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Background: Standard Errors



A basic idea in frequentist statistics is the standard error.

Give a “sample of data” x , we seek to estimate some unknown quantity θ.

Let θ̂ = s(x) denote our estimate from the sample x .

We understand that our sample as given imperfect information information
so we seek a standard error ŝe (which is also a function of x) such that

P(θ ∈ θ̂ ± kαŝe) = 1− α

The interval,
(θ̂ − kα ŝe, θ̂ − kα ŝe)

is called a confidence interval, which coverage probability (1− α).



The classic example is estimation of a mean.

If s = {X1,X2, . . . ,Xn} is our sample where the Xi are iid from some
distribution and θ = E (X ).

Our estimator is θ̂ = X̄ .

We let,

s2 = 1
n − 1

∑
(Xi − X̄ ), ŝe = s√

n
.

Then, for large enough n,

P(θ ∈ X̄ ± 1.96 ŝe) ≈ .95

About 95% of the time, the true value will be in the interval!



Let Var(X ) = E ((X − µ)2) = σ2.

This result relies on some key assumptions

I The Xi are iid.

I X̄ ≈ N(µ, σ
2

n )

I Var(X̄ ) has the simple form σ2/n.

I In large samples we can plug-in s2 in place of σ2.

How can we obtain standard errors and confidence intervals for estimators
more complex than X̄?



EH:

“Direct standard error formulas exist for various forms of averaging such as
linear regression, and for hardly anything else.” (page 155)

The goal of the Jacknife and the bootstrap is to compute standard errors,
or, more generally, confidence intervals for complex estimators (e.g. not
averages) without making many assumptions.

And, to do it in a computationally feasible way.



Example

Supose you have the simple linear regression model and you want an
interval for

E (Y | x) = β0 + β1 x

Easy!!

Example

Suppose you have a simple logistic regression model with one x and you
want an interval for

P(Y = 1 | x) = F (β0 + β1x); F (η) = eη
1 + eη

Not so easy.
Delta method??



The Jacknife Estimate of Standard Error



Suppose we have

xi ∼ F , iid , i = 1, 2, . . . n.

The x can belong to an set.

Let x = (x1, x2, . . . , xn) and,

θ̂ = s(x).

Note that s could be a complex algorithm, rather than a simple function.

We want to compute the standard error, that is, we want to estimate the
standard deviation of θ̂ = s(x).



Let,
x(i) = (x1, x2, . . . , xi−1, xi+1, . . . , xn)

and,
θ̂(i) = s(x(i)).

Then the jacknife estimate of the standard error for θ̂ is

ŝejack =
[
n − 1
n

n∑
i=1

(θ̂(i) − θ̂(.))2

]1/2

, with θ̂(.) = 1
n

n∑
i=1

θ̂(i)

The “fudge factor” n−1
n is chosen to make ŝejack the same as the classic

formula for θ̂ = X̄ .



Note

I intuitive that (θ̂(i) − θ̂(.)) captures sample variation in the estimator.

I fudge factor gets the scaling right.

I It is nonparametric, no special form for F need by assumed.

I It is automatic. Just need code for s(x), then the same simple code
works for everything.

I ŝejack is upwardly biased.



Example:

Standard error of a correlation.



The Nonparametric Bootstrap



The standard error is the a measure of the variation we would observe if
we repeately sampled x from F and computed s(x) for each draw of x .

This is impossible since F is uknown.

Instead the bootstrap substitutes an estimate F̂ for F , and then estimates
the frequentist standard error by direct simulation.

That is:

I draw x repeately from F̂ .

I for each x draw, compute s(x).

I compute the sample standard deviation of the draws.



For formalize this, we need the notion of a bootstrap sample.

Given observed (x1, x2, . . . , xn) let a bootstrap sample

x∗ = (x∗
1 , x∗

2 , . . . , x∗
n )

where each x∗
i is drawn with equal probability and replacement from

{x1, x2, . . . , xn}.

From each bootstrap sample we compute

θ̂∗ = s(x∗).



We then draw B bootstrap samples x∗b, b = 1, 2, . . . ,B.

At each bootstrap sample we compute θ̂:

θ̂∗b = s(x∗b), b = 1, 2, . . . ,B.

We then have:

ŝeboot =
[

1
B − 1

B∑
b=1

(θ̂∗b − θ̂∗.)2

]1/2

, with θ̂∗. = 1
B

B∑
b=1

θ̂∗b



We can few the bootstrap as plugging in the empirical distribution!!

Our model is
F iid→ x s→ θ̂.

In principle we would draw x repeatedly and observe the variation in θ̂.

Since we can’t do this (don’t know F ) we plug-in an estimate

F̂ =
n∑

i=1

1
n δxi ,

where δx puts probability 1 on x .

F̂ is simply the empirical distribution.



Plugging-in means we replace

F iid→ x s→ θ̂.

with,

F̂ iid→ x∗ s→ θ̂∗.

We only get one θ̂, but we get θ̂∗b, b = 1, 2, . . . ,B, and we choose B.



Note, Jackknife and Bootstrap

I completely automatic. Input x and s, get out ŝeboot.

I Bootstraping shakes the original data more violently than the
jackknife.

I There is nothing special about standard errors, we could bootstrap to
estimate E (|θ̂ − θ|).

I The jackknife method is more conservative than the bootstrap
method, that is, its estimated standard error tends to be slightly
larger.

I Jackknife performs poorly when the the estimator is not sufficiently
smooth, i.e., a non-smooth statistic for which the jackknife performs
poorly is the median.

I bootstrap can be more computationally demanding.



Bootstrap Confidence Intervals



Why did we want to estimate the se?

We want to have some way of gauging the uncertainty associated with our
estimation of θ given the amount of information in the sample x .

Can we use use the bootstrap to construct confidence intervals?

The obvious thing to try is the standard interval

θ̂ ± 1.96 ŝe.

This interval is useful but may be inaccurate if the sampling distribution of
θ̂ is not normal.

Typically we use Central Limit Theorem ideas to argue that θ̂ will be
normal in “large samples” but the sample may not be large enough.



In particular the interval θ̂± 1.96 ŝe is always symmetric around θ̂ and that
may not be appropriate if the sampling distribution of θ̂ is skewed.

There are a variety of ways to get confidence intervals from the bootstrap
that perform better than the standard interval and we will just look at one
simple approach, the percentile method.



The Percentile Method

The goal is to automate the computation of confidence intervals using the
bootstrap distribution of the estimateor θ̂.

The percentile method uses the shape of the bootstrap empirical
distribution of the

θ̂∗1, θ̂∗2, . . . , θ̂∗B



Let, Ĝ be the empirical CDF of the θ̂∗b, so that Ĝ(t) is the proportion of
θ̂∗b less than t

Ĝ(t) = #{θ̂∗b ≤ t}/B.

Then the αth percentage point θ̂∗(α) given by the inverse function of Ĝ ,

θ̂∗(α) = Ĝ−1(α).

So, θ̂∗(α) is the value putting proportion α of the bootstrap sample θ̂∗b to
its left.



θ̂∗(α) = Ĝ−1(α).

Then, for example, the 95% central percentile interval is

(θ̂∗(.025), θ̂∗(.975))

Notes:

I the method requires bootstrap samples on the order of B = 2000.
I the argument for the method centers around the fact that it is

invariant to monotonic transformations of θ.
I two further improvements are “BC” and “BCa”, where BC stands for

bias corrected are covered in EH 11.3.



The Parametric Bootstrap



The nonparametric bootstrap can be described as:

F̂ iid→ x∗ s→ θ̂∗.

where F̂ is the empirical distribution.

The empirical distribution is appealing because it is nonparametric.

But, if we have a parametric family that we belief in or simply want to
explore, we can get F̂ from our parametric estimation.



Suppose f (x |µ) is a paramtric family.

Now suppose we have an estimate µ̂ (e.g the mle), then we can simply
replace the empirical distribution with f (x | µ̂):

f (x | µ̂) → x∗ → θ̂∗.

and get a bootstrap distribution estimate ŝeboot as before.

As before, we could bootstrap to get any quantitly of interest (not just the
an se).



Basic Example

Suppose x = (x1, x2, . . . , xn) are a sample assumed to be iid N(µ, 1).

Then µ̂ = x̄ and a parametric bootstrap sample is

x∗ = (x∗
1 , x∗

2 , . . . , x∗
n ), x∗

i
iid∼ N(x̄ , 1)



Not So Basic Example

Suppose we have

xi = α + βxi−1 + εi , εi ∼ N(0, σ2).

Given an esimtate (α̂, β̂, σ̂), we can draw bootstrap samples

x∗
i = α̂ + β̂x∗

i−1 + εi , εi ∼ N(0, σ̂2), i = 2, 3, . . . , n.

Then we could, for example, get estimates of (α, β, σ) from each
bootstrap sample.



Note:

For time series data there is a Moving Blocks Bootstrap (EH 10.3) but it
seems tricky.

For more complex non iid models, the parametric bootstrap seems like just
a great idea.



Perhaps more generally, we often want to test a complex modeling
approach (model + computation).

Often we try it on simulated data and real data.

But, we never are sure the simulate data represent a good “use case” and
we never know the truth with the real data.

Simulating data from a model fit to data seems like an approach worth
thinking about in general.
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