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1. Model Selection

Model selection, and more particularly variable selection has been,
and continues to be, a major focus of research and practice.

A major selling point of the Lasso is that it gives you variable
selection.

A major knock an “machine learning” techniques is that they are
“black box".
But if you run (in R):

» deeplearning (in R package h20)

> rpart (decision trees)

» gbm (boosting)

» randomForest

You can get measures of “variable importance”.



Jerome H. Friedman, Multiple additive regression trees with application in
epidemiology, STATISTICS IN MEDICINE Statist. Med. 2003;

For a single tree 7, Breiman et al. [1] proposed a measure of (squared) relevance IJ-Z(T)
for each predictor variable x;, based on the number of times that variable was selected for
splitting in the tree weighted by the squared improvement to the model as a result of each of
those splits. This importance measure is easily generalized to additive tree expansions (3); it
is simply averaged over the trees
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Owing to the stabilizing effect of averaging, this measure (12) turns out to be more reliable
than is its counterpart for a single tree. Since these measures are relative, it is customary to
assign the largest a value of 100 and then scale the others accordingly.

But, they all have problems.
For example, it seems wrong to say how important a variable is.

Our view is that your focus should be on subsets of variables since
in interesting cases the variables work together.



In general | like cross-validation to pick subsets and Bayesian
posterior model probabilities.

But cross-validation is just a plug in approach and can be tricky in
practice.
Witness the 1se rule!!!

Bayes model probabilities are highly sensitive to the prior which
can be a real problem.

The popular BIC is a very crude approximation to a Bayesian
model probability and how many people have any clue what AIC is?



| want something that:

» Not hard to do.
> Allows me to assess the practical significance.
> Allows me to assess the uncertainty.

P> someone can use, without understanding it and get a
reasonable answer.

And makes no assumptions



In my mind | am following a decision theoretic approach with
elements prior, data model, utility

p(®), f(y10), Uly,a)

We then choose the action a to minimize our expected loss where
the expectation is taken over the predictive distribution of Y given
paste data.

minimize E(U(Y,a))

a



But, as you will see, we cut lots of conceptual corners.

In our case the action a will be the choice of a function ys(x) such
that

vs(x) = E(Y | x)

> ~s(x) only depends on the subset S of x variables

> E(Y | x) is the predictive expectation of Y | x, usually
estimated with all variables in x.



2. fit-the-fit Variable Selection

I'm going to use BART (Bayesian Additive Regression Trees) in all
the examples.

BART is a pretty good “Machine Learner” and it give Bayesian
posterior inference pretty robustly.

See, for example, the R package BART, Sparapani and McCulloch
(2017) and check out the vignettes (> browseVignettes()). Also
see, rbart Pratola and McCulloch.

But you can apply the same approach to output from any other
flexible fitter. You just may not have the last “uncertainty step”.



Note:
Consider linear multiple regression.

Many Bayesian and frequentist approaches build a model around
the idea that many of the coefficients are 0 and then attempt an
inference.

Hahn and Carvalho build a model without assuming any of the
coefficients are 0, do an inference, and then seek to approximate
that inference with models in which the coefficients are 0.

If many of the coefficents are inferred to be close to 0, as a
practical matter this will work well!!!l

Note:
If some of the coefficients really are 0, and you just think they may
be close to 0 as a practical matter, you will do fine!!

If none of the coefficents are exactly 0, and you seek to find the
ones that are you will do terrible, and no playing with the prior or
reengineering of the p-value will save you. 8



sd = read.csv("sim-reg-data.csv")
> 1mf = 1lm(y~.,sd)
> summary (1mf)

Call:
Im(formula = y ~ ., data = sd)
Residuals:

Min 1Q Median 3Q Max

-3.4575 -0.6490 0.0287 0.6639 4.0229

Coefficients:
Estimate Std. Error t value Pr(>[t])
(Intercept) -0.024640 0.089157 -0.276 0.782

x1 0.025323 0.007686 3.295 0.001 *x*

x2 0.035590 0.007742 4.597 4.55e-06 *xx*

x3 4.248433 10.888697 0.390 0.696

x4 -5.126662 7.773133 -0.660 0.510

x5 2.767445 7.835586 0.353 0.724

Signif. codes: 0 ‘**x*’ 0.001 ‘x*x’ 0.01 ‘*x’ 0.05 ‘.’ 0.1 ¢ > 1

Residual standard error: 1.007 on 1994 degrees of freedom
Multiple R-squared: 0.2434,Adjusted R-squared: 0.2415
F-statistic: 128.3 on 5 and 1994 DF, p-value: < 2.2e-16



BART: Y = f(x) +¢, e~ N(0,02).
Step 1 (fit):
Run BART using the observed data (X, y).

This will give us MCMC draws (fy,04), d = 1,2,
posterior.

For example: f(x) = % 25:1 fa(x).

» The BART prior assumes all x matter.

» All inference comes from this step.

We will just be approximating this inference.

..., D from the

10



Step 2 (choose future x):
Choose a set {x/} of future x at which you want to predict Y.
We will let XT denotes the set of x/.

Of course, given data (y, X), a simple default is X = X, but

the choice of XT can and should matter 11!

The choice of model should depend on what you want to do with
it 1

11



Step 3 (fit the fit):
Let |S| be the size of the set S (number of variables in our case).
Foreachj=1,2,...,p—1:

minimize ||F(X") — 5(X")]

vs, |S|=J

where (of course),

1F(XT) =s(XNIP =D (F(x) = s(x]))?

For each j, we need a subset S of j variables and an approximating
function ~ys using only those variables.

Remember, we don't want to make assumptions about f and

hence s.
12



We can'’t solve this so, as usual, we approximate our problem with
a computationally feasible strategy:

(1):

Use backwards and forwards selection to search for subsets.
As in the linear case, can do all subsets for moderate p.

(2):
Rather than run our nonparametric method (BART) using subsets

of the x variables to get vs(X), fit a big tree to #(X) using
subsets of the x variables.

note: BART is not engineered to fit perfectly.

13



A big tree fit to the data is a terrible idea (unless you bag).
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A big tree fit to the fit is a great idea !! |
Forwards selection on the fit is a great idea !!
and it is pretty fast 11!

14



f(X) is the posterior mean from step 1.

So, for example, the first step in forwards is to fit a big tree to
each data set:

(y=Ff(X").X=xf), j=12,....p

and then pick the x; that gives you the best fit.

15



Step 3(a) (Run BART on selected subsets):

Once we have the subsets S;, j =1,2,...,p—1,
we can run the p — 1 BARTS using the data (y, Xs,).

Sometimes, this gives a better approximation than the big tree.

So, we replace the v5(X") we got from the big trees with the
BART posterior means from runs on the found subsets.

But we have to use the big trees to search !!

16



Step 4
(Assess Uncertainty of Approximation Error):

To informally assess a subset choice we look at the posterior
distribution of
D(f(X"),7s(X"))

where f is the random variable, and we consider the posterior
distribution of f.

We consider a variety of distance functions D.

That is, we look at the draws:
D(f4(X"),vs(X"))
and the differences

D(fa(X"),vs(X")) = D(f4(XT), F(XT))

17



That is, we look at the draws:

D(fy(X"),7s(X"))

Given the information in the data, what is the likely size of the approxima-
tion error if you use only the variables in S.

and the differences
D(fa(X"),vs(X")) = D(fa(XT), F(XT))

Given the information in the data, what is the likely increase in the size of
the approximation error if you use only the variables in S.

18



Choice of D:

For numeric Y the most obvious choice is RMSE:

nf

DX ), 75(X ) = || - (falxf) — 15 ()2

fia

But we also have been thinking about distances which incorporate
the o draws, e.g.:

xf) — xf
DX rs(XT).0a) = | £ 3 () =506y,

0d

you might want to think about the approximation error “relative
to” the unvoidable predictive uncertainty represented by o.

19



We also consider:

DX, 25X N,00) = ) o 37 (falef) ({2 + 5~ o

For discrete Y outcomes, we use Kullback-Leibler distances or just
the absolute value of the difference in probabilities.

Note that look at these posteriors does not fit in with formal
Bayesian decision making!!

20



Summary:

» Step 1: get BART inference using data (X, y).
» Step 2: choose future x's X*.

» Step 3: find subsets S such that |S| =/ € {1,2,...,p} using
“big tree” vs.

» Step 3(a): Given the subsets from (3) run BART on (y, Xs)
to get alternative ~s.

> Step 4: Assess uncertainty with draws D(fy(X),vs(X")).

In my mind Step 1 gives me the “true” Baysian inference.
After that | am just post-processing/making decisions!!!

NO "“sparsity prior”.
NO “multiple comparisons” .
NO “model probabilities”.

21



3. Cars Data

y: price of a used car (Mercedes M class). x: things about the car.

n=1,000.

p = 15 (after making dummies).

1000 15
price

n,p:

Min. : 995
1st Qu.:12995
Median :29800
Mean : 30583
3rd Qu.:43992
Max. 179995
color
Black :415
other :227
Silver:213
White :145

trim
1143
500 :127
550 :591
other:139

430

displacement
4.6 :137
5.5 :476
other:387

isOneOwner
£:841
t:159

mileage
Min. 1997
1st Qu.: 40133
Median : 67920
Mean : 73652
3rd Qu.:100138
Max. 1255419

year

Min.

1st Qu.

Median
Mean

Max.

11994
12004
12007
12007
3rd Qu.:
12013

2010

22



Y vs. four of the x’s.

price

20000 40000 60000 80000

o

20000 40000 60000 80000

0
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Mileage and year were scaled for fitting with neural nets.

80
70
60
50
40

20
10

price

24



Step 1::

Do a BART inference using all the x's.

This gives us 7(XT) for any X7..

Step 2:

In this example X’ will be the observed x.

25



Using all the x’s:

o 2000 4000 60000 o 000 4000 60000

y=price. y

nonpar-hat:
Bayes
nonparametric
fit toy: F(X).

nonpar-yhat

20000 40000 60000

bigtree:
fAit big tree to
F(XT) .

bigtree

10000 3000 S0000 70000

linear-yhat:
linear fit to y.

20000 40000 60000

e
‘{.a linear-yhat

0 2000 4000 6000 80000 10000 0000 50000 70000

o

26



Step 3:

fit-the-fit:
Let 7v;(x) be ys(x) for S = a subset with j variables.

Find subsets such that 7;(X) ~ f(X")

27



Forward:

At each step,
add in the x
which makes

%(X")

(fit using big tree)

closest to

F(XT),

the bayes fit.

Using “R2"

type measure.

Variables:

year
year mileage
year mileage
year mileage
year mileage
year mileage

trim.
trim.
trim.
trim.

other
other
other
other

forward search

e et o ——
2 ////
g |
3
o
3 |
3
5
3
g
g
2
? e
e 84
3
8
3
s
3 |
3
2] .
3
T T T T T T
2 4 6 8 10 12 14
number of variables
displacement.5.5

displacement.5.5 color.Black
displacement.5.5 color.Black color.White
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Compare forwards, backwards, and all possible subsets search.

2 Ve
S | R
!
'
& 1 /
S !
I
|
~ |
L @4 {
5 o |
H |
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£ g. N i
g © '
/
g
[S)
[
!
s
=] !
{ - - backwards
™ / forwards
&S - - all
(S
2 4 6 8 10 12 14
subset

Remember, inference is not an issue.
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Top 6, Forwards:

year

year mileage
year mileage
year mileage
year mileage
year mileage

Top 6,
year

mileage
mileage
mileage
mileage
mileage

Top 6,
year

mileage
mileage
mileage
mileage
mileage

trim.
trim.
trim.
trim.

other

other displacement.5.5

other displacement.5.5 color.Black

other displacement.5.5 color.Black color.White

Backwards:

year

year trim.550

year trim.550 displacement.other

year trim.550 color.Black displacement.other

year trim.550 color.Black color.Silver displacement.other

All:

year
year
year
year
year

trim.
.other displacement.5.5

.other color.Black displacement.5.5
trim.

trim
trim

other

other color.Black color.White displacement.5.5

30



Step 3(a) :

Once we have the subsets, we often replace the ;(x) obtained
from the big trees, with the fit from rerunning BART with the data
and the subset of x's.

While our basic claim is that the big tree fit is good enough to run
forwards (or backwards or all subsets), refitting BART on the
subsets with data (y, Xs) can give us a better fit to f(X).

So,
Rerun the nonparametric fit (BART) using the identified subsets.

Let ﬁ(x) be the fit using the subset of variables of size ;.

Let ~;(x) = fi(x).

31
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Step 4:

To assess our uncertainty we look at posteriors of D(f(X),~;(X))
for various j.

Here, f is the random variable.
For MCMC draw fy, we compute D(fy(X"),v;(X")).

Our first D is RMSE

D=\ [ 3 (ful) — ()2

xeXf

where nf = number of x € X*.

33



Look at draws D(f4(X),~;(X")) for various j.
Horizontal blue and red lines are for j = p, 7,(X") = f(X).

4000 5000

distance

3000
|

2000
|

root mean squared error

1000
L

subset

little vertical lines are 95% intervals. Circles at posterior mean. 34



Now we look at the posterior distribution of the difference in
distances

For each draw f; we compute:

D(fy(X"),7(X")) = D(fa(X"), F(X")).

35



rmse distance, difference.

root mean squared error difference, bart

8.
5
Pl
b
odo **%444a4¢4
1 2 3 4 5 6 71 & 9 10 1 12 13 14
subset
These cars cost $30,000 or more.
As a practical matter, 3 or 5 variables does the trick!!!!!

36



Another distance measure:

n
f xeXf

The idea is that if f(x) — vj(x) is small relative to o then it does
not matter.

This gives us a unitless D.

37



Small cars example. rmse/sigma distance.

dist:rmse/sigma”2, bart

1.0

distance

0.6

subset

38



Small cars example. Diff sigsqrt.

distance difference

1.0

0.8

0.6

0.4

0.2

0.0

distrmselsigma’? difference, bart

subset
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4. Hockey

Glen Healey, commenting on an NHL broadcast:

Referees are predictable. The flames have had three penal-
ties, | guarantee you the oilers will have three.

Well, guarantee seems a bit strong,
but there is something to it.

How predictable are referees?

“Reversal of fortune: a statistical analysis of penalty calls in the national hockey league”, (2014), Journal of

Quantitative Analysis in Sports 10 (2), 207-224 (with Jason Abrevaya).

40



Got data on every penalty in every
(regular season) game for 7 seasons around the time they switched
from one referee to two.

For each penalty (after the first one in a game) let
revcall =

1 if current penalty and previous
penalty are on different teams,

0 otherwise.
You know a penalty has just been called,

which team is it on?
is it a reverse call on the other team?7?

Mean of revcall is .6 !
41



Table: Variable Descriptions

Variable Description Mean Min Max
Dependent variable

revcall 1 if current penalty and last penalty are on different teams 0.589 0 1
Indicator-Variable Covariates

ppgoal 1 if last penalty resulted in a power-play goal 0.157 0 1
home 1 if last penalty was called on the home team 0.483 0 1
inrow2 1 if last two penalties called on the same team 0.354 0 1
inrow3 1 if last three penalties called on the same team 0.107 0 1
inrowd 1 if last four penalties called on the same team 0.027 0 1
tworef 1 if game is officiated by two referees 0.414 0 1
Categorical-variable covariate

season Season that game is played 1 7
Other covariates

timeingame Time in the game (in minutes) 31.44 0.43 59.98
dayofseason Number of days since season began 95.95 1 201
numpen Number of penalties called so far (in the game) 5.76 2 21
timebetpens Time (in minutes) since the last penalty call 5.96 0.02 55.13
goaldiff Goals for last penalized team minus goals for opponent -0.02 -10 10
gfl Goals/game scored by the last team penalized 2.78 1.84 4.40
gal Goals/game allowed by the last team penalized 2.75 1.98 4.44
pfl Penalties/game committed by the last team penalized 6.01 4.11 8.37
pal Penalties/game by opponents of the last team penalized 5.97 4.33 8.25
gf2 Goals/game scored by other team (not just penalized) 2.78 1.84 4.40
ga2 Goals/game allowed by other team 2.78 1.98 4.44
pf2 Penalties/game committed by other team 5.96 4.11 8.37
pa2 Penalties/game by opponents of other team 5.98 4.33 8.25

n = 57,883.



How is revcall related to the variables?

inrow2=0 inrow2=1
revcall=0 0.44 0.36
revcall=1 0.56 0.64

If the last two calls were on the same team (inrow2=1),
then 64% of the time, the next call will reverse and be on the

other team.

Otherwise, ((inrow2=0), it is only 56%.

43



A Tree

n0:0.35
Yes:0.65

vVvyyvyy

goaldiff < 0.5
T

inrow? < 0.5

< 3.39167

numpep < 2.5 timebetpenf < 6.79167 inrow3 < 0.5 inrow3 < 0.5
oaldiff <=0.5 087 oks 0bs 052 ok2
0.63 0.55 0.65 0.48 0.58
0.40 0.46
0.60 0.54
. | 2 i
Last penalized was not ahead Last penalized was ahead
. | i i
Last two penalties on same team it has been a while since last
. penalty
Not long since last call
» last three calls not on same

one ref

=
72% revcall.

team

48% revcall.
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Hockey example. compare forwards and backwards.

0.8
|

fit measure
0.6

0.4

0.2

- - backwards
forwards

T T
15 20 25

10
subset
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Hockey example. Forwards and backwards subsets.

numvar forwards

1 goaldiff

2 timeingame
3 timebetpens
4 inrow2

5 pfl

6 pf2

7 numpen

8 home

9 inrow3

10 pal

11 pa2

12 tworef

13 dayofseason
14 gf2

15 X2000

16 gal

17 gfl

18 ga2

19 ppgoal

20 X1996

21 inrow4

22 X1998

23 X2001

24 X1995

25 X1997

26 X1999

backwards
timebetpens
pfl
goaldiff
inrow2
numpen

pf2

home
inrow3

pal

pa2

tworef
timeingame
dayofseason
gf2

X2000

gal

gfl

ga2

ppgoal
X1996
inrow4
X1998
X2001
X1995
X1997
X1999
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Hockey example. bartsub-pairs. forward search.
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Kullback-Leibler.

kullback-liebler

0.03 0.04
| ]

distance
PN
——

0.02

0.01

subset
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Kullback-Leibler difference.

kullback-liebler, difference

0.03
]

distance difference
0.02
|

0.01
|

0.00
|

subset
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abs prob difference.

0.08
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0.06 0.07
|
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0.03
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e
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o
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:
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:
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;
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:
j
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0.02

12 3 456 7 89 11 13 15 17 19 21 23 25
subset
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abs prob difference difference.

abs val of prob difference, difference

0.04 0.05
| ]

0.03
|

distance difference

0.02
|

0.01
|

0.00
|

subset



We actually only used 47,883 of the 57,883 observations in the
results so far.

We have a test data set of size 10,000 to asses the out-of-sample
preditive performance of models fit using the chosen variable
subsets.

Note:

In principle, our approach has nothing to do with “regularization”
or the bias-variance tradeoff.

But of course, choosing a good simple model helps everything!!!!
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0os-abs-bartonsubsets
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number of variables
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oos-deviance-bartonsubsets
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Friedman

f = function(x){
10*sin(pi*x[,1]*x[,2]) + 20%(x[,3]-.5) "2+10*x[,4]+5*x[,5]
}

sigma = 1.0 #y = f(x) + sigmaxz , z"N(0,1)
n = 100 #number of observations
set.seed(99)
X=matrix(runif (n*10),n,10) #10 variables, only first 5 matter
if(0) {
np=5000
xp=matrix(runif (np*10),np,10) #10 variables, only first 5 matter
} else {
np=n
xp=X
}
Ey = £(X)
y=Ey+sigma*rnorm(n)

We will use either 5,000 or 100 x in X7,

55



compare all, friedman, big x.

fit measure

0.9

0.8

0.7

0.6

- - backwards
forwards
- all

subset
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friedman big x example. Forwards and backwards subsets.

numvar forwards backwards
1 x4 x4
2 x2 x2
3 x1 x1
4 x5 x5
5 x3 x3
6 x6 x6
7 x8 x8
8 x9 x9
9 x7 x7

fure
o

x10 x10



pairs bartsubs, allx, friedman, big x.
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Friedman example. First rmse distance.

distance

root mean squared error

subset
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Friedman example. rmse distance, difference.

root mean squared error difference, bart

3.0

25

distance difference
1.5

1.0

0.5

subset
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compare all, friedman, small x.

fit measure

0.95

0.90

0.85

0.80

- - backwards
forwards
- all

subset
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friedman small x example. Forwards and backwards subsets.

numvar forwards backwards
1 x2 x2
2 x4 x1
3 x1 x5
4 x3 x7
5 x6 x9
6 x8 x3
7 x10 x6
8 x9 x10
9 x7 x8
10 x5 x4



Friedman example, small x. First rmse distance.

distance

root mean squared error

subset
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Friedman example difference in rmse, small x. First rmse distance.

distance difference

root mean squared error difference, bart

subset
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6. Utility Based (fit-the-fit) Variable Selection

Claim:

We can make the “fit-the-fit" tie more closely to an underlying
utility approach.

We should be maximizing the expected utility or minimizing the
expected loss:

For example:
L(Y,vs) = (Y = 7s(x")? + AlS|

We take the expectation using the predictive of Y|x and then
average this over our set of future x.
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L(Y,vs) = (Y —vs(x"))? + S|

But since,

E(Y = 75(x")? = Var(Y) + (E(Y|x) = 75(x"))?

with squared error loss, our expected predictive utility just fits the
means as discussed above.

And then minimizing for each |S| is a way to minimize given the
|S| complexity penalty.
Key: X is a utility parameter, not a prior (or estimation penalty)

parameter !!

If you have a sparsity prior, you can put it in Step 1. 6



7. Conclusion

The simple forward step-wise search seems to work really well.
This can be simply parallelized.

Refitting the step 1 type model on the identified subsets can be
done in parallel and is relatively easy once you have p possible
subsets instead of 2P.

Fitting a big tree is clearly a basic tool in data analysis (e.g.
Random Forests).
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Win-Win

The Bayesian decision environment has prior, model, and utility.

Most variable selection work emphasizes prior, and computes the
posterior over model choices. This is a nightmare.

Emphasizing utility is the right thing to do and it is easier !!!
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Redemption

Re George and McCulloch, “Stochastic Search Variable Selection” .
Jay Kadane:

“You are confusing your prior with your utility function.”

Not any more!lll
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