R cheat sheet

1. Basics

Commands	objects()	List of objects in workspace
	1s()	Same
	rm(object)	Delete 'object'
Assignments	<-	Assign value to a variable
	=	Same
Getting help	help(fun)	Display help file for function fun()
	args(fun)	List arguments of function fun()
Libraries / packages	library(pkg)	Open package (library) ' pkg '
	library(help=pkg)	Display description of package ' pkg '

2. Vectors and data types

Generating	seq(-4, 4, 0.1)	Sequence: -4.0, -3.9, -3.8, ..., 3.9, 4.0
	2:7	Same as seq($2,7,1$)
	c (5,7,9,1:3)	Concatenation (vector): 579123
	rep (1,5)	11111
	rep($4: 6,1: 3$)	455666
	$\mathrm{gl}(3,2,12)$	Factor with 3 levels, repeat each level in blocks of 2, up to length 12 (112233112233)
Coercion	as.numeric (x)	Convert to numeric
	as.character (x)	Convert to text string
	as.logical(x)	Convert to logical
	factor (x)	Create factor from vector x
	unlist(x)	Convert list, result from table() etc. to vector

3. Data frames

Accessing data	data.frame(height, weight)	Collect vectors 'height' and 'weight' into data frame
	dfr\&var	Select vector 'var' in data frame 'dfr'
	attach (dfr)	Put data frame in search path
	detach()	- and remove it from the path
Editing	dfr2 <- edit(dfr)	open data frame ' dfr ' in spreadsheet, write changed version into new data frame ' dfr 2 '
	fix(dfr)	open data frame ' dfr ' in spreadsheet, changes will overwrite entries in ' dfr '
Summary	$\operatorname{dim}(\mathrm{dfr})$	Number of rows and columns in data frame ' dfr ', works also for matrices and arrays
	summary (dfr)	Summary statistics for each variable in ' dfr '

Modified from: P. Dalgaard (2002). Introductory Statistics with R. Springer, New York.

4. Input and export of data

General	data(name)	Built-in data set
	read.table("file.txt")	Read from external ASCII file
Arguments to read.table()	header = TRUE	First line has variable names
	row.names = 1	First column has row names
	sep = ","	Data are separated by commas
	sep = "\t"	Data are separated by tabs
	dec $=$ ", "	Decimal point is comma
	na.strings = "."	Missing value is dot
Variants of read.table()	read.csv("file.csv")	Comma separated
	read.delim("file.txt")	Tab delimited text file
Export	write.table()	see help(write.table) for details
Adding names	names()	Column names for data frame or list only
	dimnames()	Row and column names, also for matrix

5. Indexing / selection / sorting

Vectors	x [1]	First element
	x[1:5]	Subvector containing the first five elements
	$x[c(2,3,5)]$	Elements nos. 2, 3, and 5
	$x[y<=30]$	Selection by logical expression
	x[sex = = "male"]	Selection by factor variable
	i <-c (2,3,5); x [i]	Selection by numerical variable
	k <- (y < $=30$); $\mathrm{x}[\mathrm{k}]$	Selection by logical variable
	length(x)	Returns length of vector x
Matrices, data frames	$\mathrm{m}[4, \mathrm{l}$	Fourth row
	$\mathrm{m}[$, 3]	Third column
	drf[drf\$var <=30,]	Partial data frame (not for matrices)
	subset(dfr, var<=30)	Same, often simpler (not for matrices)
	$\mathrm{m}[\mathrm{m}[, 3]<=30, ~]$	Partial matrix (also for data frames)
Sorting	sort(c(7, 9, 10,6))	Returns the sorted values: $6,7,9,10$
	$\operatorname{order}(\mathrm{c}(7,9,10,6))$	Returns the element number in order of ascending values: 4, 1, 2, 3
	$\operatorname{order}(\mathrm{c}(7,9,10,6)$, decreasing = TRUE)	same, but in order of decreasing values: $3,2,1,4$
	$\operatorname{rank}(\mathrm{c}(7,9,10,6))$	Returns the ranks in order of ascending values: 2, 3, 4, 1

6. Missing values

Functions	is.na(x)	Logical vector. TRUE where x has NA
	complete.cases($\mathrm{x} 1, \mathrm{x} 2, \ldots$)	Neither missing in x 1 , nor x 2 , nor ...
Arguments to other functions	na.rm $=$	In statistical functions: Remove missing if TRUE, returns NA if FALSE
	na.last =	In 'sort' TRUE, FALSE and NA means "last", "first", and "discard"
	na.action $=$	in ' $\operatorname{mm}($)', etc., values na.fail, na.omit, na.exclude
	na.print =	In 'summary ()' and 'print ()': How to represent NA in output
	na.strings =	In 'read.table()': Codes(s) for NA in input

8. Programming

Conditional execution	$\begin{aligned} & \text { if(p<0.5) } \\ & \text { print("Hooray") } \end{aligned}$	Print "Hooray" if condition is true
	$\begin{aligned} & \text { if }\left(\begin{array}{c} \text { p }<0.5) \\ \left\{\begin{array}{c} \text { print }(" H o o r a y ") ~ \end{array}\right) \\ i=i+1 \quad 1 \end{array}\right. \end{aligned}$	If condition is true, perform all commands within the curved brackets \{ \}
	```if(p < 0.5) { print("Hooray")} else { i = i + 1}```	Conditional execution with an alternative
Loop	$\begin{aligned} & \text { for (i in } 1: 10) \\ & \{\quad \operatorname{print}(\mathrm{i})\} \end{aligned}$	Go through loop 10 times
	$\begin{aligned} & i<-1 \\ & \text { while(i<=10) } \\ & \left\{\begin{array}{c} \text { print } \\ i) \\ i=i+1\} \end{array}\right. \end{aligned}$	Same, but more complicated
User-defined function	$\begin{aligned} & \text { fun<- function(a, b, } \\ & \text { doit = FALSE) } \\ & \{\text { if(doit) }\{a+b\} \\ & \text { else } 0\} \end{aligned}$	Defines a function 'fun' that returns the sum of a and b if the argument 'doit' is set to TRUE, or zero, if 'doit' is FALSE

## 9. Operators

Arithmetic	+	Addition
	-	Subtraction
	*	Multiplication
	/	Division
	$\wedge$	Raise to the power of
	\% / \%	Integer division: 5 \%/\% 3 = 1
	\% \%	Remainder from integer division: $5 \% 3=2$
Logical or relational	$=$	Equal to
	! =	Not equal to
	<	Less than
	>	Greater than
	< =	Less than or equal to
	> =	Greater than or equal to
	is.na(x)	Missing?
	\&	Logical AND
	\|	Logical OR
	!	Logical NOT

## 7. Numerical functions

Mathematical	$\log (x)$	Logarithm of x, natural logarithm
	$\log (\mathrm{x}, 10)$	Base10 logarithm of x
	$\exp (x)$	Exponential function $\mathrm{e}^{\mathrm{x}}$
	$\sin (x)$	Sine
	$\cos (x)$	Cosine
	$\tan (\mathrm{x})$	Tangent
	$\operatorname{asin}(x)$	Arcsin (inverse sine)
	$\min (x)$	Smallest value in vector
	$\min (x 1, x 2, \ldots)$	minimum number over several vectors
	$\max (\mathrm{x})$	Largest value in vector
	range( x )	Like c(min $(x), \max (\mathrm{x})$ )
	pmin(x1, x2, ...)	Parallel (elementwise) minimum over multiple equally long vectors
	length(x)	Number of elements in vector
	sum ( x )	Sum of values in vector
	cumsum(x)	Cumulative sum of values in vector
	sum(complete.cases(x))	Number of non-missing elements
Statistical	mean ( x )	Average
	median( x )	Median
	quantile( $\mathrm{x}, \mathrm{p}$ )	Quantiles: median = quantile ( $\mathrm{x}, 0.5$ )
	var (x)	Variance
	sd(x)	Standard deviation
	$\operatorname{cor}(\mathrm{x}, \mathrm{y})$	Pearson correlation
	```cor(x, y, method = "spearman")```	Spearman rank correlation

10. Tabulation, grouping, recoding

General	table(x)	Frequency table of vector (factor) x
	table(x, y)	Crosstabulation of x and y
	x tabs ($\sim x+y$)	Formula interface for crosstabulation: use summary () for chi-square test
	factor (x)	Convert vector to factor
	cut (x, breaks)	Groups from cutpoints for continuous variable, breaks is a vector of cutpoints
Arguments to factor()	levels = c()	Values of x to code. Use if some values are not present in data, or if the order would be wrong.
	labels $=\mathrm{c}()$	Values associated with factor levels
	exclude = c()	Values to exclude. Default NA. Set to NULL to have missing values included as a level.
Arguments to cut()	breaks = c ()	Cutpoints. Note values of x outside of 'breaks' gives NA. Can also be a single number, the number of cutpoints.
	labels = c ()	Names for groups. Default is 1, $2, \ldots$
Factor recoding	levels(f) <- names	New level names
	factor(newcodes[f])	Combining levels: 'newcodes’, e.g., $c(1,1,1,2,3)$ to amalgamate the first 3 of 5 groups of factor f

11. Manipulations of matrices and lists

Matrix algebra	m1 \% * \% m2	Matrix product
	$\mathrm{t}(\mathrm{m})$	Matrix transpose
	$\mathrm{m}[$ lower.tri(m)]	Returns the values from the lower triangle of matrix m as a vector
	diag(m)	Returns the diagonal elements of matrix m
	matrix(x, dim1, dim2)	Fill the values of vector x into a new matrix with dim1 rows and dim2 columns,
Marginal operations etc.	apply(m, dim, fun)	Applies the function 'fun' to each row (dim = 1) or column (dim= 2) of matrix m
	tapply(m, list(f1, f2), fun)	Can be used to aggregate columns or rows within matrix m as defined by f1, f2, using the function 'fun' (e.g., mean, max)
	split (x, f)	Split vector, matrix or data frame by factor x. Different results for matrix and data frame! The result is a list with one object for each level of f.
	sapply sapply(list, fun) fun)	applies the function 'fun' to each object in a list, e.g. as created by the split function

12. Statistical standard methods

Parametric tests, continuous data	t.test	One- and two-sample t-test
	pairwise.t.test	Pairwise comparison of means
	cor.test	Significance test for correlation coeff.
	var.test	Comparison of two variances (F-test)
	$\operatorname{lm}(\mathrm{y} ~ \sim ~ x) ~$	Regression analysis
	$\operatorname{lm}(\mathrm{y} \sim \mathrm{f})$	One-way analysis of variance
	$\operatorname{lm}(\mathrm{y} \sim \mathrm{x} 1+\mathrm{x} 2+\mathrm{x} 3)$	Multiple regression
	$\operatorname{lm}(\mathrm{y} \mathrm{\sim} \mathrm{f1} \mathrm{*} \mathrm{f2)}$	Two-way analysis of variance
Non-parametric	wilcox.test	One- and two-sample Wilcox test
	kruskal.test	Kruskal-Wallis test
	friedman.test	Friedman's two-way analysis of variance
cor.test variant	method = "spearman"	Spearman rank correlation
Discrete response	binom.test	Binomial test (incl. sign test)
	prop.test	Comparison of proportions
	fisher.test	Exact test in 2×2 tables
	chisq.test	Chi-square test of independence
	$\begin{aligned} & \operatorname{glm}(y \sim x 1+x 2, \\ & \text { binomial }) \end{aligned}$	Logistic regression

13. Statistical distributions

Normal distribution	dnorm(x)	Density function
	pnorm(x)	Cumulative distribution function $\mathrm{P}(\mathrm{X}<=\mathrm{x})$
	qnorm(p)	p-quantile, returns x in: $P(X<=x)=p$
	rnorm(n)	n random normally distributed numbers
Distributions	pnorm(x, mean, sd)	Normal
	plnorm*x, mean, sd)	Lognormal
	pt (x, df)	Student's t distribution
	pf(x, n1, n2)	F distribution
	pchisq(x, df)	Chi-square distribution
	pbinom(x, n, p)	Binomial
	ppois(x, lambda)	Poisson
	punif(x, min, max)	Uniform
	$\operatorname{pexp}(x$, rate $)$	Exponential
	```pgamma(x, shape, scale)```	Gamma
	$\operatorname{pbeta}(\mathrm{x}, \mathrm{a}, \mathrm{b})$	Beta

## 14. Models

Model formulas	$\sim$	As explained by
	+	Additive effects
	:	Interaction
	*	$\begin{aligned} & \text { Main effects + interaction: } a * b \\ & =a+b+a: b \end{aligned}$
	-1	Remove intercept
Linear models	lm.out <- $\operatorname{lm}(\mathrm{y} \sim \mathrm{x})$	Fit model and save results as 'lm.out'
	summary(lm.out)	Coefficients etc.
	anova(lm.out)	Analysis of variance table
	fitted(lm.out)	Fitted values
	resid(lm.out)	Residuals
	predict(lm.out, newdata)	Predictions for a new data frame
Other models	glm( $\mathrm{y} \sim \mathrm{x}, \mathrm{binomial})$	Logistic regression
	$g \operatorname{lm}(\mathrm{y} \sim \mathrm{x}, \mathrm{poisson})$	Poisson regression
	$\operatorname{gam}(\mathrm{y} \sim \mathrm{s}(\mathrm{x})$ )	General additive model for non-linear regression with smoothing. Package: gam
	tree( $\mathrm{y} \sim \mathrm{x} 1+\mathrm{x} 2+\mathrm{x} 3)$	Classification ( $\mathrm{y}=$ factor) or regression ( $\mathrm{y}=$ numeric) tree. Package: tree
Diagnostics	rstudent(lm.out)	Studentized residuals
	dfbetas(lm.out)	Change in standardized regression coefficients beta if observation removed
	dffits(lm.out)	Change in fit if observation removed
Survival analysis	S <- Surv(time, ev)	Create survival object. Package: survival
	survfit(S)	Kaplan-Meier estimate
	plot(survfit(S))	Survival curve
	survdiff( S ~ g)	(Log-rank) test for equal survival curves
	coxph(S ~ x1 + x2)	Cox's proportional hazards model
Multivariate	dist()	Calculate Euclidean or other distances
	hclust()	Hierarchical cluster analysis
	kmeans()	k-means cluster analysis
	rda()	Perform principal component analysis PCA or redundancy analysis RDA. Package 'vegan'.
	cca()	Perform (canonical) correspondence analysis, CA /CCA. Package: 'vegan'
	diversity()	Calculate diversity indices. Pkg: 'vegan'

## 15. Graphics

Standard plots	$\operatorname{plot}(\mathrm{x}, \mathrm{y})$	Scatterplot (or other type of plot if x and y are not numeric vectors)
	plot (f, y)	Set of boxplots for each level of factor $f$
	hist()	Histogram
	boxplot()	Boxplot
	barplot()	Bar diagram
	dotplot()	Dot diagram
	piechart()	Pie chart
	interaction.plot()	Interaction plot (analysis of variance)
Plotting elements (adding to a plot)	lines()	Lines
	abline()	Regression line
	points()	Points
	arrows()	Arrows (NB: angle $=90$ for error bars)
	box()	Frame around plot
	title()	Title (above plot)
	text()	Text in plot
	mtext()	Text in margin
	legend()	List of symbols
Graphical pars.: arguments to par()	pch	Symbol (see below)
	mfrow, mfcol	Several plots in one (multiframe)
	xlim, ylim	Plot limits
	lty, lwd	Line type / width (see below)
	col	Color for lines or symbols (see below)

## Point symbols (pch)


$\begin{array}{lllllllllllllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19\end{array}$

## Colors (col)

> black
> red
> green
> blue
> light blue
> purple
> yellow

grey

Line types (Ity)


