Bayesian Inference of the Number of Trees in the BART Model

Gavin Collins^{1,2}, Matthew Pratola², Radu Herbei², Robert McCulloch³, and Edward George⁴ Brigham Young University 45th Annual Summer Institute of Applied Statistics June 22, 2023

> ¹Sandia National Laboratories, ²The Ohio State University, ³Arizona State University, ⁴Wharton School at the University of Pennsylvania

The Bottom Line Up Front

- Prior distribution on the number of trees
- MH step to add/delete one tree at a time
- Takes longer
- Works well
- (Still a work in progress)

- 1. Recap of BART
- 2. Bayesian Inference of the Number of Trees
 - i. Motivation
 - ii. A Fully Bayesian Model
 - iii. Sampling from the Posterior Distribution
 - iv. Code
 - v. Simulations
 - vi. Application to Real Data
- 3. Conclusion

1. Recap of BART

2. Bayesian Inference of the Number of Trees

- i. Motivation
- ii. A Fully Bayesian Model
- iii. Sampling from the Posterior Distribution
- iv. Code
- v. Simulations
- vi. Application to Real Data
- 3. Conclusion

Data

- $(x_1, y_1), \dots, (x_n, y_n)$
- input $x_i \in \mathbb{R}^p \to \text{response } y_i \in \mathbb{R}$

Regression Model

- $y_i \mid \boldsymbol{x}_i \sim N(f(\boldsymbol{x}_i), \sigma^2), i = 1, \dots, n \text{ (ind)}$
- $f: \mathbb{R}^p \to \mathbb{R}$ (mean function)
- $\sigma^2 \ge 0$ (residual variance)

"Branin" Example:

- *p* = 2
- f = "The Branin Function"
- *n* = 300
- x₁,..., x₃₀₀ ~ Unif(0,1)²(*iid*)
 σ² = 1

Branin Function f(x)

0.0 0.2 0.4 0.6 0.8 1.0

X1

0.2

0.0

- -0.4

Data

- $(x_1, y_1), \dots, (x_n, y_n)$
- input $x_i \in \mathbb{R}^p \to \text{response } y_i \in \mathbb{R}$

Regression Model

- $y_i | x_i \sim N(f(x_i), \sigma^2), i = 1, ..., n \text{ (ind)}$
- $f: \mathbb{R}^p \to \mathbb{R}$ (mean function)
- $\sigma^2 \ge 0$ (residual variance)

Hurricane Example:

- p = 6
- *f* = Computer Model
- n = 4,000
- Goal: Infer *f* for sensitivity analysis, model calibration, etc.

Input *x*

- $x_1 =$ Initial Sea Level
- $x_2 =$ Hurricane Heading
- x_3 = Velocity of the Eye x_6 = Landfall Location
- $x_4 = Max$ Wind Speed
- $x_5 = Min Pressure$

y = Maximum Water Level During a Storm Surge

٠

f(x) η_1 1.0 $x_2 < 0.8$ $X_2 \ge 0.8$ 40 0.8 T has L "terminal nodes" • η_3 $\mu_3 = -45$ 20 0.6 x₁ < 0.25 $x_1 \ge 0.25$ \mathbf{X}_2 Terminal node parameter $\boldsymbol{\mu} \in \mathbb{R}^{L}$ 0.4 $\eta_4 = 40$ -20 • $f(\mathbf{x}) = g(\mathbf{x}; T, \boldsymbol{\mu})$ 0.2 $x_2 < 0.5$ $X_2 \ge 0.5$ -40 0.0 (110) η11 0.2 0.4 0.6 0.8 1.0 0.0 $\mu_{10} = -10$ $\mu_{11} = 20$ X_1

Т

+

- $T_{1:m} \equiv T_1, \dots, T_m \quad (m \approx 200)$
- $\boldsymbol{\mu}_{1:m} \equiv \boldsymbol{\mu}_1, \dots, \boldsymbol{\mu}_m$
- T_j has L_j terminal nodes
- $\boldsymbol{\mu}_j \in \mathbb{R}^{L_j}$
- $f(\mathbf{x}) = \sum_{j=1}^{m} g(\mathbf{x}; T_j, \boldsymbol{\mu}_j)$

• • •

$$+ \int_{i}^{0} + \int_$$

Prior Distribution $\pi(T_{1:m}, \boldsymbol{\mu}_{1:m}, \sigma^2) = \pi(\sigma^2) \prod_{j=1}^m \pi(T_j) \pi(\boldsymbol{\mu}_j \mid T_j)$

- $T_j \sim$ Tree-Generating Stochastic Process
- $\mu_{j\ell} \mid T_j \sim N(0, \tau_m^2); \ \ell = 1, ..., L_j; \ j = 1, ..., m$ (iid)
- $\sigma^2 \sim \text{Scaled-inv-}\chi^2(\nu, \lambda)$

Posterior Sampling MCMC Algorithm

[Notation: $T_{-j} \equiv (T_1, ..., T_{j-1}, T_{j+1}, ..., T_m)$ and $\mu_{-j} \equiv (\mu_1, ..., \mu_{j-1}, \mu_{j+1}, ..., \mu_m)$] For $i = 1, ..., N_{mcmc}$:

- 1. For j = 1, ..., m
 - a. Sample $T_j \mid (T_{-j}, \mu_{-j}, \sigma^2, data)$ (Metropolis–Hastings)
 - b. Sample $\mu_j \mid \cdot$ (Gibbs Step)
- 2. Sample $\sigma^2 \mid \cdot$ (Gibbs Step)

Posterior 0.025 Quantile

Posterior 0.975 Quantile

1. Recap of BART

2. Bayesian Inference of the Number of Trees

i. Motivation

- ii. A Fully Bayesian Model
- iii. Sampling from the Posterior Distribution
- iv. Code
- v. Simulations
- vi. Application to Real Data
- 3. Conclusion

How Many Trees???

Default m = 200

Large m

$\operatorname{Small} m$

- Flexible Estimation
- More computation
- Risk overfitting

- Improved variable selection
- Less computation
- Risk underfitting

Out-of-Sample Prediction

FVAR = Proportion of branches involving "false" input variables

Cross-Validation

- Pick a grid of *m*-values (e.g., m = 1, 10, 20, 50, 100, 200, 300, 400)
- For each value of m
 - Split data into train and test sets
 - Fit BART to the training set
 - Predict responses in the test set
- Compare out-of-sample RMSE across the grid
- Pick the value $m = m_{CV}$ that minimizes RMSE
- Fit a BART model to the full dataset, with $m = m_{CV}$

Cross-Validation

How to pick the grid?

- Pick a grid of m-values (e.g., m = 1, 10, 20, 50, 100, 200, 300, 400)
- For each value of m
 - Split data into train and test sets
 - Fit BART to the training set
 - Predict responses in the test set
- Compare out-of-sample RMSE across the grid
- Pick the value $m = m_{CV}$ that minimizes RMSE
- Fit a BART model to the full dataset, with $m=m_{CV}$

What about variable selection, computation time, etc.?

Expensive!

1. Recap of BART

2. Bayesian Inference of the Number of Trees

i. Motivation

ii. A Fully Bayesian Model

- iii. Sampling from the Posterior Distribution
- iv. Code
- v. Simulations
- vi. Application to Real Data

3. Conclusion

Fully Bayesian Inference of m

$$\pi(m, T_{1:m}, \mu_{1:m}, \sigma^2) = \pi(\sigma^2)\pi(m) \prod_{j=1}^m \pi(T_j)\pi(\mu_j \mid T_j, m)$$

- $m \sim Poisson(\theta)$ [Truncated]
 - Optionally, assign θ a hyperprior
- $T_i \sim$ Tree-Generating Stochastic Process (as before)
- $\mu_{j\ell} \mid (m, T_j) \sim N(0, \tau_m^2); \ \ell = 1, ..., L_j; \ j = 1, ..., m$ (iid) (as before)
- $\sigma^2 \sim \text{Scaled-inv-}\chi^2(\nu, \lambda)$ (as before)

Prior Distribution

 $\pi(m) \propto \frac{\theta^m e^{-\theta}}{m!} I(1 \le m \le 1000)$ (Truncated Poisson)

- $\Rightarrow E(m) \approx \theta$
- Default $\theta = 200$
- Optionally, assign θ a hyperprior
 - $\theta \sim \frac{\theta_0 \chi_{\kappa_0}^2}{\kappa_0}$
 - $E(\theta) = \theta_0$
 - Degree of Freedom κ_0
 - Default $\theta_0 = 200$

 $\kappa_0 = \infty$ $\kappa_0 = 100$ $\kappa_0 = 3$ 0.020 л(m) ш 0.010 0.000 0 200 400 600 800 1000

m

Prior pmf of m ($\theta_0 = 200$)

Prior Distribution

$$\mu_{j\ell} \mid (m, T_j) \sim N(0, \tau_m^2)$$

$$\tau_m = \frac{\max_i y_i - \min_i y_i}{2k\sqrt{m}}$$

$$\Rightarrow f(\mathbf{x}) \sim N\left(0, \left(\frac{\max_{i} y_{i} - \min_{i} y_{i}}{2k}\right)^{2}\right) \text{ (for all } m\text{)}$$

1. Recap of BART

2. Bayesian Inference of the Number of Trees

- i. Motivation
- ii. A Fully Bayesian Model
- iii. Sampling from the Posterior Distribution
- iv. Code
- v. Simulations
- vi. Application to Real Data
- 3. Conclusion

Initialize $m = m_0$ (default $m_0 = \theta_0$)

For $i = 1, ..., N_{mcmc}$:

1. Sample $\theta \mid m$ (Gibbs Step; if $\kappa_0 < \infty$)

Initialize $m = m_0$ (default $m_0 = \theta_0$)

For $i = 1, ..., N_{mcmc}$:

1. Sample $\theta \mid m$ (Gibbs Step; if $\kappa_0 < \infty$)

2. Sample $m \mid \cdot$ (Metropolis-Hastings)

Randomly select either

a) Birth orb) Death

Initialize $m = m_0$ (default $m_0 = \theta_0$)

For $i = 1, ..., N_{mcmc}$:

- 1. Sample $\theta \mid m$ (Gibbs Step; if $\kappa_0 < \infty$)
- 2. Sample $m \mid \cdot$ (Metropolis-Hastings)
 - If m was increased, sample new μ_* (Gibbs Step)

Randomly select either

a) Birth orb) Death

Initialize $m = m_0$ (default $m_0 = \theta_0$)

For $i = 1, ..., N_{mcmc}$:

- 1. Sample $\theta \mid m$ (Gibbs Step; if $\kappa_0 < \infty$)
- 2. Sample $m \mid \cdot$ (Metropolis-Hastings)
 - If m was increased, sample new μ_* (Gibbs Step)
- 3. For j = 1, ..., m
 - a. Sample $T_j \mid (T_{-j}, \mu_{-j}, \sigma^2, data)$ (Metropolis–Hastings)
 - b. Sample $\mu_j \mid \cdot$ (Gibbs Step)
- 4. Sample $\sigma^2 \mid \cdot$ (Gibbs Step)

Randomly select either

a) Birth orb) Death

Birth Transition

Birth Transition

- Why stumps?
- Why randomize the location of the new tree?
 - Trees are exchangeable, but ordered in the prior distribution
 - Need reversibility

Death Transition

MH Transition

- Current parameters $\psi = (m, T_{1:m}, \mu_{1:m}, \sigma^2)$
- Randomly select either birth or death transition (Pr(birth) = Pr(death) = 0.5)
 - Birth Transition
 - Select a location to insert stump T^*

$$q(\psi \to \psi^{\text{birth}}) = 0.5 \times \frac{1}{m+1}$$

- Update to $\psi \rightarrow \psi^{\text{birth}} = (m + 1, T^{\star}_{1:(m+1)}, \mu_{1:m}, \sigma^2)$
- Death Transition (if there are any "stumps")
 - Select a stump T^* to delete

- $q(\psi \rightarrow \psi^{\text{death}}) = 0.5 \times \frac{1}{m_{\text{stumps}}}$
- Update to $\psi \rightarrow \psi^{\text{death}} = (m 1, T^{\star}_{1:(m-1)}, \boldsymbol{\mu}_{1:(m-1)}, \sigma^2)$
- Accept with the MH acceptance probability: min{1, MH Ratio}

$$= \frac{\pi(\psi^{\text{birth}} \mid \text{data})}{\pi(\psi \mid \text{data})} \times \frac{q(\psi^{\text{birth}} \to \psi)}{q(\psi \to \psi^{\text{birth}})}$$

MH Ratio for Birth

 $= \frac{\pi(\psi^{\text{birth}} \mid \text{data})}{\pi(\psi \mid \text{data})} \times \frac{q(\psi^{\text{birth}} \to \psi)}{q(\psi \to \psi^{\text{birth}})}$

$$= \frac{\pi(\text{data} | \psi^{\text{birth}})}{\pi(\text{data} | \psi)} \times \frac{\pi(\sigma^2)}{\pi(\sigma^2)} \times \frac{\pi(m+1)}{\pi(m)} \times \frac{\pi(T^*) \prod_j^m \pi(T_j)}{\prod_j^m \pi(T_j)} \times \frac{\prod_j^m \pi(\mu_j \mid m+1, T_j)}{\prod_j^m \pi(\mu_j \mid m, T_j)} \times \frac{0.5/(m_{\text{stumps}} + 1)}{0.5/(m+1)}$$
$$= \frac{\pi(\text{data} | \psi^{\text{birth}})}{\pi(\text{data} \mid \psi)} \times \frac{\pi(m+1)}{\pi(m)} \times \pi(T^*) \times \frac{\prod_j^m \pi(\mu_j \mid m+1, T_j)}{\prod_j^m \pi(\mu_j \mid m, T_j)} \times \frac{1/(m_{\text{stumps}} + 1)}{1/(m+1)}$$

$$= \frac{\pi(\psi^{\text{birth}} \mid \text{data})}{\pi(\psi \mid \text{data})} \times \frac{q(\psi^{\text{birth}} \to \psi)}{q(\psi \to \psi^{\text{birth}})}$$

$$= \frac{\pi(\operatorname{data}|\psi^{\operatorname{birth}})}{\pi(\operatorname{data}|\psi)} \times \frac{\pi(\sigma^2)}{\pi(\sigma^2)} \times \frac{\pi(m+1)}{\pi(m)} \times \frac{\pi(T^*)\prod_j^m \pi(T_j)}{\prod_j^m \pi(T_j)} \times \frac{\prod_j^m \pi(\mu_j \mid m+1, T_j)}{\prod_j^m \pi(\mu_j \mid m, T_j)} \times \frac{0.5/(m_{\operatorname{stumps}}+1)}{0.5/(m+1)}$$
$$= \frac{\pi(\operatorname{data}|\psi^{\operatorname{birth}})}{\pi(\operatorname{data}|\psi)} \times \frac{\pi(m+1)}{\pi(m)} \times \pi(T^*) \times \frac{\prod_j^m \pi(\mu_j \mid m+1, T_j)}{\prod_j^m \pi(\mu_j \mid m, T_j)} \times \frac{1/(m_{\operatorname{stumps}}+1)}{1/(m+1)}$$
$$= \frac{\pi(\operatorname{data}|\psi^{\operatorname{birth}})}{\pi(\operatorname{data}|\psi)} \times \frac{\theta}{m+1} \times$$

$$= \frac{\pi(\psi^{\text{birth}} \mid \text{data})}{\pi(\psi \mid \text{data})} \times \frac{q(\psi^{\text{birth}} \to \psi)}{q(\psi \to \psi^{\text{birth}})}$$

$$= \frac{\pi(\operatorname{data}|\psi^{\operatorname{birth}})}{\pi(\operatorname{data}|\psi)} \times \frac{\pi(\sigma^2)}{\pi(\sigma^2)} \times \frac{\pi(m+1)}{\pi(m)} \times \frac{\pi(T^*)\prod_j^m \pi(T_j)}{\prod_j^m \pi(T_j)} \times \frac{\prod_j^m \pi(\mu_j \mid m+1, T_j)}{\prod_j^m \pi(\mu_j \mid m, T_j)} \times \frac{0.5/(m_{\operatorname{stumps}}+1)}{0.5/(m+1)}$$
$$= \frac{\pi(\operatorname{data}|\psi^{\operatorname{birth}})}{\pi(\operatorname{data}|\psi)} \times \frac{\pi(m+1)}{\pi(m)} \times \pi(T^*) \times \frac{\prod_j^m \pi(\mu_j \mid m+1, T_j)}{\prod_j^m \pi(\mu_j \mid m, T_j)} \times \frac{1/(m_{\operatorname{stumps}}+1)}{1/(m+1)}$$
$$= \frac{\pi(\operatorname{data}|\psi^{\operatorname{birth}})}{\pi(\operatorname{data}|\psi)} \times \frac{\theta}{m+1} \times \pi(T^*) \times$$

$$= \frac{\pi(\psi^{\text{birth}} \mid \text{data})}{\pi(\psi \mid \text{data})} \times \frac{q(\psi^{\text{birth}} \to \psi)}{q(\psi \to \psi^{\text{birth}})}$$

$$= \frac{\pi(\text{data} | \psi^{\text{birth}})}{\pi(\text{data} | \psi)} \times \frac{\pi(\sigma^2)}{\pi(\sigma^2)} \times \frac{\pi(m+1)}{\pi(m)} \times \frac{\pi(T^*) \prod_j^m \pi(T_j)}{\prod_j^m \pi(T_j)} \times \frac{\prod_j^m \pi(\mu_j \mid m+1, T_j)}{\prod_j^m \pi(\mu_j \mid m, T_j)} \times \frac{0.5/(m_{\text{stumps}} + 1)}{0.5/(m+1)}$$
$$= \frac{\pi(\text{data} | \psi^{\text{birth}})}{\pi(\text{data} \mid \psi)} \times \frac{\pi(m+1)}{\pi(m)} \times \pi(T^*) \times \frac{\prod_j^m \pi(\mu_j \mid m+1, T_j)}{\prod_j^m \pi(\mu_j \mid m, T_j)} \times \frac{1/(m_{\text{stumps}} + 1)}{1/(m+1)}$$
$$= \frac{\pi(\text{data} | \psi^{\text{birth}})}{\pi(\text{data} \mid \psi)} \times \frac{\theta}{m+1} \times \pi(T^*) \times \left(\frac{m}{m+1}\right)^{-\sum_{j=1}^m \frac{L_j}{2}} \exp\left(-\frac{1}{2m\tau_m^2} \sum_j^m \sum_{\ell=1}^{L_j} \mu_{j\ell}^2\right)$$

$$= \frac{\pi(\psi^{\text{birth}} \mid \text{data})}{\pi(\psi \mid \text{data})} \times \frac{q(\psi^{\text{birth}} \to \psi)}{q(\psi \to \psi^{\text{birth}})}$$

$$= \frac{\pi(\text{data} | \psi^{\text{birth}})}{\pi(\text{data} | \psi)} \times \frac{\pi(\sigma^2)}{\pi(\sigma^2)} \times \frac{\pi(m+1)}{\pi(m)} \times \frac{\pi(T^*) \prod_j^m \pi(T_j)}{\prod_j^m \pi(T_j)} \times \frac{\prod_j^m \pi(\mu_j \mid m+1, T_j)}{\prod_j^m \pi(\mu_j \mid m, T_j)} \times \frac{0.5/(m_{\text{stumps}} + 1)}{0.5/(m+1)}$$
$$= \frac{\pi(\text{data} | \psi^{\text{birth}})}{\pi(\text{data} \mid \psi)} \times \frac{\pi(m+1)}{\pi(m)} \times \pi(T^*) \times \frac{\prod_j^m \pi(\mu_j \mid m+1, T_j)}{\prod_j^m \pi(\mu_j \mid m, T_j)} \times \frac{1/(m_{\text{stumps}} + 1)}{1/(m+1)}$$
$$= \frac{\pi(\text{data} | \psi^{\text{birth}})}{\pi(\text{data} \mid \psi)} \times \frac{\theta}{m+1} \times \pi(T^*) \times \left(\frac{m}{m+1}\right)^{-\sum_{j=1}^m \frac{L_j}{2}} \exp\left(-\frac{1}{2m\tau_m^2} \sum_j^m \sum_{\ell=1}^{L_j} \mu_{j\ell}^2\right) \times \frac{m+1}{m_{\text{stumps}} + 1}$$

Likelihood Ratio = $\frac{\pi(\text{data} | \psi^{\text{birth}})}{\pi(\text{data} | \psi)}$

Likelihood Ratio

Likelihood Ratio = $\frac{\pi(\text{data} | \psi^{\text{birth}})}{\pi(\text{data} | \psi)}$ = $\frac{\pi(\text{data} | m + 1, T_{1:(m+1)}^{*}, \mu_{1:m}, \sigma^{2})}{\pi(\text{data} | m, T_{1:m}, \mu_{1:m}, \sigma^{2})}$ Marginal Likelihood (m+1 trees) Full likelihood (m trees)

Likelihood Ratio = $\frac{\pi(\text{data} | \psi^{\text{birth}})}{\pi(\text{data} | \psi)}$

 $=\frac{\pi(\text{data} \mid m+1, T_{1:(m+1)}^{\star}, \boldsymbol{\mu}_{1:m}, \sigma^2)}{\pi(\text{data} \mid m, T_{1:m}, \boldsymbol{\mu}_{1:m}, \sigma^2)}$

$$= \frac{\int_{\mathbb{R}} \pi(\text{data} \mid m+1, T_{1:(m+1)}^{\star}, \boldsymbol{\mu}_{1:m}, \mu^{\star}, \sigma^{2}) \pi(\mu^{\star} \mid m+1, T^{\star}) d\mu^{\star}}{\pi(\text{data} \mid m, T_{1:m}, \boldsymbol{\mu}_{1:m}, \sigma^{2})}$$

Full Likelihood (m+1)
Prior Distribution of μ^{\star}

Likelihood Ratio = $\frac{\pi(\text{data} | \psi^{\text{birth}})}{\pi(\text{data} | \psi)}$

 $= \frac{\pi(\text{data} \mid m+1, T_{1:(m+1)}^{\star}, \boldsymbol{\mu}_{1:m}, \sigma^2)}{\pi(\text{data} \mid m, T_{1:m}, \boldsymbol{\mu}_{1:m}, \sigma^2)}$

$$= \frac{\int_{\mathbb{R}} \pi(\text{data} \mid m+1, T_{1:(m+1)}^{*}, \boldsymbol{\mu}_{1:m}, \mu^{*}, \sigma^{2}) \pi(\mu^{*} \mid m, T^{*}) d\mu^{*}}{\pi(\text{data} \mid m, T_{1:m}, \boldsymbol{\mu}_{1:m}, \sigma^{2})}$$

 $= \frac{\int_{\mathbb{R}} \prod_{i=1}^{n} N(y_{i}; \mu^{\star} + \sum_{j=1}^{m} g(\boldsymbol{x}_{i}; T_{j}, \boldsymbol{\mu}_{j}), \sigma^{2}) N(\mu^{\star}; 0, \tau_{m}^{2}) d\mu^{\star}}{\prod_{i=1}^{n} N(y_{i}; \sum_{j=1}^{m} g(\boldsymbol{x}_{i}; T_{j}, \boldsymbol{\mu}_{j}), \sigma^{2})}$

Likelihood Ratio = $\frac{\pi(\text{data} | \psi^{\text{birth}})}{\pi(\text{data} | \psi)}$

 $= \frac{\pi(\text{data} \mid m+1, T_{1:(m+1)}^{\star}, \boldsymbol{\mu}_{1:m}, \sigma^2)}{\pi(\text{data} \mid m, T_{1:m}, \boldsymbol{\mu}_{1:m}, \sigma^2)}$

$$= \frac{\int_{\mathbb{R}} \pi(\text{data} \mid m+1, T_{1:(m+1)}^{*}, \boldsymbol{\mu}_{1:m}, \mu^{*}, \sigma^{2}) \pi(\mu^{*} \mid m, T^{*}) d\mu^{*}}{\pi(\text{data} \mid m, T_{1:m}, \boldsymbol{\mu}_{1:m}, \sigma^{2})}$$

$$= \frac{\int_{\mathbb{R}} \prod_{i=1}^{n} N(y_{i}; \mu^{*} + \sum_{j=1}^{m} g(\boldsymbol{x}_{i}; T_{j}, \boldsymbol{\mu}_{j}), \sigma^{2}) N(\mu^{*}; 0, \tau_{m}^{2}) d\mu^{*}}{\prod_{i=1}^{n} N(y_{i}; \sum_{j=1}^{m} g(\boldsymbol{x}_{i}; T_{j}, \boldsymbol{\mu}_{j}), \sigma^{2})}$$

$$= \left(\frac{\sigma^2}{n\tau_{m+1}^2 + \sigma^2} + 1\right)^{1/2} \exp\left(\frac{n^2 \tau_{m+1}^2 \left(\sum_{i=1}^n [y_i - \sum_{j=1}^m g(\boldsymbol{x}_i; T_j, \boldsymbol{\mu}_j)]\right)^2}{2\sigma^2 (n\tau_{m+1}^2 + \sigma^2)}\right)$$

1. Recap of BART

2. Bayesian Inference of the Number of Trees

- i. Motivation
- ii. A Fully Bayesian Model
- iii. Sampling from the Posterior Distribution

iv. Code

- v. Simulations
- vi. Application to Real Data

3. Conclusion

Code

- R implementation forthcoming:
 - bart(X, y, learnntree = TRUE, ntreemean = 200, ntreedf = Inf)

 $m \sim Pois(\theta)I(1 \le m \le 1000)$

$$\theta \sim \frac{\theta_0 \chi_{\kappa_0}^2}{\kappa_0}$$

1. Recap of BART

2. Bayesian Inference of the Number of Trees

- i. Motivation
- ii. A Fully Bayesian Model
- iii. Sampling from the Posterior Distribution
- iv. Code

v. Simulations

vi. Application to Real Data

3. Conclusion

Simulation Setup

Fully Bayesian Inference for *m*

- Generate training and test data
 - $x_i \sim \text{Unif}(0,1)^p$ and
 - $y_i \mid \boldsymbol{x}_i \sim N(f(\boldsymbol{x}_i), 1)$
- For $\kappa_0 \in \{3, 100, \infty\}$ (with $\theta_0 = 200$)
 - Fit BART to training set with Bayesian inference for *m*

Cross-Validation

- For $m \in$ Grid:
 - Generate training and test sets
 - $x_i \sim \text{Unif}(0,1)^p$ and
 - $y_i \mid \boldsymbol{x}_i \sim N(f(\boldsymbol{x}_i), 1)$
 - Fit BART to training set with *m* trees

Compare accuracy using "RMSE for
$$f(\mathbf{x}_{test})$$
" = $\sqrt{\frac{1}{n_{test}} \sum_{i=1}^{n_{test}} \left(f(\mathbf{x}_{test,i}) - \hat{f}(\mathbf{x}_{test,i}) \right)^2}$

Simulation Setup

Simulations

Bayesian Inference

Cross-Validation

f	$n_{ m train}$	$n_{ m test}$	p	SNR	$N_{ m mc} \; ({ m infer} \; m)$	$N_{ m mc}~({ m fix}~m)$
Friedman	500	1,000	10	23.8	1,000,000 (🗸)	3,000
Borehole	500	1,000	8	20.9	1,000,000 (🗸)	3,000
Branin	1,000	2,000	2	18.2	1,000,000 (🗸)	3,000
Piston	1,500	3,000	7	20.6	1,000,000 (🗸)	3,000
Snake	10,000	10,000	2	2930	1,000,000 (X)	100,000
Welch	10,000	10,000	20	2809	1,000,000 (X)	100,000
$Friedman \times 20$	10,000	10,000	100	23.8	100,000~(X)	50,000
300-Step	12,000	12,000	300	100	200,000 (X)	10,000
100-Step	4,000	8,000	100	100	1,000,000 (X)	10,000
1-Step	100	200	1	100	1,000,000 (🗸)	3,000
T_4	800	1,000	15	340	1,000,000 (X)	30,000

Convergence of m

Results

• $\kappa_0 = 3$ • $\kappa_0 = 100$ • $\kappa_0 = \infty$ • Fixed *m*

p = 15 inputs (each a different branch) f not additive at all!

Variable Selection

• $\kappa_0 = 3$ • $\kappa_0 = 100$ • $\kappa_0 = \infty$ • Fixed *m*

FVAR = Proportion of branches involving "false" variables

1. Recap of BART

2. Bayesian Inference of the Number of Trees

- i. Motivation
- ii. A Fully Bayesian Model
- iii. Sampling from the Posterior Distribution
- iv. Code
- v. Simulations
- vi. Application to Real Data
- 3. Conclusion

Real Datasets

Real Data

Dataset	$n_{ m train}$	$n_{ m test}$	p	$N_{ m mc} \; ({ m infer} \; m)$	$N_{ m mc}~({ m fix}~m)$
Surge	3,000	1,000	6	62,000~(X)	22,000
Boston	378	128	13	1,000,000 (🗸)	3,000
Superconductor	15,898	5,299	81	100,000 (X)	100,000

Results

1. Recap of BART

2. Bayesian Inference of the Number of Trees

- i. Motivation
- ii. A Fully Bayesian Model
- iii. Sampling from the Posterior Distribution
- iv. Code
- v. Simulations
- vi. Application to Real Data

3. Conclusion

- Bayesian Inference of m generally works well
 - Accurate predictions
 - Variable selection
 - Convenience

- Bayesian Inference of m generally works well
 - Accurate predictions
 - Variable selection
 - Convenience
 - Sometimes underfit (*m* too small)
 - Computation time?

- Bayesian Inference of *m* generally works well
 - Accurate predictions
 - Variable selection
 - Convenience
 - Sometimes underfit (*m* too small)
 - Computation time?
- Just fix m = 200?

- Bayesian Inference of *m* generally works well
 - Accurate predictions
 - Variable selection
 - Convenience
 - Sometimes underfit (*m* too small)
 - Computation time?
- Just fix m = 200?
- Recommendation: Truncated Poisson prior with $\theta = 200$ ($\kappa_0 = \infty$)

- Bayesian Inference of *m* generally works well
 - Accurate predictions
 - Variable selection
 - Convenience
 - Sometimes underfit (*m* too small)
 - Computation time?
- Just fix m = 200?
- Recommendation: Truncated Poisson prior with $\theta = 200$ ($\kappa_0 = \infty$)
- Maybe also try $\kappa_0 = 3$

- Bayesian Inference of *m* generally works well
 - Accurate predictions
 - Variable selection
 - Convenience
 - Sometimes underfit (*m* too small)
 - Computation time?
- Just fix m = 200?
- Recommendation: Truncated Poisson prior with $\theta = 200$ ($\kappa_0 = \infty$)
- Or try two values of κ_0
- Boosting

Thank You!