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Modern Machine/Statistical Learning



What is modern statistics/machine learning/data science?

Lots of things.

But, in particular, we have truly amazing tools for finding high dimensional
patterns in data.

The Stars of the show?

ensembles of trees, neural networks









Clearly:

▶ linear methods are still important

▶ after that, tree based methods are huge, Random Forests, boosting

▶ python and R are king

Bayesian approaches are also important !!!



Note that linear methods usually means regularized regression

Lasso:

minimize
β0,β

n∑
i=1

(yi − β0 −
p∑

j=1
βj xij)2 + λ

p∑
j=1

|βj |

We can have a complicated model (lots of x and corresponding β s) if we
shrink the coefficients.



As λ get bigger, the coefficients are shrunk to zero.

With the Lasso L1 penalty, the solutions sets some of the coefficients to
zero.

A big λ gives you a simple model, a small λ gives you a complicated
model !!



The bias variance tradeoff

If your model is too simple (e.g shrink too much) you will miss important
patterns in the data and get poor predictions.

If your model is too complex (e.g don’t shrink enough) will will overfit the
data, find false patterns, and get poor predictions.



What are the big ideas ???!!!

What want to have complex models with many parameters
which can capture high dimensional nonlinear relationships.

We don’t want to overfit, so we need to be able to shrink
towards simple models!!

We can use the prior, in a Bayesian approach, to shrink towards
simple models !!!



BART: Bayesian Additive Regression Trees

We build a high dimensional nonlinear model inspired by boosting and tree
ensembles.

We use a sophisticatedly simple prior to shink towards a simple model.

We use MCMC to get draws from the high-dimensional posterior so that
we can stochastically search the model space and gauge our uncertainty.

Often works well with little tuning because the prior does the
regularization/shrinkage work.



Chapter 8 of the wonderful An Introduction to Statistical Learning is on
tree based methods.

In the “lab’ ’, they illustrate the methods.

https://hastie.su.domains/ISLR2/Labs/Rmarkdown_Notebooks/Ch8-baggboost-lab.Rmd

On this data set, the test error of BART
is lower than the test error of random forests and boosting.

BART is a notably effective ensemble of trees method with some Bayesian
advantages.



Basic Bayesian Ideas



The fundamental beauty of a Bayesian approach is its simplicity.

We have one big probability model !!.

In our most basic version we start with a model as giving the distribution
for potentially observable y given parameters θ.

p(y |θ)



A basic example is the Bernoulli model.

y = (y1, y2, . . . , yn), with

Yi ∼ Bernoulli(p), IID

So here “θ is p”.



Bayesian Inference for parametric models

Given a model for observables, p(y |θ), we think about our probabalistic
beliefs about θ and capture them with a prior distribution p(θ).

We then have a joint model for y and θ

p(y , θ) = p(θ) p(y |θ)

Note that we are reusing the symbol p and its meaning is determined by
its arguments.



Given we observe y , our beliefs about θ are updated in light of this
information by conditioning on y :

p(θ|y) ∝ p(y , θ) = p(θ) p(y |θ)

The object p(y |θ) viewed as a function of θ for a fixed y is called the
likelihood function.

L(θ) ∝ p(y |θ)

Giving us the famous equation,

p(θ|y) ∝ p(θ) L(θ).



Bayesian Inference for the Bernoulli parameter

Let’s suppose the Leafs have score on 26 of their last 100 powerplays and
we believe that it is IID Bernoulli whether or not they score.

Given the data and our model, what are our beliefs about θ where
Yi ∼ Bernoulli(θ) (that is, θ is p).

To specify a prior on θ ∈ (0, 1) we use the Beta distribution

θ ∼ Beta(α, β)

p(θ|α, β) = Γ(α + β)
Γ(α)Γ(β)θα−1(1 − θ)β−1, θ ∈ (0, 1).



What is the likelihood?

y = (y1, y2, . . . , yn), yi ∈ {0, 1}.

p(y |θ) = Πn
i=1 θyi (1 − θ)1−yi = θS (1 − θ)n−S

where S =
∑

yi the number of ones.

So,

p(θ|y) ∝ [θα−1(1 − θ)β−1] [θS (1 − θ)n−S ] = θα+S−1 (1 − θ)β+n−S−1

So,

θ|y ∼ Beta(α + S, β + (n − S))



For the Leafs data lets use α = 2, β = 8.
S = 26, n − S = 74

Let’s plot the prior and posterior.



Choose the prior and compute the posterior.

# beta parameters for our prior
apri = 3; bpri = 10
# beta parameters for our posterior
apost = apri + 26
bpost = bpri + 74

In this case our prior in conjugate so computation of the posterior is very
simple!!!



# plot prior and posterior at theta values in tvec
tvec = seq(from=.0001,to=.99999,length.out=1000)
plot(tvec,dbeta(tvec,apost,bpost),type='l',col='blue',xlab='',ylab="",

cex.lab=.5,cex.axis=.5,cex=.5)
lines(tvec,dbeta(tvec,apri,bpri),col='red')
legend('topright',legend=c("prior of theta","posterior of theta"),

col=c('red','blue'),lty=c(1,1),bty="n",cex=.5)
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The difference between the prior and posterior is a great way to
understand the information in the data.



Monte Carlo and Bayes

Suppose we have p(θ | y) and we want the marginal distribution of
γ = f (θ).

▶ draw θj , j = 1, 2, . . . , J , ∼ θ|y

▶ compute γj = f (θj)

▶ look at distribution of the γj .



In our Bernoulli example suppose I want to know what the data tells me
about the odd ratio.

γ = θ

1 − θ

nd=5000
set.seed(99)
## prior of gamma
tpriD = rbeta(nd,apri,bpri) ## iid draws from the prior of theta = p
gpriD = tpriD/(1-tpriD) ## iid draws from the prior of gamma = odds ratio
## post of gamma
tpostD = rbeta(nd,apost,bpost) ## draws from the posterior of theta = p
gpostD = tpostD/(1-tpostD) ## iid draws from the posterior of gamma = odds ratio



Plot prior and posterior of θ = p and γ.
par(mfrow=c(2,2))
hist(tpriD,freq=F,main='prior of theta')
hist(tpostD,freq=F,main='posterior of theta')
lines(tvec,dbeta(tvec,apost,bpost),type='l',col='blue')
hist(gpriD,freq=F,main='prior of gamma')
hist(gpostD,freq=F,main='posterior of gamma')
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Let’s plot the prior and posterior of γ using a density smooth of the draws.

dspri = density(gpriD)
dspost = density(gpostD)
plot(dspri,xlim=c(0,1),ylim=range(c(dspri$y,dspost$y)),main='',

col='red',cex.lab=.5,cex.axis=.5,cex=.5)
lines(dspost,col='blue')
legend('topright',legend=c("prior of gamma","posterior of gamma"),

col=c('red','blue'),lty=c(1,1),bty="n",cex=.5)
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Prediction and Bayes

Suppose we have p(θ | y) and we want the predictive distribution of future
y .

▶ draw θj , j = 1, 2, . . . , J , ∼ θ|y

▶ draw yj ∼ f (y | θj)

▶ look at distribution of the yj .



Higher Dimension Bayesian Modeling

The Bayesian approach lends itself to building higher dimensional model
with a hierarchical approach.

That is, we build a complex model by building it up from model pieces just
like a car.

For example, suppose we want to consider mixtures of normals

Y | p, µ, σ ∼
J∑

j=1
pj n(y | µj , σj)



We can build a probability model which includes latent indicators I
assigning a Y to one of the normal components.



We can understand the model with a DAG.

This can be done quite effectively for very complex models.

Build a complex model up out of simple pieces !!!!!.



Draw From the Posterior Using Markov Chain Monte Carlo

We can define Markov chains in the conditional space whose stationary
distribution is the posterior.

We then iterate the Markov chain and treat each iteration as a draw from
the posterior much as we do with simple IID Monte Carlo

The Gibbs Sampler just iterates through conditionals.

For example in our mixture model we want

p(p, I, µ, σ | y)



We can iterate through the conditionals:

Given current values of (p, I, µ, σ), we get the next set of values by
drawing from the above conditionals sequentially.



Bayesian Nonparametrics

Bayesian non-parametrics is just Bayesian analysis with lots of parameters
so you can get flexibility.

But, we can let the dimension of the parameter space vary.

For example DPM models fit the mixture model with an unknown number
of mixture components !!!

BART works with an ensemble of trees where each tree has an unknown
size !!!



Bayesian Foundations

Bayesian modeling is popular because:

▶ appeal of probability modeling.

▶ build up complex models out of simple pieces.



However, Bayesian thinking also as some interesting theoretical
foundations:

▶ Complete class theorem: any admissable rule is a Bayes rule and vice
versa.

▶ “coherent” decision making corresponds to Bayesian decision making.

▶ de Finetti’s theorem states that exchangeable observations are
conditionally independent relative to some latent variable.

▶ The likelihood principle: If two problems (model/data) give the same
likelihood, they should give the same inference (e.g. p-values out!!)



Of course, Bayesian thinking also is intimately tied with the view the
probability is fundamentally subjective
(obviously correct!!).

Bayesian thinking also avoids the absurdities associated with such
frequentist concepts as confidence intervals and p-values.



Why isn’t everyone a Bayesian ??

It can be hard to build a full probability model, even with the hierachical
approach.

For example, choosing priors in high dimensions can be tricky.

With big data and big models MCMC may not be feasible.

A huge advantage of BART is that even though the model is high and
random dimensional, the prior and MCMC are “easy”.



Regularization Priors



Our fundamental Bayes equation is

p(θ|y) ∝ p(y , θ) = p(θ) p(y |θ)

If we simply take the log we get

log(p(θ|y)) = log(p(θ)) + log(p(y |θ)) + C

The posterior mode will optimize the fit through the log likelihood but the
prior will provide shrinkage and can be designed to “prefer” simpler models
even thought θ is complicated enough to capture quite a complicated
model.

This is how BART work.
We will call our prior a regularization prior.
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