
\end{tabular}
```

Coefficients:

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$	
(Intercept)	-5.641	17.200	-0.328	0.743504	
nbed	10.460	2.912	3.592	0.000472	***
nbath	13.546	4.219	3.211	0.001685	**
size	35.643	10.667	3.341	0.001102	

Signif. codes: $0{ }^{\prime} * * * ' 0.001$ '**' 0.01 '*' 0.05 '.' 0.1 ', 1

Residual standard error: 20.36 on 124 degrees of freedom
Multiple R-squared: 0.4396,Adjusted R-squared: 0.426
F-statistic: 32.42 on 3 and 124 DF, p-value: $1.535 \mathrm{e}-15$
$\hat{\beta}_{3}=35.74, \operatorname{se}\left(\hat{\beta}_{3}\right)=10.7$.
Test $\beta_{3}=0: t=\frac{35.74-0}{10.7}=3.34 . \Rightarrow$ reject.
p-values:

To test

$$
H_{0}: \beta_{3}=0
$$

we can just look at the p-value in the output.

The p-value is .0011 , so we reject.

4. Fits, Resids, and R-squared

In multiple regression the fit is

$$
\hat{y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{i 1}+\hat{\beta}_{2} x_{i 2}+\ldots+\hat{\beta}_{k} x_{i k}
$$

"estimate of the part of y related to the x 's".

The residual,

$$
e_{i}=y_{i}-\hat{y}_{i}
$$

"estimate of the part of y not related to the x 's"

Recall that with $1 x$ we can see

$$
y_{i}=\hat{y}_{i}+e_{i}
$$

With $2 \times$ variables we have a 3-D picture:

In multiple regression, the resids have sample mean 0 and are uncorrelated with each of the x's and the fitted values:

Table of correlations

	SqFt	Bedrooms	Bathrooms	Price	Fitted Values	Residuals
SqFt	1.000					
Bedrooms	0.484	1.000				
Bathrooms	0.523	0.415	1.000			
Price	0.553	0.526	0.523	1.000		1.000
Fitted Values	0.834	0.793	0.789	0.663		
Residuals	0.000	0.000	0.000	0.749	0.000	1.000

estimated x part of $\mathrm{y} \quad$ estimated part of y that has nothing to do with x's

This is the plot of the residuals from the multiple regression of price on size, nbath, nbed vs the fitted values.
We see the 0 correlation.

The correlation is also 0 , for each of the x 's.

Key Intuition:

$$
y_{i}=\hat{y}_{i}+e_{i}
$$

Multiple regression pulls out of y everthing that looks linearly related to each x.

The part that is left over (the residuals), is linearly unrelated to each of the x 's.

Since the fitted values are just a combination of the x 's, they are uncorrelated with the residuals.

$$
\begin{gathered}
y_{i}=\hat{y}_{i}+e_{i} \\
\operatorname{cor}(\hat{y}, e)=0, \quad \bar{e}=0 \\
\overline{\hat{y}}=\bar{y} .
\end{gathered}
$$

Because the fits and the resids have 0 sample correlation, the variance of the sum is the sum of the variances:

$$
\sum\left(y_{i}-\bar{y}\right)^{2}=\sum\left(\hat{y}_{i}-\bar{y}\right)^{2}+\sum e_{i}^{2}
$$

Total variation $=$
variation explained by x 's + unexplained variation.

R-squared:

$$
R^{2}=\frac{\text { explained }}{\text { total }}=\frac{\sum\left(\hat{y}_{i}-\bar{y}\right)^{2}}{\sum\left(y_{i}-\bar{y}\right)^{2}}
$$

$0 \leq R^{2} \leq 1$, the closer R^{2} is to 1 , the better the fit.

In our housing example:

Results of multiple regression for pricethou

Summary measures

Multiple R	0.6630
R-Square	0.4396
Adj R-Square	0.4260
StErr of Est	20.3565

ANOVA Table

Source	df	SS	MS	F	p-value
Explained	3	40300.9877	13433.6626	32.4180	0.0000
Unexplained	124	51384.2266	414.3889		

Regression coefficients

	Coefficient	Std Err	t-value	p-value	Lower limit	Upper limit
Constant	-5.6408	17.2004	-0.3279	0.7435	-39.6852	28.4035
Bedrooms	10.4599	2.9123	3.5916	0.0005	4.6956	16.2242
Bathrooms	13.5461	4.2187	3.2110	0.0017	5.1962	21.8961
sizethou	35.6427	10.6673	3.3413	0.0011	14.5292	56.7561

$$
\mathrm{R}^{2}=\frac{40301}{40301+51384}=.439
$$

R^{2} is also the square of the correlation between the fitted values and y :

$\begin{aligned} \operatorname{cor}(\hat{y}, y)=.663 & \text { (with just size, the correlation } \\ .663^{\wedge} 2=0.439569 & \text { between fits and y was .553) }\end{aligned}$

The overall F-test

The p-value beside " F " if testing the null hypothesis:

$$
\mathrm{H}_{0}: \beta_{1}=\beta_{2}=\cdots=\beta_{\mathrm{k}} \quad \text { (all the slopes are } 0 \text {) }
$$

Results of multiple regression for pricethou

Summary measures						
Multiple R	0.6630					
R -Square	0.4396					
Adj R-Square	0.4260					
StErr of Est	20.3565					
ANOVA Table						
Explained	3	40300.9877	13433.6626	32.4180	0.0000	
Unexplained	124	51384.2266	414.3889			
Regression coefficients						
	Coefficient	Std Err	t-value	p-value	Lower limit	Upper limit
Constant	-5.6408	17.2004	-0.3279	0.7435	-39.6852	28.4035
Bedrooms	10.4599	2.9123	3.5916	0.0005	4.6956	16.2242
Bathrooms	13.5461	4.2187	3.2110	0.0017	5.1962	21.8961
sizethou	35.6427	10.6673	3.3413	0.0011	14.5292	56.7561

We reject the null, at least some of the slopes are not 0 .

5. Categorical x and Dummy Variables

Here, again, is the first 7 rows of our housing data:

| Home | Nbhd | Offers | SqFt | Brick | Bedrooms | Bathrooms | Price | pricethou |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | sizethou

Does whether a house is brick or not affect the price of the house?

This is a categorical variable. How can we use multiple regression with categorical x's ??!!

What about the neighborhood? (location, location, location !!)

Let's consider relating price to size and Brick.

Can we plot price vs. size and Brick?
In general, plotting with several numeric variables is hard. But when variables are categorical we can use some simple plots where we use the color and/or shape of the plot symbol to represent a variable.

Here we have to numeric variables: price, size, and one categorical variable: Brick.

Price vs size and Brick with Brick indicated by color..

Price vs size and Brick with Brick indicated by shape and color.

Price vs size and Brick with Brick indicated by separate plots.

Well, it really looks like Brick=Yes houses sell for more!!

How can we put Brick into a regression model !!??

Adding a Binary Categorical x

To add "brick" as an explanatory variable in our regression we create the dummy variable which is 1 if the house is brick and 0 otherwise:

the										
Home	Nbhd	Offers	SqFt	Brick	Bedrooms	Bathrooms	Price	sizethou	pricethou	brickdum
1	2	2	1790	No	2	2	114300	1.79	114.3	0
2	2	3	2030	No	4	2	114200	2.03	114.2	0
3	2	1	1740	No	3	2	114800	1.74	114.8	0
4	2	3	1980	No	3	2	94700	1.98	94.7	0
5	2	3	2130	No	3	3	119800	2.13	119.8	0
6	1	2	1780	No	3	2	114600	1.78	114.6	0
7	3	3	1830	Yes	3	3	151600	1.83	151.6	1
8	3	2	2160	No	4	2	150700	2.16	150.7	0
9	2	3	2110	No	4	2	119200	2.11	119.2	0
10	2	3	1730	No	3	3	104000	1.73	104	0
11	2	3	2030	$Y e s$	3	2	132500	2.03	132.5	1
12	2	2	1870	Yes	2	2	123000	1.87	123	1
13	1	4	1910	No	3	2	102600	1.91	102.6	0
14	1	5	2150	$Y e s$	3	3	126300	2.15	126.3	1

Note:
I created the dummy by using the excel formula:
$=I F($ Brick $=" Y e s ", 1,0)$

In R:
$\mathrm{mc}=$ read.table("midcity.txt", header=T)
bdum=as.numeric(mc\$Brick)-1
> table(mc\$Brick)

No Yes
8642
> table(bdum)
bdum
01
8642

As a simple first example, let's regress price on size and brick.

Here is our model

$$
\text { Price }_{i}=\beta_{0}+\beta_{1} \text { size }_{i}+\beta_{2} \text { brickdum }_{i}+\epsilon_{i}
$$

How do you interpet β_{2} ?

$$
\text { Price }_{i}=\beta_{0}+\beta_{1} \text { size }_{i}+\beta_{2} \text { brickdum }_{i}+\epsilon_{i}
$$

What is the expected value of a brick house given the size=s:

Expected price: $\beta_{0}+\beta_{1} s+\beta_{2}$

What is the expected value of a non brick house given the size=s:

Expected price: $\beta_{0}+\beta_{1} s$
β_{2} is the expected difference in price between a brick and non-brick house.

Note:

You could also create a dummy which was 1 if a house was non brick and 0 if brick.

That would be fine, but the meaning of β_{2} which change.

You can't put both dummies in though because given one, the information in the other is redundant.

Let's try it !!

+/- $2 \mathrm{se}=39.3$, this is the best we've done !
what is the brick effect:

$$
23.4+/-2(3.7)=23.4+/-7.4
$$

We can
see the effect of the dummy by plotting the fitted values vs size.

The upper line is for the brick houses and the lower line is for the non-brick houses.

We can interpret β_{2} as a shift in the intercept.
Notice that our model assumes that the price difference between a brick and non-brick house does not depend on the size!

The two variables do not "interact".
Sometimes we expect variables to interact.

Now let's add brick to the regression of price on size, nbath, and nbed:

Results of multiple regression for pricethou					
Summary measures					
Multiple R	0.7634				
R -Square	0.5828				
Adj R-Square	0.5692				
StErr of Est	17.6345				
ANOVA Table					
Source	df	SS	MS	F	p-value
Explained	4	53435.3823	13358.8456	42.9580	0.0000
Unexplained	123	38249.8320	310.9742		

Regression coefficients

	Coefficient	Std Err	t-value	p-value	Lower limit	Upper limit
Constant	-5.2794	14.9004	-0.3543	0.7237	-34.7739	24.2151
Bedrooms	10.8731	2.5237	4.3084	0.0000	5.8776	15.8686
Bathrooms	9.8184	3.6993	2.6541	0.0090	2.4959	17.1409
sizethou	35.8006	9.2409	3.8742	0.0002	17.5088	54.0923
brickdum	21.9091	3.3712	6.4989	0.0000	15.2361	28.5821

+/- 2se = 35.2
Adding brick seems to be a good idea !!

Using a Categorical Variable with more than two categories (levels):

How do we use the variables "neighborhood" in our multiple regression model?

It is a categorical variable with more than two levels.

Recall that we are very excited about doing this!!!

Plot price vs size, Brick, and Neighborhood.

Let's just start by building a model with size and Neighborhood.

We start by creating a separate dummy variable for each of the three neighborhoods.

Create a dummy for each neighborhood:

Home	Nbhd	Offers	SqFt	Brick	Bedrooms	Bathrooms	Price	Nbhd_1	Nbhd_2
1	2	2	1790	No	2	2	114300	0	1
2	2	3	2030	No	4	2	114200	0	1
3	2	1	1740	No	3	2	114800	0	1
4	2	3	1980	No	3	2	94700	0	1
5	2	3	2130	No	3	3	119800	0	1
6	1	2	1780	No	3	2	114600	1	0
7	3	3	1830	Yes	3	3	151600	0	0
8	3	2	2160	No	4	2	150700	0	0
0									

eg. Nbhd_1 indicates if the house is in neighborhood 1 or not

Now we add any two of the three dummies. Given any two, the information in the third is redundant.

Let's first do price on size and neighborhood:

$$
\operatorname{Price}_{i}=\beta_{0}+\beta_{1} \text { Nbhd_1 }_{i}+\beta_{2} \text { Nbhd_ }_{-}+\beta_{3} \text { size }_{i}+\epsilon_{i}
$$

What is the expected price of a house with size $=s$
in neighborhood 1 ?

$$
\operatorname{Price}_{i}=\beta_{0}+\beta_{1} \text { Nbhd_ }_{-}+\beta_{2} \text { Nbhd_ }_{-}+\beta_{3} \text { size }_{i}+\epsilon_{i}
$$

Suppose size $=\mathrm{s}$.
Expected price in neighborhood 1: $\beta_{0}+\beta_{1}+\beta_{3} s$.
Expected price in neighborhood 2: $\beta_{0}+\beta_{2}+\beta_{3} s$.
Expected price in neighborhood 3: $\beta_{0}+\beta_{3} s$.
β_{1} : how different (on average) 1 is than 3 .
β_{2} : how different (on average) 2 is than 3.

The neighborhood corresponding to the dummy we leave out becomes the "base case" we compare to.

Note: notation change, se is $\hat{\sigma}$

Let's try it!

Results of multiple regression for pricethou						
Summary measures						
Multiple R	0.8277					
R -Square	0.6851					
Adj R-Square	0.6774					
StErr of Est	15.2601					
ANOVA Table						
Source	df	SS	MS	F	p-value	
Explained	3	62809.1498	20936.3833	89.9053	0.0000	
Unexplained	124	28876.0645	232.8715			
Regression coefficients						
	Coefficient	Std Err	t-value	p -value	Lower limit	Upper limit
Constant	62.7765	14.2477	4.4061	0.0000	34.5763	90.9766
Nbhd_1	-41.5353	3.5337	-11.7542	0.0000	-48.5294	-34.5412
Nbhd_2	-30.9666	3.3688	-9.1922	0.0000	-37.6344	-24.2988
sizethou	46.3859	6.7459	6.8762	0.0000	33.0340	59.7379

+/- 2se = 30.52 !!!

Here is
fits vs size.

Which line corresponds to which neighborhood?

Where do you
want to live?
Again we
are assuming
that size and
neighborhood do not interact.

Same plot done in ggpplot and including the data.

ok, let's try price on size, nbed, nbath, brick, and neighborhood.

Results of multiple regression for pricethou

Summary measures

Multiple R	0.8972
R-Square	0.8050
Adj R-Square	0.7954
StErr of Est	12.1547

ANOVA Table

Source	df	SS	MS	F	p-value
Explained	6	73809.1440	12301.5240	83.2669	0.0000
Unexplained	121	17876.0703	147.7361		

Regression coefficients

	Coefficient	Std Err	t -value	p-value	Lower limit	Upper limit
Constant	52.0032	11.5181	4.5149	0.0000	29.2000	74.8063
Bedrooms	1.9022	1.9023	0.9999	0.3193	-1.8639	5.6682
Bathrooms	6.8269	2.5628	2.6638	0.0088	1.7532	11.9007
Nbhd_1	-34.0837	3.1690	-10.7554	0.0000	-40.3576	-27.8099
Nbhd_2	-29.2180	2.8637	-10.2030	0.0000	-34.8874	-23.5486
sizethou	35.9304	6.4044	5.6102	0.0000	23.2511	48.6097
Brick_Yes	18.5078	2.3963	7.7235	0.0000	13.7637	23.2519

$+/-2 s_{e}=24!!$

Maybe we don't need bedrooms:

Results of multiple regression for pricethou						
Summary measures						
Multiple R	0.8963					
R -Square	0.8034					
Adj R-Square	0.7954					
StErr of Est	12.1547					
ANOVA Table						
Source	df	SS	MS	F	p -value	
Explained	5	73661.4233	14732.2847	99.7203	0.0000	
Unexplained	122	18023.7910	147.7360			
Regression coefficients						
	Coefficient	Std Err	t-value	p-value	Lower limit	Upper limit
Constant	53.6295	11.4027	4.7032	0.0000	31.0567	76.2023
Bathrooms	7.2304	2.5308	2.8569	0.0050	2.2204	12.2405
Nbhd_1	-35.3137	2.9205	-12.0916	0.0000	-41.0952	-29.5322
Nbhd_2	-30.1452	2.7094	-11.1262	0.0000	-35.5087	-24.7817
sizethou	37.9050	6.0924	6.2217	0.0000	25.8445	49.9656
Brick_Yes	18.3121	2.3883	7.6674	0.0000	13.5843	23.0400

Dropping bedrooms did not increase s_{e} or decrease R-Square so no need to bother with it.

Given our data,

If you were trying to predict the price of a house, would you pay money to know the number of bedrooms ??

If you were trying to predict the price of a house, and you already know the number of bathrooms, neighborhood, size, and whether it is brick,
would you pay money to know the number of bedrooms ??

Here is the regression for price on bedrooms.
Call:
lm(formula $=$ price \sim nbed, data $=$ ddf)

Residuals:

Min	$1 Q$	Median	3Q	Max
-48.671	-14.496	0.462	13.178	61.763

Coefficients:

	Estimate	Std. Error t value $\operatorname{Pr}(>\|\mathrm{t}\|)$			
(Intercept)	71.575	8.718	8.210	$2.24 \mathrm{e}-13$	$* * *$
nbed	19.465	2.804	6.941	$1.83 \mathrm{e}-10 \quad * * *$	

Signif. codes: $0{ }^{\prime} * * * ' 0.001$ '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 22.94 on 126 degrees of freedom
Multiple R-squared: 0.2766,Adjusted R-squared: 0.2709
F-statistic: 48.18 on 1 and 126 DF , p-value: $1.83 \mathrm{e}-10$
Bedrooms has information about price, but, if you already have the information in the other variables, it may not have much additional information given what we can learn from $n=128$ houses.

Regression finds a linear combination of the variables that is like y.

price vs size:

The residuals are the part of y not related to the x 's.

summary: adding a Categorical x

In general to add a categorical x, you can create dummies, one for each possible category (or level as we sometimes call it).

Use all but one of the dummies.
It does not matter which one you drop for the fit, but the interpretation of the coefficients will depend on which one you choose to drop.

