Homework for Section 5

Rob McCulloch

August 16, 2020

1 Homework for Section 5

1.1 Nbhd Size Interaction

Here is the R output for the fit of the model:

$$
\text { price }=\beta_{0}+\beta_{1} \text { size }+\beta_{2} n 3+\epsilon
$$

where n 3 is a dummy for neighborhood 3 .
Coefficients

Estimate Std. Error t value $\operatorname{Pr}(>\|t\|)$					
(Intercept)	18.153	13.574	1.337	0.18	
size	50.675	6.852	7.396	$1.78 \mathrm{e}-1$	
n3	35.699	3.137	11.379	$<2 e-1$	
Signif. cod	$0^{\prime} *$	0.001 '	' 0.01	'*' 0.	
Residual standard error: 15.81 on 125 degrees of freedom					
Multiple R-squared: 0.659, Adjusted R-squared:					
F-statistic: 120.8 on 2 and 125 DF , p-value: < $2.2 \mathrm{e}-16$					

In the notes we fit the regression:

$$
\text { price }=\beta_{0}+\beta_{1} \text { size }+\beta_{2} d 1+\beta_{3} d 2+\epsilon
$$

where d 1 and d 2 are dummies for neighborhoods 1 and 2 .

(a)

What is the interpretation of the model having size and $n 3$?

Based on the regression outputs, how does the model with n3 compare to the model with d1 and d2?
(b)

Let's stick with the model having size and $n 3$ and see if the slope should depend on the neighborhood.
Let's fit the model:

$$
\text { price }=\beta_{0}+\beta_{1} \text { size }+\beta_{2} n 3+\beta_{3} \text { size } \times n 3+\epsilon
$$

Here is the regression output where n 3 size $=\mathrm{n} 3 \times$ size .

	Estimate Std. Error	t value $\operatorname{Pr}(>\|\mathrm{t}\|)$			
(Intercept)	16.967	16.355	1.037	0.302	
size	51.278	8.275	6.197	$7.81 \mathrm{e}-09$	$* * *$
n3	39.692	30.611	1.297	0.197	
n3size	-1.952	14.887	-0.131	0.896	

Signif. codes: 0 ' $* * *$ ' 0.001 ' $* *$ ' 0.01 '*’ 0.05 '.' 0.1 ' ' 1

Residual standard error: 15.88 on 124 degrees of freedom
Multiple R-squared: 0.6591, Adjusted R-squared: 0.6508
F-statistic: 79.9 on 3 and 124 DF, p-value: < $2.2 \mathrm{e}-16$
Here is the plot of the fit:

Do we need the interaction term in the model?

Solution

(a)

The model with with size and n3 lumps neighborhoods 1 and 2 together.

The $\hat{\sigma}$ (15.26 and 15.81) and the $R^{2}(.685$ and .66) are not very different. Suggests we could just use the n3 dummy.
(b)

Both the ouput and the plot suggest we don't need the interaction term. The simple linear model seems ok.

1.2 Log the OJ Data

Get the data OJ.csv from the webpage.
A chain of gas station convenience stores was interested in the dependency between price of and Sales for orange juice.
They decided to run an experiment and change prices randomly at different locations.
(a)

Plot Price vs. Sales and \log (Price) vs. \log (Sales).
What does this say about using linear regression to relate Sales to Price??
(b)

Run the regression of \log (Sales) on \log (Price).
Plot the residuals vs. the fitted values.
What does this tell you?

Plot the standardized residuals vs. the fitted values. Any outliers?
(c)

Run the regression of \log (Sales) on \log (Price).
What is your prediction for sales give price $=3.0$?

Solution
(a)

```
ojd = read.csv("http://www.rob-mcculloch.org/data/OJ.csv")
```

plot(ojd\$Price,ojd\$Sales)

Logging both Price and Sales really helps.
(b)

```
ldf = data.frame(lPrice = log(ojd$Price), lSales = log(ojd$Sales))
llm = lm(lSales~lPrice,ldf)
summary(llm)
##
## Call:
## lm(formula = lSales ~ lPrice, data = ldf)
##
## Residuals:
\#\# Min 1Q Median 3Q Max
## -0.7463 -0.3399 0.0279 0.2358 0.7547
##
## Coefficients:
## Estimate Std. Error t value Pr}(>|t|
## (Intercept) 4.812 0.148 32.50< < 2e-16 ***
## lPrice -1.752 0.144 -12.17 2.77e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3858 on 48 degrees of freedom
## Multiple R-squared: 0.7553, Adjusted R-squared: 0.7502
## F-statistic: 148.2 on 1 and 48 DF, p-value: 2.773e-16
plot(llm$fitted.values,llm$residuals)
```


To get the standardized residuals in R we can use the rstandard function.
This basically devides the resids by $\hat{\sigma}$ as discussed in the notes.

```
stres = rstandard(llm)
sighat = summary(llm)$sigma
plot(stres,llm$residuals/sighat)
abline(0,1,col="red")
```


Now let's plot:
plot(llm\$fitted.values,stres)

Do not see any outliers or obvious pattern !!
(c)
lshat $=\operatorname{llm} \$ \operatorname{coef}[1]+\operatorname{llm} \$ \operatorname{coef}[2] * \log (3.0)$
shat $=\exp$ (lshat)
cat("plug in prediction for Sales is ",shat,"\n")
\#\# plug in prediction for Sales is 17.92966

1.3 Quadratic Fit to the OJ Data

Get the data OJ.csv from the webpage.
A chain of gas station convenience stores was interested in the dependency between price of and Sales for orange juice.
They decided to run an experiment and change prices randomly at different locations.
Plot Price vs. Sales.
Clearly the relationship is not linear!!

Plot the fitted values vs. residuals for the linear regression of Sales on Price and Price squared.

What does the residual plot tell us about the appropriateness of the quadratic model?

Solution

```
ojd = read.csv("http://www.rob-mcculloch.org/data/OJ.csv")
plot(ojd$Price,ojd$Sales)
```


Not linear! Plausible a quadratic fit might work.

```
ojd$PriceSq = ojd$Price^2
lm2 = lm(Sales~.,ojd)
summary(lm2)
##
## Call:
## lm(formula = Sales ~ ., data = ojd)
##
## Residuals:
\#\# Min 1Q Median 3Q Max
## -33.786 -9.514 -0.876 4.417 73.541
##
## Coefficients:
## Estimate Std. Error t value Pr}(>|t|
## (Intercept) 166.740 25.914 6.434 5.9e-08 ***
## Price -83.827 20.306 -4.128 0.000148 ***
## PriceSq 11.264 3.605 3.125 0.003048 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 18.49 on 47 degrees of freedom
## Multiple R-squared: 0.6003, Adjusted R-squared: 0.5833
## F-statistic: 35.29 on 2 and 47 DF, p-value: 4.38e-10
```

```
plot(lm2\$fitted,lm2\$residuals)
```


Hmm. Not so good. We have heteroskedasticiy. The variance of the residuals seems way bigger for bigger prices.
Looks like \log (Sales) on \log (Price) is a better way to go!!

1.4 Midcity House Data Tree

Here is a tree fit to the Midcity Housing data having 7 bottom nodes (leaves).

Remember, for a categorical variable a means the first level and b means the second level and so on. So, for Nbhd, (a, b, c) corresponds to $(1,2,3)$ and for Brick a to No and b to Yes.
(a)

Using the tree, what price would you predict for non-brick house in Neighborhood c=3?
(b)

According to the tree, what seems to be the highest price neighborhood?
(c)

According to the tree, what kind of house has the lowest price?

Solution

(a) 148.2
(b) $\mathrm{c}=3$, the right side of three has higher prices than the left.
(c) A house in Nbhds 1 or 2 (ab), with size less than 2.02 and not made of brick.

