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1. The Goal

Ensemble models combine many fits together to get on overall
prediction.

Ensemble modeling is a very powerful methodology.
(as a practical matter, Random Forests and Boosting trees)

They allow us to search for high dimensional, complex relationships
with relatively little bother.
(nonlinearity, interactions)



However they are focused on simple point predictions !!

E(Y | X =x)

There is a need for tools for looking for heteroskedasticity flexibly.

Var(Y | X = x)



2. Heteroskedastic BART

Our model is:

Y =f(x)+g(x)Z

m

F6) =3 F(x | Tio M)

i=1
k

gx)=]] ex|7.5)

i=1

Each (T;, M;) gives a tree model for a mean.

Each (7;, S;) gives a tree model for a standard deviation.



a tree for a mean

C= (T4 ,7D

and a tree for a standard deviation
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3. The Prior

(T, M1),....(Tm, M), (71, 51), .-, (Tk, Sk))

k
=1 =7, M) T] =(7, S)
i=1 i=1
k
n(T;)n(M; | T;) H m(Ti) 7(Si | Ti)

i=1

Il
1=

7m(T;), push towards small trees, “uniform” on rules.

7(M) =TTy w(i), pi ~ N(0,72), iid,

B is the number of bottom nodes.



7T((T1, Ml), ceey (Tm, Mm)7(7-1751)7 . .,(77(,5;())

7(7;) same as for T;.

n(S) = (o7), o1~ 2, iid



4. Prior Choice

Key to Additive Trees - the Prior:

Use pj ~ N(0,72), iid, then, before we see the data,

F(x) = pi~ NO,m7?)
i=1

Given m, relatively easy to think of a good choice for 7.

Or, at least, choose a sensible range of values to assess using
cross-validation.



Key to Multiplicative Trees - the Prior:

Use 02 ~ 4, iid, then
X

k
g(x) = H o~
i=1

Given k, still fairly easy to think think about the prior.

For example, you can compute the mean or easily simulate.

Or, at least, choose a sensible range of values to assess using
cross-validation.

Of course, the prior matters.



Choosing the prior, an example:

Suppose we were using a single error variance ¢; ~ N(0,0?), and
we had an inverted chi-squared prior for the error variance that we
were happy with:

VA

0'2 ~ )

Xv

This gives an expected value:
VA

v—2

E[O’z] =
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In the cars data

(y is price of a used
car, more later)

the sample standard
deviation is

s, = 26190.17.

Density

We set
y:10and)\:sf.

Get this prior for o.

Red line at s,.
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Now suppose we want to choose v/ and X for our ensemble prior.

k
HOR I i

where the af are mutually independent ~ (v/ X)/x2.

Then,
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If we want the expected values to match up we can use:

)\/ — )\1/[(

, 21/1/k
Vo=

ol/k (V _ 2)1/k
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Let's use k = 40 (forty multiplicative trees).

In our example this

gives:
N =1.663056 |
V' = 360

What happens when we multiply up k = 40 of these 7?!!
14



blue: the (v,\) = (10,5}%) prior.

black: the product of 40 (v, \) = (360, (53)1/") priors.

red: vertical at s, .

Density

looks amazingly good !!!
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5. MCMC

Simple.

Because our prior on the bottom node o values is conditionally
conjugate, we can draw the same way we do for the u bottom
node parameters.
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(1)
(7:,5i) [ o

Draw the tree/stan devs one at a time given everything else.
Subtract off the mean fit and then divide by all the multiplicative
trees but the ith.

(2)
(7:,Si) |o~Ti|o, Si|Ti,o
(3)

Draw 7; | o by integrating out the S; which is straightforward given
the conditionally conjugate prior.
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Note:

The draw of T; | o or T; | o involves Metropolis moves in tree
space.
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Matt Pratola has developed powerful moves for exploring the tree
space:
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6. Simulated 1-d Example

simulated data with 1 x, black is true f(x), magenta is
f(x) £ 2g(x).
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red: f(x) (posterior mean),
green: pointwise 90% posterior intervals for f(x),

blue: f(x) £ 2 g(x).
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blue: g(x).

cyan: pointwise 90% posterior intervals for g(x)
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bart (constant o) fit f(x) vs.

“psam” (product of stan devs, addition of means) fit.

< 4

psam-pri-Tit
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Will estimates for f(x) be different enough in practice to make
point estimates better ? 23



red: bart estimate of o.

green: point wise 90% intervals for g(x), ordered by g(x).
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7. Real 1-d Example

Each observation corresponds to the sale of a used car.
Y = price, x=mileage.
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red: f(x).
blue: f(x) =+ 2&(x).

green: posterior intervals for f.

fit to data, E(Y[x) and +/~ 2*sd(Y[x)
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+25(x

~

stan dev

and intervals.

90% posterior intervals for sd(Y|x)

40000
I

20000
I

-20000
I

-40000
I

o

50000

T
100000

T
150000

27



Fit for f very similar to bart.
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Clear evidence of heter.
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8. Real 4-d Example
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f very similar to bart.
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To visualize fixed featureCount and trim8 and then used sample
year and mileage.
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f(x) vs mileage for different years.
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f(x) vs mileage and years.
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&(x) vs mileage for different years.
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&(x) vs mileage and years.
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Evidence of hetero.

15000

5000

T T T
o 100

200

300

600

37



9. Real 90-d Example

n=20,000.
p=90.

Car data before variable selection and random subsampling.

38



0 10000 20000 000 40000 50000 60000 70000

10000 30000 s0000 70000

o

psam

bart

0 1000 20000 0000 4000 50000 GO0 70000 o 20000 0000 60000

s0000 70000

000

10000

o

o000 60000

20000




20000
I

15000
I

stan dev
10000
I

T T
0 5000 10000 15000

obs

outliers 4+ smaller variance for cheap old cars?

T
20000

40



10. Concluding Remarks

The basic BART ideas lend themselves to the development of a
rich class on flexible Bayesian models.

See rbart.pdf vignette for heterobart.

Not too complicated, and much richer than a lot of ML tools
11T
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