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Abstract

Bayesian Additive Regression Trees (BART) has emerged as a highly effective
Bayesian approach to ensemble modeling with many binary trees. The BART Markov
Chain Monte Carlo (MCMC) algorithm provides effective stochastic search in a com-
plex model space and Bayesian uncertainty. As is the case with many modern ap-
proaches, the overall complexity of the model makes interpretation difficult. In prac-
tice, investigators often wish to know what predictor variables are important or, more
generally, what roles variables play in the model. In this paper we review some ap-
proaches for understanding how variables enter the BART model. We present simple
ways to find out what variables are important, what pairs of variables interact in the
model, and what subsets of variables allow us to approximate the full information in-
formation inference according to a user defined metric. In all cases, our approach is
based on post processing of the output from basic BART modeling and uncertainty is
captured naturally by the usual MCMC variation in a straightforward way.
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1 Introduction

Modern statistical methods have, to a remarkable extent, advanced our ability to uncover
complex, high dimensional relationships. In particular, for directed problems in which we pre-
dict y from x = (21, ..., x,), methods based on ensembles of trees have performed amazingly
well in practice. Although the inner workings of these “black box” models are necessarily
complex and somewhat intimidating, these ensembles are particularly well suited for variable
selection because of their flexible nonparametric nature. In contrast to popular paramet-
ric approaches such as normal linear regression, where variable selection is tantamount to
submodel selection, the unrestricted nature of ensembles of trees allows for a richer set of
possibilities for discovering the potential relatedness of y and a subset of the predictors.
Bayesian Additive Regression Trees (BART, [3]) is a Bayesian approach to ensemble tree
modeling which has proven to be remarkably effective for prediction and inference, often with
minimal tuning. In this chapter, we show how the output of BART is particularly congenial
for the problem of variable selection and the problem of interaction detection, itself a form of
structured variable selection. The essential idea is to simply to assess the relative frequency
with which variables and their interactions appear in the tree components of the ensemble.

2 BART Overview

In this section we review the essentials of the BART proposed by [3], hereafter GGM10. In a
nutshell, BART is a fully Bayesian approach for modeling the regression y on x = (1, ..., z,)
with a flexible sum-of-trees model of the form

Y:Zg(x;Tj,Mj) + ¢, e~ N(0,0%). (1)

J=1

Here, each T} is a recursive binary regression tree associated with a set M; of terminal
node constants j;;, for which g(z;7}, M;) is the step function which assigns p;; € M; to x
according to the sequence of decision rules in 7. These decision rules are binary splits of
the predictor space of the form {z € A} vs {x ¢ A} where A is a subset of the range of x.
When the number of trees m =1, reduces to the single tree model used by [4], hereafter
CGM9IS, for Bayesian CART.

For each value of z, under (), E(Y'| z) is equal to the sum of all the terminal node
fi;’s assigned to x by the g(x;T;, M;)’s. Thus, the sum-of-trees function is flexibly capable
of approximating a wide class of functions from R™ to R, especially when the number of
trees m is large. Note also that the sum-of-trees representation is simply the sum of many
simple multidimensional step functions from R" to R, namely the g(x;T}, M;), rendering
it much more manageable than a basis expansion with more complicated elements such as
multidimensional wavelets or multidimensional splines.

The BART model specification is completed by introducing a prior distribution over all
the parameters of the sum-of-trees model, namely (74, M), ..., (T, M,,) and o. Note that



(Ty, My), ..., (T, M,,) entail all the bottom node parameters as well as the tree structures
and decision rules, a very large number of parameters, especially when m is large. To cope
with this parameter explosion, we use a “regularization” prior that effectively constrains the
fit by keeping each of the individual tree effects from being unduly influential. Without such
a regularizing influence, large tree components would overwhelm the rich structure of ,
thereby limiting its scope of fine structure approximation.

2.1 Specification of the BART Regularization Prior

To simplify the specification of this regularization prior, we restrict attention to independence
priors of the form

p((Th, M), ..., (T, M), 0) = [H (HP(MJ‘H})) p(T})| plo), (2)

J

where p;; € M;, there by reducing prior specification to the choice of prior forms for
p(T;), p(pi; | T;) and p(o). To simplify matters further we use identical prior forms for every
p(T;) and for every p(u;; |1;). As detailed below, each of these prior forms are controlled by
just a few interpretable hyperparameters that can be calibrated to yield surprisingly effective
default specifications for regularization of the sum-of-trees model.

For p(T}), we use the sequential tree-generating process which is specified by three aspects:
(i) the probability that a node at depth d (= 0,1,2,...) is nonterminal, given by

a(l+d)",  ae€(0,1),3€][0,00), (3)

(ii) the distribution on the splitting variable assignments at each interior node, and (iii)
the distribution on the splitting rule assignment in each interior node, conditional on the
selected splitting variable. As default choices, CGGM 98 and CGM10 recommend a = 0.95
and J = 2 for (1), and a uniform priors on each set of possibilities for (ii) and (iii). Interesting
alternative enhancements of these choice for p(7}) have been proposed by Linero [§], Rockova
and van der Paas [10] and Rockova and Saha [9].

For p(pi; | T;), we use the conjugate normal distribution N (g, 07,) which allows p;; to be
margined out, vastly simplifying MCMC posterior calculations. To guide the specification of
the hyperparameters y, and o, we note that under (I, it is highly probable that E(Y | z)
lies between ¥, and Yz, the observed minimum and maximum of y in the data, and
that the prior distribution of E(Y |x) is N(m p,,mo}), (because E(Y | x) is the sum of m
independent y;;’s under the sum-of-trees model). Based on these facts, we use the informal
empirical Bayes strategy of choosing p, and o, so that N(m ,uu,maz) assigns substantial
probability to the interval (Ymin, Ymas). This is conveniently done by choosing s, and o,
so that mp, — k \/ﬁau = Ymin and mp, + k \/ﬁau = Ymaz fOr some preselected value of
k such 1,2 or 3. For example, k = 2 would yield a 95% prior probability that E(Y | x)
is in the interval (Ymin,Ymaz). The goal of this specification strategy for p, and o, is to
ensure that the implicit prior for £(Y | x) is in the right “ballpark” in the sense of assigning
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substantial probability to the entire region of plausible values of E(Y | ) while avoiding
overconcentration and overdispersion of the prior with respect to the likelihood. As long as
this goal is met, BART seems to be very robust to the variations of these specifications.

For p(o), we also use a conjugate prior, here the inverse chi-square distribution o2 ~
v A\/x2. Here again, we use a informal empirical Bayes approach, to guide the specification of
the hyperparameters v and A, in this case to assign substantial probability to the entire region
of plausible values of ¢ while avoiding overconcentration and overdispersion of the prior.
Essentially, we calibrate the prior df v and scale X\ using a “rough data-based overestimate”
o of . Two natural choices of 6 are 1) a “naive” specification, the sample standard deviation
of Y, or 2) a “linear model” specification, the residual standard deviation from a least squares
linear regression of Y on all the predictors. We then pick a value of v between 3 and 10
to get an appropriate shape, and a value of A so that the qth quantile of the prior on o is
located at &, that is P(o < ¢) = ¢q. We consider values of ¢ such as 0.75, 0.90 or 0.99 to
center the distribution below &.

2.2 Posterior Calculation and Information Extraction

Combing the regulation prior with the likelihood, L((71, M), ..., (T, My,), 0| y) induces a
posterior distribution

p((Th, M), ..., (T, M), 0| ) (4)
over the full sum-of-trees model parameter space. Although analytically intractable, the
following backfitting MCMC algorithm can be used to very effectively simulate samples
from this posterior.

The algorithm is a Gibbs sampler at the outer level. Let T{;) be the set of all trees in the
sum except T, and similarly define M;), so that T{;) will be a set of m — 1 trees, and M
the associated terminal node parameters. A Gibbs sampling strategy for sampling from
is obtained by m successive draws of (7}, M;) conditionally on (7, M(;,0):

(T‘]HMj) | T(j)’M(j)70-7ya (5)
j=1,...,m, followed by a draw of ¢ from the full conditional:
O'|T1,...Tm,M1,...,Mm,y. (6)

The draw of o in () is simply a draw from an inverse gamma distribution and so can
be easily obtained by routine methods. More subtle is the implementation of the m draws
of (T;, M;) in . This can be done by taking advantage of the following reductions. First,
observe that the conditional distribution p(Tj, M;|T;, M(j),o,y) depends on (T(;), M), y)
only through

RjEZ/—ZQ(iL';Tk,Mk), (7>
k#j
the n—vector of partial residuals based on a fit that excludes the jth tree. Thus, the m
draws of (T}, M;) given (T(;, M(j,0,y) in (5] are equivalent to m draws from

<Tj>Mj)|Rj’0-7 (8)

3



Jj =1,...,m. Because we have used a conjugate prior for M;, p(T;|R;, o) can be obtained
in closed form up to a norming constant. This allows us to carry out each draw from in

two successive steps as
7}' |Rj, o (9)

M;|T;, R;, 0. (10)

The draw of T} in @D, although somewhat elaborate, can be obtained using the Metropolis-
Hastings (MH) algorithm of CGM98. The draw of M, in is simply a set of independent
draws of the terminal node p;;’s from a normal distribution. The draw of M; enables the
calculation of the subsequent residual R;;; which is critical for the next draw of 7j.

We initialize the chain with m simple single node trees, and then iterations are repeated
until satisfactory convergence is obtained. Fortunately, this backfitting MCMC algorithm
appears to mix very well as we have found that different restarts give remarkably similar
results even in difficult problems. At each iteration, each tree may increase or decrease
the number of terminal nodes by one, or change one or two decision rules. The sum-of-trees
model, with its abundance of unidentified parameters, allows for “fit” to be freely reallocated
from one tree to another. Because each move makes only small incremental changes to the
fit, we can imagine the algorithm as analogous to sculpting a complex figure by adding and
subtracting small dabs of clay.

For inference based on our MCMC sample, we rely on the fact the our backfitting algo-
rithm is ergotic. Thus, the induced sequence of sum-of-trees functions

m

FO) =gy, M), (11)

=1

for the sequence of draws (17, My),..., (T}, M), is converging to p(f|y), the posterior
distribution on the “true” f(-). Thus, by running the algorithm long enough after a suitable
burn-in period, the sequence of f* draws, say f;, ..., fj, may be regarded as an approximate,
dependent sample of size K from p(f |y). Bayesian inferential quantities of interest can then
be approximated with this sample as indicated below.

To estimate f(x) or predict Y at a particular z, in-sample or out-of-sample, a natural
choice is the average of the after burn-in sample f7,..., %,

1 K

=3 i) (12)

which approximates the posterior mean E(f(x)|y). Posterior uncertainty about f(x) may
be gauged by the variation of f(x),..., fi(x). For example, a natural and convenient
(1 — a)% posterior interval for f(z) is obtained as the interval between the upper and lower

a/2 quantiles of f(x),..., fr(x).



3 Model-Free Variable Selection with BART

In this section we describe and illustrate how variable selection may be accomplished by
direct inspection of the basic BART output. The essential idea to select those components
of x that tend to be used most often in the MCMC sequence of fitted sum-of-trees models,
fi,- .., fie- To measure this tendency, we simply record for each model f;, the proportion
of splitting rules using each component of z, and then average these proportions across the
whole sequence. Those components with the largest average usage proportions are then
selected. The attribution of classical statistical significance levels to these proportions can
be obtained with the permutation based methods proposed by Bleich et.al. [I].

While it makes intuitive sense that relevant predictors will tend to be used frequently
in the fitted sum-of-trees ensemble, it turns out that when the number of trees m is large,
the redundancy of the overly rich basis of trees will also allow for many irrelevant predictors
to be mixed in with the relevant ones. Fortunately, as m is decreased, this redundancy is
diminished, thereby forcing the BART output tends to more heavily favor relevant predictors
for its fit. In a sense, when m is small the predictors compete with each other to improve
the fit.

This direct BART approach to variable selection is thus accomplished by observing what
happens to the x component usage frequencies in a sequence of MCMC samples f7, ..., [k
as the number of trees m is set smaller and smaller. More precisely, for each simulated sum-
of-trees model f}, let z;;, be the proportion of all splitting rules that use the ¢th component
of . Then

1 K

is the average use per splitting rule for the ¢th component of x. As m is set smaller and
smaller, the sum-of-trees models tend to more strongly favor inclusion of those x components
which improve prediction of y and exclusion of those x components that are unrelated to y.
In effect, smaller m seems to create a bottleneck that forces the x components to compete
for entry into the sum-of-trees model. As we illustrate below, the x components with the
larger v;’s will then be those that provide the most information for predicting y.

3.1 Variable Selection with the Boston Housing Data

We illustrate this approach with the well known Boston housing data which is available in
many data science environments (library MASS in R). There are n = 506 observations each
of which corresponds to a neighborhood in the Boston area. The response of interest is
y = the median value of a house in thousands of dollars. For each neighborhood, thirteen
characteristics have been measured. We refer the reader the R documentation for details but
a few variables which will be important are (i) Istat: lower status of the population (percent),
(ii) rm: average number of rooms per dwelling, and (iii) nox: nitrogen oxides concentration
(parts per 10 million).



We ran BART for 10,000 burn in iterations and then 10,000 post burn in iterations. We
used 20 trees in the BART ensemble. We used the implementation in the R library BART
and all other BART parameters were left at default values. Figure [1| displays the draws of o
for all 20,000 BART MCMC iterations. While it does take all 10,000 initial draws to burn
in, it does look like things have stabilized from that point on.

MCMC draws of g, 20 trees, 10,000 burn-in and kept draws
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Figure 1: MCMC draws of o. 20 trees. Vertical line draw at iteration 10,000 to indicate
burn-in period.

Figure [2| displays the posterior distribution of percent usage for each variable. The red
dot is at the posterior mean (average over MCMC draws) and the vertical solid (blue) line
is a 90% posterior interval (5% and 95% quantiles from the MCMC draws). The results are
quite clear. With high posterior probability, the variables nox, rm, and Istat are important.
For all other variables there is considerable uncertainty.

In Figure [2| are results are based on BART modeling using 20 trees in the ensemble. The
default value for the number of trees in the R package BART is 200. For predicive accurracy, a
large number of trees often works best. However, for the simple variable selection approach,
fewer tree may give a better understanding of the important variables. This is BART is
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Figure 2: Posterior distributions of usage percentage for each variable. 20 trees. 90%
intervals.

designed to only let a variable enter with “a little bit of fit” and the amount of fit gets
smaller as we add trees. With a large number of trees, a variable may be used in several
tree decision rules without really doing anything. With fewer trees, the focus is narrowed to
variable that make an important contribution.

Figure [3| plots the posterior mean of the variable percent usage from our previous BART
run with 20 trees and a BART run (same number burn-in and kept draws) with the default
200 trees. We can see that it would be very hard to pick out a promising variable subset
using the 200 tree run.

The appeal of the simple percent usage approach is its simplicity. In some case, the use
of fewer trees may degrade the fit. Figure [4] plots the response y=median price, the BART
fit with 200 trees, the BART fit with 20 trees, and the fit from a linear model. In this
case the BART default fit is very good and very similar to the 20 tree fit. The linear fit is
dramatically worse. Of course, we could improve the fit by doing simple data analysis (e.g.
log y) but the BART default immediately give appealing results.

In practice, as in the Boston example, it is often straightforward to find a number of trees
which gives a fit similar to the default, but identifying variables. It is noteworthy that the
percent usage approach can be effective without the explicit use of variable selection prior
and by relying on just a simple measure of variable usage as opposed to how much its usage
improves the loss (as in CART). Linero ([8]) discusses a very nice approach to adding prior
information about sparcity to BART which works very well. The cost is another layer of



post mean, percent var use

posterior means, variable usage in percent

o - - A-- BART200 e
- 7 A
S =% -+ BART20 « «
o
— A
o X x A
j A X,
’ . . N N
A N : A N A
A- S /
Te) X o
o X, X
o AT X
TX.
]
[ T T T T T T T T T T T 1
crim zn indus chas nox rm age dis rad tax ptratio  black Istat
variable

Figure 3: Posterior means of usage percentage for each variable. 20 and 200 trees.

prior comprehension and specification.

4 Model-Free Interaction Detection with BART

In a regression of y on x, an interaction between two predictors x; and z; is said to exist
when the effect of z; on y depends on the value of z;, and vice-versa. Such an interaction is
manifested in a sum-of-trees model when the z; and x; components of z tend to both be used
as splitting rules in common trees. Thus, analogously to the previously described percentage
usage approach for variable selection, interaction detection can be similarly obtained by
identifying those interactions which occur most frequently over the MCMC sequence of fitted
sum-of-trees models f7,..., fi. More precisely, for each simulated sum-of-trees model f},

let z;;, be the proportion of trees in f;; where both z; and z; are used for splitting rules.
Then

| X
Vi = 7 >z (14)
k=1
is the average proportion of x;,z; interactions across f, ..., fi. Those interactions with the
largest average proportions are deemed most important. Note that this approach can be
straightforwardly extended to three-way and higher order interaction detection.
In contrast, to our BART variable selection approach, it turns out to be less critical
to use a small number of trees m for our interaction detection approach. Because the
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number of potential interactions grows rapidly with the number of variables, the chances of
accumulation for irrelevant interaction becomes much smaller as well. Nevertheless, it is still
illuminating to carry out the procedure with both large and small values of m.

4.1 Variable Selection and Interaction Detection with the Fried-
man Simulation Setup

Let us first illustrate our BART approaches to both variable selection and interaction detec-
tion with the well-known Friedman simulation setup. We here simulate n = 500 observations
from the basic model

y=f(x)+o0Z, Z~ N(0,1),

with 2 ten dimensional and
f(z1,m9,...,210) = 10 sin(7 21 2) + 20 (3 — .5)% + 24 + 5.

The x; are iid uniform on (0,1) and o = 1.

This simulation setup was devised by [6] to study the efficacy of nonlinear regression
techniques. However, the setup also turns out to be perfect for illustrating both variable
selection and interaction discovery. Only the first five of the ten x components matter.
With ten x’s there are 45 possible interaction pairs, for the underlying model only one of
these possibilities is present: only z; and xy interact. In a real application it would be of
tremendous interest to know that only these two variables interact, even without having
further knowledge of the functional form.

Results for one simulated data set are displayed in Figure (5). In panel (a) we have
variable selection results. This panel corresponds closely to Figure (5) of [5]. For each
variable, we plot the posterior mean of the percentage of rules (across all m tree) which
use that variable. With m = 20, we very clearly identify the first five variables as being
important.

Panel (b) gives the interaction detection results. With ten variables, there are 10¥9,/2=45
possible variable pairs. For each pair, we plot the posterior mean of the percent of trees (out
of m) which use both of the variables in splitting rules. We normalize the m = 20 and
m = 200 results by dividing by each set of 45 posterior means by the maximum. Thus, the
largest value displayed in each case is one. With both m = 20 and m = 200 we clearly
identify the first pair (z; and ) as being of interest. With two variables involved, a pair is
less likely to come in inconsequentially, so that the identification of interesting pairs is less
sensitive to the choice of m than in the case of variable selection.

4.2 Interaction Detection with the Boston Housing Data

For our second example, we return to the Boston housing data for which we illustrated
variable selection in Section [3] Recall that each of the n = 506 observations corresponds to
neighborhood. The response is the median house price in the neighborhood. There are 13
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Figure 5: In panel (a) we correctly identify the first five variables as being important. In
panel(b) we correctly identify the first interaction, which corresponds to variables x; and z5.
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explanatory variables measuring characteristics of the neighborhoods. We did a preliminary
variable selection (using the approach illustrated in the previous section) and tossed out
three of the z’s. Fitted values (from BART) with and without the three x’s are very similar.

Figure (6]) displays the results of the interaction detection. The format is the same as
in panel (b) of Figure (f). Several pairs of interest are identified. Our real data has more
interesting structure than our simulated data! We will investigate the pair dis and 1lstat
simply because these variables are more easily understood. dis is the “weighted distances to
five Boston employment centres”. lstat is the “percentage of lower status of the population”.

In Figure @ we attempt to graphically see the interaction between dis and lstat
suggested by Figure (6). In panel (a) we plot dis vs. lstat. Four subsets of points are
identified depending on whether dis and 1lstat are “low” or “high”. In the (b) panel we
plot the fitted values from the BART run with m = 200. Before fitting we subtracted
off the average response so the vertical axis is actually the amount the median value for a
neighborhood is above the average. The four boxplots correspond to the four data subsets
indicated in panel (a).

So, for example, the first boxplot displays the fitted prices when both ds and lstat
are low. The observations included here correspond to those highlighted in the bottom left
corner of panel (a). The label “dL_1L" indicates that ds is Low and 1stat is Low. Similarly,
the third boxplot is labelled “dH_1L", indicating that ds is High and lstat is Low.

The first pair of boxplots indicate the effect of increasing 1stat when ds is low. The
second pair of boxplots indicate the effect of increasing 1lstat when ds is high. Clearly,
the boxplots indicate a strong interaction. For low dl1, the effect of a the change in 1lstat
is much more pronounced. A nice neighborhood close to the city center is highly desirable
whereas a bad neighborhood close to the city center may be very bad.

5 A Utility Based Approach to Variable Selection us-
ing BART Inference

In this section we discuss an approach to variable selection developed by Carvalho, Hahn, and
McCulloch (CHM henceforth, [2]). While the CHM approach may be used with any model,
CHM emphasize the use of BART to do the nonlinear modeling. BART is appealing for the
CHM methodology because of it’s ability to get reasonable results from default settings and
assessment of uncertainty.

CHM cast variable selection as a decision to use a subset of variables rather than a
search for the “true” subset. Generally we can think of a Bayesian decision as having three
components, the prior, likelihood, and the utility. CHM emphasize the utility component
rather than the prior component. Rather than developing a prior specification that believes
that there is some small subset of active variables (see Linero, [§]) CHM run BART at
its default setting (as discussed in Section [2)) and then look for variable subsets which can
approximate the simple BART inference as a practical matter.

Infamously, the ubiquitous p-value fails to distinguish between “practical significance”
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Figure 6: Interaction detection for the Boston housing data with ten explanatory variables.

and “statistical significance”. Recent appreciation of this severe deficiency has lead to many
futile attempts to fix a fundamentally flawed approach. The CHM approach first looks
for subsets of variables that can approximate the unrestricted inference and then assesses
uncertainty using the posterior distribution of the approximation error. While not strictly
following the correct Bayesian decision theoretic approach, by remaining true to its spirit,
CHM develop a simple approach which captures the elements of the problem practitioners
really care about. This approach was first developed for the linear model case in [7] and is
extended to the nonlinear case using BART in CHM. See also [I1] for a general discussion
of the “projection strategy” in which look for suggested simplifying structure suggested by
unrestricted inferences.

Let S denote a subset of the variables. Let f(z) be the the posterior mean of f(x) obtained
from BART. Let Xp denote as set of x vectors at which we want to learn E(Y |z) = f(x).
The CHM approach has three basic steps:

1. Run a simple BART inference,

2. Find a subset S of the variables such there is a nonlinear function yg(x) such that g

A

only depends on the subset of variables indicated by S and vs(x) =~ f(x), for z € Xp.
3. Use the BART draws to assess our uncertainty about the approximation error.

Note the choice of Xp above. To select variables, we need to specify how we going to use
the model in practice! Often a simple default choice is to let Xp be the values observed in
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Figure 7: In panel (a) we identify four subsets of our data by whether each of ds and 1stat
are low or high. In panel (b) the boxplots display the fitted values (median house values) for
the observations in the four subsets. The average of the dependent variable was subtracted
off so that the vertical axis is the amount the median value of a neighborhood is above
average. The first pair of boxplots both have low values of dis. The first box has low values
of 1stat and the second box has high values of 1stat. The second pair of boxplots again
compare low and high 1stat but now ds is high.
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the training data. It is however, not uncommon for an application to consider a much richer
set of . This consideration, which seems fundamental, is clearly missing from most variable
selection approaches.

5.1 Step 1: BART Inference

Figure [§ displays results from step 1 for the Boston housing data. BART was run with
default settings and 10,000 burn and kept MCMC iterations. The full data set of n = 506
observations were used for training Figure [§| reproduces some of the information in Figure
in Section [3} but here the intervals for f(z) are included. The crucial point here is that we
are just running standard BART.

Boston housing data, default BART inference, 90% intervals for f(x)

90% posterior interval for f(x)
30 40 50
| | |

20
|

10
|

T T T T T
10 20 30 40 50

If\(x) , sorted

Figure 8: The short vertical lines are 90% posterior intervals for f(z), for x in the training
data. Sorted by the values of f(z), the posterior mean. Points plotted at (f(z),y), for (z,y)
in the training data. The dashed line as intercept 0 and slope 1.
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5.2 Step 2: Subset Search

We now tackle the problem of finding subsets S and nonlinear functions vg(z) which depend
on z only through the subset of variables indicated by S, such that vg approximates f for
xr € Xp. Again, f is obtained from step 1.

To search for subsets, we use the time honored forward selection and backwards selection
approaches. When the number of variables is small (as in our Boston example) we can simply
try all possible subsets. The tricky part is finding vg given S. We do not want to rerun
BART at each candidate subset since this would be too time consuming. In addition, we are
seeking an arbitrarily good approximation and BART is engineered to deal with the noisy
y and this problem has different characteristics so that simple default BART may not be
effective.

The key idea in CHM is to use a large decision tree for vg. Given S, we fit a large tree
to the data (zg, f(z)), where xg is the subset of variables indicated by S. When fitting
a decision tree to data, we have to worry about the bias variance trade-off when choosing
the tree size. Here, since we are simply seeking an approximation to already smoothed
data, we find that a simple default large tree size works very well. When we have sufficient
information in xg we cannot overfit. If x5 does not capture the relevant information in x,
our big tree could, in principle overfit, but we have not found this to be a problem (see
Figure [10). Informally, CHM refer to this approach as “fit-the-fit* as we use the big tree to
explain the fit f(z) rather than y.

Figure [0 shows the results from forward search (top panel), backward search (middle
panel) and all subsets search (bottom panel). So, for example, if we try to fit-the-fit with
just one of the variables z;, j = 1,2,...,p, by fitting a big tree to the data (z;, f(x)) we find
that 1stat gives us the best fit. In Figure @], the square of the correlation between g (z) and
f(z) for 2 € Xp is reported on the vertical axis (labeled R-squared). In the top panel we
can see how variables come into our search one by one, and in the middle panel we can see
how they go out one by one. From the bottom panel we see that is this example, all three
search methods give very similar results for the fit. With as few as three variables, (Istat,
rm, nox) we can approximated the fit obtaining all the information in z very well.

Interestingly, forward and backwards to not give exactly the same variable subsets. In
the top panel, the first three coming in are Istat, rm, and nox. These three variables are the
three left in the middle panel. But, the fourth variable is rad in the forward search and dis
in the backward search. Indeed, rad is the first variable out in the backward search. The
variable subsets of sizes 1-5 found by the exhaustive search are:

1: "lstat"

2: "rm" "lstat"

3: "IlOX" Ilrmll Illstatll

4: IInOXII Ilrmll llradll "lstat"

5 '"nox" "rm" "dis" "ptratio" "lstat"

Note that while both the forward and backward searches have the property that a smaller
set of variables is always a subset of a larger set, this need not be the case for the all subsets
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search. We see that, for all subsets search, the best subset of size four has rad and not dis,
while the best subset of size 5 has dis and not rad. These two variables, rad and dis, have a
strong nonlinear relationship which explains the different results from the different searches.
CHM are careful not to claim they know the “truth” about rad and dis. They only know
the certain subsets approximate well.

Given found subsets S; of size j = 1,2,...,p, CHM sometimes find that we can improve
the approximation by rerunning BART using the training data and the indicated subsets.
Figure plots f () vs the approximating function found by the big tree and re-running
BART for j = 1,2,3,4. BART fits are in the left column and big tree fits are in the right
column. We see that after three or four variables we have an excellent fit and the results
from refitting BART and the big tree and sufficiently comparable to give us faith in our
search mechanism. It does not seem that the big tree is overfitting for small j.

5.3 Step 3: Uncertainty Assessment

In step 2, we only used the posterior means from the BART inference to provide f . In this
section we use the BART MCMC draws to assess our uncertainty about the approximation
error.

Crucially, at this stage we need to choose a metric to quantify the practical consequences
of a certain level of approximation error. We must choose a distance

D(f,9) = D((f(x1), f(2), .., [(2)), (9(21), 9(2), -, g(wp)), 25 € Xp)

to capture how different f is from g for x € Xp. We then report the posterior distribution
of

D(f,vs)

Where f is the random variable representing our posterior uncertainty about f(z) = E(Y | x)
and vg is a candidate function using the subset S. The posterior distribution is estimated
by the set of values D(fq4,7v) where f; are BART MCMC draws of f, d=1,2,...,N. In our
Step 1, N was 10,000. The idea is that each f; is a plausible candidate for a good function
and we want to see how small the approximation error tends to be. We are reporting the
posterior distribution of the approximation error for various subsets of the variables in x.

The top panel of Figure [L1] reports the posterior for the subsets found using all possible
subsets and ~g found using the BART refit. The distance D is the root mean squared error.
To use Figure [11], we actually have to understand something about y. Here is the usual R
summary of the y values (median house prices) in the training data.

Min. 1st Qu. Median Mean 3rd Qu. Max.
5.00 17.02 21.20 22.53 25.00 50.00

Clearly, with only the three variables (Istat,nox,rm) the approximation error is highly likely
to be close to 2. This may be deemed sufficiently accurate as a practical matter given the
range of y. With seven variables, the error is highly likely to be comparable to that with all
the variables.
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Figure 9: Search for functions which approximate f(z) ~ E(Y|z) obtained from initial BART
run using all the variables. Approximating functions use subsets of the variables. In each
panel the vertical axis is the square of the correlation between f (z) and the approximation.
The top panel shows results from the forward search in which variables enter one at a time.
The middle panel shows results from the backward search in which variables exit one at a
time. In both the top and middle panel the horizontal axis is labeled with the names of the
variables as they go in or out. The plot on the bottom panel plots the fit from forwards,
backwards, and all subsets search. In the bottom panel, the number of variables used is on
the horizontal axis. 18
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Figure 10: Comparing approximations to f (x) using big trees are running BART on found
subsets. In each graph the posterior mean estimates f(z) is on the vertical axis. The four
rows correspond to using the first 1,2,3 and 4 variables as found by the all subsets search.
In both the all subset and forward search the first four variables variables enter in the order
Istat, rm, nox, and rad. In the left column of plots, the horizontal axis is the posterior mean
estimate of f(x) obtained by running BART using only the subset of variables. In the right
column is the big-tree fit to f(x).
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The bottom panel of Figure [11| reports the posterior distribution of

D(f,vs) — D(, f).

How much bigger is the approximation error when using s than when using f ? With our top
three variables, this difference is highly likely to be less than one, and with seven variables
it is known to be negligible as a practical matter!

In Figure [11{ we have use root mean squared error. Of course, in any application it would
be straightforward to replace this with a more meaningful metric motivated the the problem
at hand.

While steps 2 and 3 are motivated by the Bayesian decision theory framework, they do
not stick to it fully. In particular, in step 2, f , the posterior mean (or median) is the holy
grail. In step 3 our attitude is that any draw f; from the MCMC could be the function we
want to approximate. These compromises are made to build a simple approach that will
give meaningful answers to applied investigators.

6 Conclusion

Modern statistical methodology provides us with remarkable effective tools for uncovering
potentially nonlinear relationships between an outcome y and a complex, high dimensional
predictor z. Understanding the nature of an uncovered relationship is inherently difficult
given the necessarily complex mathematical representation of the relationship.

A fundamental aspect of a relationship which investigators quite commonly wish to learn
about is variable selection. Out of all the variables in x, which ones are the important
ones? The development of tools for variable selection in the context of a linear model
has been an important area of research for many years. The development of methods for
variable selection for modern nonlinear models is a crucial for applied use. Remarkably, key
R packages such as rpart (for classification and regression trees) and randomForest include
“variable importance measures”.

Any approach to variable selection involves some difficult choices given the complexity
of the problem. In this paper we describe some relative simple, but effective, approaches
using Bayesian Additive Regression trees (BART). BART has several advantages. Some key
aspects of BART are the relatively simple default choices for the prior and the Markov Chain
Monte Carlo (MCMC) stochastic search and uncertainty representation. All of the methods
described in this paper allow for use of the MCMC draws to develop a representation of the
uncertainty (see Figures [2{ and [11]).

Section |3 describes an extremely simple yet effective approach to variable selection using
BART inference. We simply count the number of times a particular component of x is used
in a decision rule in a tree in the BART ensemble of trees. This may be done for each MCMC
draw. A drawback is that it may be necessary to use fewer trees in the BART ensemble that
might be optimal for predictive inference. However, it is a simple matter find a number of
trees that identities important variables without drastically compromising the fit (Figure [4)).
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Figure 11: Posterior distribution of the approximation error. Approximations are found by
running BART with the subsets found by the all subsets search. Top panel shows the poste-
rior distribution of the approximation error. Bottom panel show the posterior distribution
of the between the error using the subset and the error using all of the variables.
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In practice this may be much easier than altering the basic model to incorporate prior choices
about variable sparsity.

Rather than finding important variables, Section [4] identifies pairs of variables that in-
teraction. The key simple ideas is that a single tree can capture interactions be including
different variables in the tree. Rather than count how often a variable is used in a tree
decision rule, we count how often a pair of variables occur in the same tree.

Section [5| presents a completely different approach. Given the fit from a basic BART
inference, we search for an approximation to the fit that uses only a subset of the variables.
A simple yet effective search algorithm is presented. Given a potentially useful subset, we
assess the subset and our uncertainty through the posterior distribution of the approximation
error. By focusing on the approximation error, we focus on the practical importance of
variable subsets.

The unifying principle underlying all the approaches in this paper is that we rely and
simple versions of BART inference. Effective post processing of the BART MCMC draws
allows us to uncover variables of interest.
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