Read in data and get the variables you want

cd = read.csv("http://www.rob-mcculloch.org/data/susedcars.csv")
cd = cd[,c("price","mileage","year")]
cd$price = cd$price/1000
cd$mileage = cd$mileage/1000
head(cd)
##    price mileage year
## 1 43.995  36.858 2008
## 2 44.995  46.883 2012
## 3 25.999 108.759 2007
## 4 33.880  35.187 2007
## 5 34.895  48.153 2007
## 6  5.995 121.748 2002

plot

plot(cd$mileage,cd$price,xlab='mileage',ylab='price',col='blue',cex=.8,pch=16)

Regress price on mileage

lmmod1 = lm(price~mileage,cd)
print(lmmod1$coefficients)
## (Intercept)     mileage 
##  56.3597845  -0.3499745

Regress price on mileage and year

lmmod = lm(price~mileage + year,cd)
print(lmmod$coefficients)
##   (Intercept)       mileage          year 
## -5365.4898723    -0.1537219     2.6943495

Standard Regression Output

summary(lmmod)
## 
## Call:
## lm(formula = price ~ mileage + year, data = cd)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -21.857  -4.855  -1.670   3.483  34.499 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -5.365e+03  1.716e+02  -31.27   <2e-16 ***
## mileage     -1.537e-01  8.339e-03  -18.43   <2e-16 ***
## year         2.694e+00  8.526e-02   31.60   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.544 on 997 degrees of freedom
## Multiple R-squared:  0.8325, Adjusted R-squared:  0.8321 
## F-statistic:  2477 on 2 and 997 DF,  p-value: < 2.2e-16