
Introduction to R

1. Installing R
2. First R
3. Getting Your Data Into R
4. Using Files of Commands
5. Factors and Tables
6. Getting Help in R
7. Simple Linear Regression
8. Plots
9. Logical Variables and Subsetting Your Data
10. Multiple Regression
11. sapply, tapply, and cut
12. Package Installation
13. More on Input and Output

1. Installing R

Instructions for installing R are at:

http://it.chicagobooth.edu/research-computing/pdfs/R_Download-Install.pdf

Quick instructions are as follows:

I Go to http://www.r-project.org/.

I On the left, click on CRAN, under Download, Packages.

I choose a mirror (I guess something geographically close).

I Click on Download R for Windows (or for MacOSX,Linux).

I click on base.

I click on the download for your platform (e.g. Download R x.x.x for

Windows).

Note: http://www.r-project.org/ will take you to the main R page.
To go directly to the R download page you can use
http://www.cran.r-project.org/.
After than it should be pretty standard.
You will have an R icon on your desktop and all you have to do is
(double) click on that.

1

2. First R

Get into R.

At the prompt (>) type x=2 (then hit return):
> x=2

Then,
> x

Now try,
> y=3

> z=x+y

> z

> w=sqrt(x)

> w

> ls()

> rm(x)

> ls()

2

Things like x above are variables. We can store information in
variables and then operate on them (e.g. add them).

Something like sqrt is a function. Above, the function sqrt takes
the argument x and returns the square root of the value in x which
we put into w.

ls is also a function, but we give it no arguments. We do not keep
what it returns, so the results are just printed to the screen. ls

shows us all the variables we have created. What does rm do?

3

Try:

> x=2

> x*x

[1] 4

> x^2

[1] 4

> log(x)

[1] 0.6931472

Note you can nest (or compose) functions:
> x=2

> y=3

> w = log(sqrt(x+y^2))

4

Try:

> x=c(5,3,7)

> x

[1] 5 3 7

> x[1]

[1] 5

> x[3]

[1] 7

> x[1:2]

[1] 5 3

> mean(x)

[1] 5

Here the variable x is a vector of numbers instead of just one
number as is the case with x=2.

In R, variables can be numbers, strings, vectors, matrices and all
kinds of very useful things!

5

Arithmetic works with vectors:

> x=c(1,2,3)

> y=c(4,5,6)

> w=x+y

> w

[1] 5 7 9

> z = 2*x+y

> z

[1] 6 9 12

> v=log(x)

> v

[1] 0.0000000 0.6931472 1.0986123

6

Beside numbers, we work with character stings a lot:

> x= "Chicago Black Hawks"

> x

Anything after # is ignored by R so you can use it to make
comments:

> x=c("rob","is","a" ,"leafs","fan") #a vector of strings

> x

You can use the paste function to put character string together

> y = paste("go","Hawks")

> y

> z = paste("go","Hawks",sep="--")

> z

7

You can also use indexing for assignment.
That is, you can change just a part of a vector.
Try:

> x=c(1,2,3,4)

> x

> x[c(1,4)] = c(10,11)

> x

> x[2:4] = 5:7

> x

8

Note: to clear all the variables you can use
> x=2

> y=c(4,7,9)

> ls()

> rm(list=ls())

> ls()

To get out of R use the q function:
> q()

Note that q is a function with no arguments here and you need the
()!

9

3. Getting Your Data Into R

First make a new directory (or folder) on your machine to work in.

Then download the file susedcars.csv to your directory (from the
course data webpage).

Now get into R.

Now you have to set the working directory.

R has to know where to look for files to read in and where to write
stuff to.

In Windows you can also use the menu item /File/Change dir.
In Rstudio you can use /Session/Set Working Directory/Choose
Directory.

10

To check what the working directory is set to use:

> getwd()

To read your data in try:

> cdat = read.csv("susedcars.csv")

> ls()

The function will read in the data and store it in the variable cdat.
Of course, you can use any name you want instead of cdat. Some
people like long variable names and some people like short ones.

The cdat is a data frame, which is a special format R uses to store
data sets.

11

There are lots of ways we can look at the data in a data frame.

To get a quick visual look at the date try:
> edit(cdat)

To summarize the data try:
> summary(cdat)

To see the number of rows (observations) and columns (variables)
try:
> dim(cdat)

To see the names of the variables try:
> names(cdat)

12

You can think of a data frame as being like a matrix in that it has
rows (corresponding to the observations) and columns
(corresponding to the variables).

You can use indexing to access the numbers in the element frame:

> cdat[2,4]

[1] 46883

The car in the second observation has mileage (the 4th column)
46,883.

We can pull off a range. If you don’t specify the row or colum, all
are used.
To get the first 5 rows try:

> cdat[1:5,] #the first 5 rows

price trim isOneOwner mileage year color displacement

1 43995 550 f 36858 2008 Silver 5.5

2 44995 550 f 46883 2012 Black 4.6

3 25999 550 f 108759 2007 White 5.5

4 33880 550 f 35187 2007 Black 5.5

5 34895 550 f 48153 2007 Black 5.5
13

Two other ways to get a quick look at the data are:

> head(cdat) #print out the first few rows

> tail(cdat) #print out the last few rows

14

4. Using Files of Commands

Obviously, typing in commands the the R prompt > will get old
fast.

What we do is put our commands in a simple ascii file and then
cut and paste them into R.

So, if you wanted to read in the used cars data and get a quick
summary, you get create an ascii file with the following in it:

#read in and print summary of used cars data

cdat=read.csv("susedcars.csv")

print(summary(cdat))

Then you just cut and paste the above lines into the R prompt
window. Try it.

15

You can do quite sophisticated work using this simple mechanism.

The ascii file stores your “ R code” so that you have a record of
what you did!!!

You can also run all the commands in a file using the function
source.

Suppose the ascii file with the commands

#read in and print summary of used cars data

cdat=read.csv("susedcars.csv")

print(summary(cdat))

cat("dim of cdat is ",dim(cdat),"\n") #\n is a carriage return

is in your working directory and called “do.R”.

Then at the prompt you just type
> source("do.R")

If your are using Windows, check out the menu
File/New Script. 16

5. Factors and Tables

A basic distinction is statistics is between numeric variables and
categorical variables.

A numeric variable has units and measure “how much”, e.g I have
100 dollars.

A categorical variable just says one of several states or categories
may obtain.
e.g I may have gender of male or female.

The way you analyze a categorical variable is often very different
from the way you analyze a numeric variable.

The R data frame keeps track of which variables are numeric and
which are categorical. R calls categorical variables factors and the
different possible categories are called levels.

17

Try:

x = c(1,1,2,2,4,4,4)

summary(x)

y = as.factor(x)

summary(y)

x is a numeric variable so it is summarized by its median and
quantiles.

The R function as.factor converts a variable to a factor.

y is a catergorical variable, so it is summarized by the counts for
the different categories.

Now try,

levels(y) = c("north","south","west")

summary(y)

R uses the term levels to refer to the names of the categories.

18

Now try

cdat = read.csv("susedcars.csv")

summary(cdat)

Notice the R guessed that some of the variables are numeric and
that some are categorical. Numeric variables are summarized by
quantiles and categorical variables are summarized by counts.

Try

plot(cdat$mileage)

Now try

cdat$year = as.factor(cdat$year) #convert year to a factor

plot(cdat$mileage)

The way R plots a variable depends on whether it is numeric or
categorical.
Many important statistical methods in R will (quite reasonably)
behave differently depending on whether a variable is numeric or
categorical. 19

Try

table(cdat$color) #table of category counts

table(cdat$color)/nrow(cdat) #table of category percentages

We often look at pairs of categorical variables by making two way
tables.

Try

tb = table(cdat$color,cdat$isOneOwner) #two way table of counts

tb

tb/nrow(cdat) #two way table of percentages

tbp = round(tb/nrow(cdat),2) #round to two digits.

tbp

20

6. Getting Help in R

Suppose I want help on the function mean.

> help(mean)

> ?mean

will both get you help on the function mean.

This is very easy, but, as you can see, the help is not always the
easiest thing to read.

To get a webpage of help, try

> help.start()

21

You can click on packages and then base to get info on all R
functions.

You can also try

> help.search("mean")

> apropos("mean")

to search R for functions related to the term “mean”.

22

7. Simple Linear Regression

Get the simple Housedata.csv from the webpage and put it in your
working directory.

Read in the data:

hd = read.csv("Housedata.csv")

dim(hd)

hd

There are just 15 observations giving the Size (thousands of square
feet) and Price (thousands of dollars) of 15 houses.

To run the simple linear regression of Price on Size and store the
results in the variable hlm:

hlm = lm(Price~Size,hd)

Remember “hlm” is just a variable name I made up. You can call
the results whatever you want.

23

To get the usual “regression output” use

summary(hlm)

The R function lm returns a list with all kinds of information about
the regression. To see all the information in the list try

names(hlm)

For example hlm$coefficients is the vector of regression
coefficients.

hlm$coeff #just have to give enough of the name to identify it

24

You can also store the results of summary is a variable and this
gives you a whole other set of info on the regression:

shlm = summary(hlm)

names(shlm)

To get the estimate of σ and R2 we can use

shlm$sigma

shlm$r.squared

25

8. Plots

Get the simple housedata:

hd = read.csv("Housedata.csv")

attach(hd)

Let’s plot Size vs. Price:

plot(Size,Price)

The plot function has many optional arguments that we can use to change the
appearance of the plot.

plot(Size,Price,xlab="size", ylab="price",col="blue",pch=16,cex=1.2)

xlab,ylab: axis labels.
col: color of plotted points
pch: plot symbol

cex: size of plotted symbol (default is 1).

26

You can add lines, points, and text to a plot.
Let’s plot the y=Price vs the fitted values and then add the line
with intercept 0 and slope 1.

houselm = lm(Price~Size,hd)

plot(Price,houselm$fitted,xlab="price",ylab="fitted values",col="blue",pch=20)

abline(a=0,b=1,col="red",lwd=2) #lwd: line width

You can change the appearance of the line with the argument lty

abline(v=mean(Price),col="green",lwd=3,lty=2) #v= gives a vertical line.

You can add points to a plot:

points(Price[1:10],houselm$fitted[1:10],pch=2,col="black") #redraw first 10.

You can add text to a plot.

n=nrow(hd)

plot(Size,Price,type="n") #type="n" sets of the plot but does not add the points.

text(Size,Price,paste("p",1:n,sep=""),col="red") #add "p1", "p2" ... at points.

text(1.0,140,"house plot")

27

Let’s run the house regression and add the least squared line to the
plot. Let’s also put the y vs fitted plot besid that plot, in a
separate plot.

lmh = lm(Price~Size,hd) #run regression

par(mfrow=c(1,2)) #set up a 1 x 2 matrix of plots

plot(Size,Price,col="blue",cex=1.2) #plot Size vs. Price

abline(lmh$coef,lwd=2,col="red") #add regression line

plot(Price,lmh$fitted,ylab="fitted",col="blue",cex=1.2) # y vs yhat

abline(0,1,lw=2,col="red") #add line

28

Now let’s use the cars data again.

cd = read.csv("susedcars.csv")

To get the histogram of the prices we use hist

hist(cd$price,xlab="used car price",main="car data",nclass=20,col="blue")

#nclass: number of bins.

Boxplots are are another hand way to display a numeric variable:

boxplot(cd$price)

29

What happens if we plot a numeric variable agains a categorical
variable??

plot(cd$trim,cd$price)

This does a separate boxplot of the cars prices for the subsets of
data defined by the levels of trim. We can easily see that prices are
higher for trim 550!

Another way to get the same plot is:

boxplot(price~trim,cd)

30

You can use color in a scatterplot to get simple display involving
three variables. Let’s use the midcity housing data:

mchd = read.csv("midcity.csv")

attach(mchd)

plot(SqFt,Price,col=Nbhd,pch=20) #indicate neighborhood with color

legend("topleft",legend=c("N1","N2","N3"),col=1:3,,pch=rep(20,3))

31

9. Logical Variables and Subsetting Your Data

Another kind of variable which is very useful a logical variable.

> 1>2

> 2>1

> 2==1

> 2==2

> 2=>2

There are only two possible values, TRUE or FALSE.

What is really useful are vectors of logical values.

> x=1:10

> x<6

32

We can use this to pick off interesting subsets of our data.

> x=1:10

> x

> y=sample(1:10)# randomly permute 1 to 10

> y

> yg5 = y>5

> yg5

> xx = x[yg5]

> xx

Or,

> x=1:10

> y=sample(1:10)# randomly permute 1 to 10

> xx = x[y>5]

> x;y;xx

33

Let’s to a separate histogram for the house price in each of the
three neighborhoods in the midcity data:

par(mfrow=c(1,3)) #set up three plots in a 1 x 3 arrangement

mc = read.csv("midcity.csv")

attach(mc)

hist(Price[Nbhd==1],xlim=range(Price))

hist(Price[Nbhd==2],xlim=range(Price))

hist(Price[Nbhd==3],xlim=range(Price))

34

10. Multiple Regression

Let’s use the midcity housing data.

How do we regress Price on SqFt and Bedrooms?

mc = read.csv("midcity.csv")

lmmc = lm(Price~SqFt+Bedrooms,mc)

print(summary(lmmc))

35

If you run a multiple regression where some of the x’s are factors, R
will automatically dummy up the factors:

mc = read.csv("midcity.csv")

summary(mc)

mc$Price = mc$Price/1000 #thousands of dollars

mc$SqFt = mc$SqFt/1000 #thousands of square feet.

mc$Nbhd = as.factor(mc$Nbhd) #was coded as numeric when read in.

summary(mc)

lmmc = lm(Price~SqFt+Nbhd,mc)

print(summary(lmmc))

plot(mc$SqFt,lmmc$fitted)

In the multiple regression ouput “Nbhd2” is the dummy for
neighborhood 2 and “Nbhd3” is the dummy for neighborhood 3.

If you want to regress one variable in a data frame on all the other
variables you can do it succinctly:

#let’s get rid of the variable "Home" and "Offers" ,the first and third columns.

mc = mc[,-c(1,3)] #drop first and third columns

print(summary(mc))

lmmc = lm(Price~.,mc)

print(summary(lmmc))
36

11. sapply, tapply, and cut

Let’ use the mutual funds data.

mfd = read.csv("mfunds.csv")

print(head(mfd))

Try:

> rmns = sapply(mfd,mean)

> mns

> mean(mfd$drefus)

sapply will “apply” the given function (in this case mean) to each
column (variable) and return a vector of results.

37

To plot the returns means vs. the return standard deviations:

> plot(sapply(mfd,sd),sapply(mfd,mean),xlab="sd of

return",ylab="mean return")

Can we use the fund labels instead of points?

mv = sapply(mfd,mean)

sv = sapply(mfd,sd)

plot(sv,mv,xlab="sd of return",ylab="mean return",type="n")

#type="n" means points not plotted

text(sv,mv,names(mfd),col="blue")

38

Now lets use the midcity housing data to learn about tapply.

mc = read.csv("midcity.csv")

attach(mc)

mean(Price[Nbhd==1])

tapply(Price,Nbhd,mean)

tapply broke the data up into subsets (“a table”) using Nbhd and
then applied the function mean to the values of Price within each
subset.

How does “brick affect price” ?

tapply(Price,Brick,mean)/1000

39

We can use more than one factor to subgroup our data. If we want
the average house price broken down by neighborhood and
brickness we can use

tblm = tapply(mc$Price,list(mc$Nbhd,mc$Brick),mean)

tblm

This gives us the average price of a house broken down by
neighborhood and brickness.

40

A very common thing to do is turn a numeric variable into a
categorical variable by making ranges of the variable categories.

The R function cut does this for us.

x=1:10

xf = cut(x,breaks=c(0,3,8,10))

print(x)

print(xf)

table(xf)

levels(xf) = c("low","medium","high")

table(xf)

41

Let’s use cut to see how Price is related to size in the midcity data.

mc = read.csv("midcity.csv")

price = mc$Price/1000

size = mc$SqFt/1000

sizeq = quantile(size,probs=c(.25,.5,.75))

sizeq

sizef = cut(size,c(0,sizeq,max(size)))

par(mfrow=c(1,2))

plot(tapply(size,sizef,mean),tapply(price,sizef,mean),

xlab="average size",ylab="average price")

plot(sizef,price)

42

12. Package Installation

A key advantage to R is the many “packages” that have been
written for R.
These are add-ons the the base system that give you additional
functionality.
Often the latest research is available in these packages and, of
course, the price is zero.

Installing a package is very easy.

To install a package, you just need to know its name.
For example, the name of the package providing data sets for the
book “Introduction to Statistical Learning with R” by James et. al.
is ISLR.

To install it:

> install.packages("ISLR")

43

After a package is installed you have to load it into your session
everytime you use it. For the ISLR package try,

library("ISLR")

attach(Default)

ls(pos=2)

summary(Default)

Go to http://www.cran.r-project.org/, then click on “packages”
(on the left), then click on “Table of available packages, sorted by
date of publication ”.

Wow!!!!

44

13. More on Input and Output

We have seen that we can use read.csv to read in data from a
file in csv format.

We can also write a file in csv format:

#make a small ‘‘data set’’

set.seed(99)

mydat = data.frame(x=1:5,y=sample(1:5,5))

print(mydat)

#write it to file

write.csv(mydat,file="mydat.csv",row.names=FALSE)

temp = read.csv("mydat.csv")

print(temp)

45

