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1. Trees

Tree based methods are a major player in
statistics/machine-learning.

Good:

> flexible fitters, capture non-linearity and interactions.
without having to choose a set of transformations 11!

» do not have to think about scale of x variables.
» handles categorical and numeric y and x very nicely.
> fast.

» interpretable (when small).

Bad:

Not the best in out-of-sample predictive performance
(but not bad!!).



But,

If we bag or boost trees, we can get the best off-the-shelf
prediction available.

Bagging and Boosting are ensemble methods that combine the fit
from many (hundreds, thousands) of tree models to get an overall
predictor.

“

. It Is rather amazing that an ensemble of trees leads to
the state of the art in black-box predictors !

Bradley Efron and Trevor Hastie, Computer Age Statistical
Inference, chapter 17, 2016.



2. Regression Trees

Let's look at a simple 1-dimensional example so that we can see
what is going on.

We'll use the Boston housing data and relate x=lIstat to y=medval.



At left is the tree fit to the data.

At each interior node there is a decision rule of the form {x < c}.
If x < ¢ you go left, otherwise you go right.

Each observation is sent down the tree until it hits a bottom node
or leaf of the tree.
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The set of bottom nodes gives us a partition of the predictor (x)
space into disjoint regions. At right, the vertical lines display the
partition. With just one x, this is just a set of intervals.



Within each region (interval) we compute the average of the y
values for the subset of training data in the region. This gives us
the step function which is our f. The ¥ values are also printed at
the bottom nodes (left plot).
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To predict, we just use our step function estimate of f(x).

Equivalently, we drop x down the tree until it lands in a leaf and
then predict the average of the y values for the training
observations in the same leaf.



A Tree with Two Explanatory Variables

Here is a tree with x = (x1, x2) = (Istat,dis) and y=medv.

Now the decision rules can use either of the two x's.
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At right is the partition of the x space corresponding to the set of
bottom nodes (leaves).

The average y for training observations assigned to a region is
printed in each region and at the bottom nodes.



This is the regression function
given by the tree.

It is a step function which can
seem dumb, but it delivers non-
linearity and interactions in a
simple way and works with a
lot of variables.

Notice the interaction.
The effect of dis depends on
lstat!!

S




The California Housing Data

Here is a tree with 50 bottom nodes fit to the California Housing
data using only longitude and latitude.
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Don't extrapolate into the ocean!



Here is a view of the fit using the map of the state.

(units are dollars, the logMedVal was exponentiated for the Iabels).
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3. Classification Trees

Let's do a tree for a classification problem.
We'll use the hockey penalty data.

The response is 1 if the current penalty is not on the same team as
the previous penalty and 0 otherwise.

x is a bunch of stuff about the game situation
(the score ...).

The x values refer to the team that had the previous penalty.
For example, goaldiff=1 means the team that had the previous
penalty is ahead by one goal.

Our response is binary and some of our predictors are categorical
as well.
10



Table 5: Variable Descriptions

Variable Description Mcan Min Max
Dependent variable

revcall 1 if current penalty and last penalty are on different teams  0.589 0 1
Indicator- Variable Covariates

ppgoal 1 if last penalty resulted in a power-play goal 0.157 0 1
home 1 if last penalty was called on the home team 0.483 0 1
inrow2 1 if last two penalties called on the same team 0.354 0 1
inrow3 1 if last three penalties called on the same team 0.107 0 1
inrowéd 1 if last four penalties called on the same team 0.027 0 1
tworef 1 if game is officiated by two referees 0414 0 1
Categorical-variable covariate

season Season that game is played (e.g., 1995 for 95-6 season) 1995 2001
Other covariates

timeingame  Time in the game (in minutes) 31.44 043 59.98
dayofseason Number of days since scason began 95.95 1 201
numpen Number of penalties called so far (in the game) 5.76 2 21
timebetpens Time (in minutes) since the last penalty call 596 0.02 55.13
goaldiff Goals for last penalized team minus goals for opponent -0.02  -10 10
gf1l Goals/game scored by the last team penalized 278 184 440
gal Goals/game allowed by the last team penalized 275 198 444
pfl Penalties/game committed by the last team penalized 6.01 4.11 837
pal Penalties/game by opponents of the last team penalized 597 433 825
gf2 Goals/game scored by other tcam (not just penalized) 2.78 184 440
ga2 Goals/game allowed by other team 2.78  1.98 444
pf2 Penalties/game committed by other team 596 4.11 837
pa2 Penalties/game by opponents of other team 598 4.33 8.25

n =~ 60, 000.

11



Here is the tree.

goaldiff < .5 means the last penalized team is not winning.
Do you want to give them a another penalty 777

goaldiff < 0.5
t

|nroi/2 0 timespan f 3.39167

timespan k 6.79167

numpeh < 2.5

time < P2.775 goaldiff < -0.5 numpeh < 2.5 s time < 37.6917
0.65 0.58
laghojne: 0
0:0.34 0.44 0.40 0., 0.
1:0.66 0.56 0.60 0.66 0.54 0.51
0.49 0.43
0.51 0.57 0.41 0.48

» Each bottom node gives the fraction of training data in the two outcome
categories. Think of it as p for the kind of x associated with that bottom node.

» The form of the decision rule can’t be x < ¢ for categorical variables.
We pick a subset of the levels to go left. inrow2:0 means all the observations
with inrow?2 in the category labeled 0 go left.

12



There is a lot of fit!!!

Suppose "you" got the last penalty.

if:
» if you are not winning
» you had the last two penalties
> it has not been long since the last call
» and there is only 1 referee
then:
there is a 72% chance the next call will be on the other team.
goaldiff < 0.5
mrv\L 0 timespan [ 3.39167
numpep < 2.5 IlmespanLGNlW inroyi2: 0 inro3: 0
time <P2.775 goaldiff < -0.5 numrgfs: 1 numpep < 2.5 time < 37.6917
0.37 0. 0.42
0.63 0. 0.58
L laghgme: 0 [
0:0.34 0.44 0.40 0.28 0.34 0.34 0.46 0.
1:0.66 0.56 0.60 0.72 0.66 0.66 0.54
0.49 0.43 2
051 0.57 041 0.48

Whilst there is another game situation where the chance the next

call is on the other team is only 41%.
13



4. Trees: A Summary

Trees:
» Trees use recursive binary splits to partition the predictor space.
» Each binary split consists of a decision rule which sends x left or right.
» For numeric x;, the decision rule is of the form if x; < c.
» For categorical x;, the rule lists the set of categories sent left.
> The set of bottom nodes (or leaves) give a partition of the x space.
» To predict, we drop an out-of-sample x down the tree until it lands in a bottom

v

node.

For numeric y, we predict the average y value for the training data that ended
up in the bottom node.

For categorical y we use the category proportions for the training data that
ended up in the bottom node.

14



Good:

Handles categorical/numeric x and y nicely.
Don’t have to think about the scale of x's I!!
Computationally fast (“scales”).

Small trees are interpretable.

vyVvyVvYyVvyy

Variable selection.

Bad:

» Step function is crude, does not give the best predictive performance.
» Hard to assess uncertainly.

» Big trees are not interpretable.

15



5. Tree Models and the Bias Variance Trade Off

How do we fit trees to data??

The key idea is that a complex tree is simply a big tree.

We usually measure the complexity of the tree by the number of
bottom nodes.

16



To fit a tree, we choose a tree to minimize (on the training data):

C(T,y)=L(T,y)+a|T|

where,

» L(T,y) is our loss in fitting data y with tree T.

We want good fit on the training data = want L small.

» |T| is the number of bottom nodes in tree T.
But, we don't want a complex model that fits too well
= we want | T| small.

For numeric y our loss is usually sum of squared errors, for
categorical y we can use the deviance or some other measure of
classification fit.

17



C(T,y)=L(T,y)+a|T|
a big:

The penalty for having a big tree is large.
When we do our minimization, we will get a smaller tree with a
bigger L on the training data.

o small:

We do not mind having a big tree.
We will get a smaller L (better fit) on the training data.

« is called the complexity-cost penalty parameter.

18



How do we do the minimization 77!!

Now we have a problem.

While trees are simple in some sense, once we view them as
variables in an optimization they are large and complex.

A key to tree modeling is the success of the following heuristic
algorithm for fitting trees to training data.

19



(I. Grow Big)

Use a greedy, recursive forward search to build a big tree.
(i)

Start with the tree that is a single node.

(i)

At each bottom node, search over all possible decision rules to find
the one that gives the biggest decrease in L (increase in fit).

(iii)
Grow a big tree, stopping (for example) when each bottom node
has 5 observations in it.

20



(1. Prune Back)

(i)

Recursively, prune back the big tree from step (I).
(i)

Give a current pruned tree, examine every pair of bottom nodes

(having the same parent node) and consider eliminating the pair.

Prune the pair the gives the biggest decrease in our criterion C.

This is give us a sequence of subtrees of our initial big tree.

(iii)
For a given «, choose the subtree of the big tree that has the
smallest C.

21



So,
Give training data and o we get a tree.

How do we choose v 77

As usual, we can leave out a validation data set and choose the «
the performs best on the validation data, or use k-fold cross
validation.

22



Boston Data,
[stat and medv:

At right are three different tree
fits we get from three different
« values (using all the data).

The smaller « is, the lower the
penalty for complexity is, the
bigger tree you get.

The top tree is a sub-tree of
the middle tree, and the middle
tree is a sub-tree of the bottom
tree.

The middle « is the one sug-
gested by CV.

alpha = 0.016

tstat

alpha = 0.005

tstat

alpha = 0.004

s 16,08 e

aofa 55

san4 85

sta>4s 405

afa.32s
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This is the CV plot giving by the R package rpart for y=medv
x=lstat.

Tree sizes at top of plot, and (a transformation of) «
(the “cost-complexity” parameter) on the bottom.

The error is relative to the error obtained with a single node
(fitisy =y, a =00).

‘‘‘‘‘‘‘‘‘‘

Caution: the bottom axis is a transformation of «.

24



Here is the best CV tree as plotted by rpart.

Istat>50.725
Istat< §.725

Istat>#4.65
Istat<\4.65

Istat>£19.9

25



6. Bagging and Random Forests
A key idea in modern statistics is the bootstrap:

Treat the sample as if it were the population and then take iid
draws.

That is, you sample with replacement so that you can get the
same original sample value more than once in a bootstrap sample.

We can use the bootstrap to make trees much better predictors !!!!

To Bootstrap Aggregate (Bag) we:

> Take B bootstrap samples from the training data, each of the
same size as the training data.

» Fit a /arge tree to each bootstrap sample (we know how to do
this fast!). This will give us B trees.

» Combine the results from each of the B trees to get an overall
prediction.
26



What is a bootstrap a sample?
set.seed(34) # Auston Matthews

>

>

>n = 20

> x = rnorm(n)
> print(x)

[1] -0.138889971

[6] -0.455492149
[11] -0.402880091
[16] 1.356390044
>
> xs = sample(x,s
> print(xs)

[1] 1.1998129

[7] 1.1998129 -
[13] -0.5752482 -
[19] -0.4694178 -

1.199812897 -0.747722402 -0.575248177 -0.
0.670620044 -0.849014621 1.066804504 -0.
0.719107939 -0.180058654 1.046190759 O.
0.019226639 -0.469417841 -1.842661894 -0.

ize=n,replace=TRUE)

1.1998129 -0.2797409 1.0461908 -0.7477224
0.2797409 1.0461908 -1.8426619 1.3563900
0.4028801 0.6706200 -0.8490146 1.0668045
0.7477224

> print (length(unique(xs)))

[1] 13

263581513
007460534
401254928
279740938

1.0461908
0.6706200
-0.4554921

We act like our sample x is the population, and then we can take
as many bootstrap samples from x as we like by sampling with

replacement.



For numeric y we can combine the results easily by making our
overall prediction the average of the predictions from each of the B
trees.

For categorical y, it is not quite so obvious how you want to
combine the results from the different trees.

Often people let the trees vote: given x get a prediction from each
tree and the category that gets the most votes (out of B ballots) is
the prediction.

Alternatively, you could average the p from each tree. Most
software seems to follow the vote plan.

28



Why on earth would this work??!!

Remember our basic intuition about averaging, for

Yi = p+ e,

we think of i as the signal and ¢; as the noise part of each
observation.

When we average the y; to get y, the signal, u, is in each draw, so
it does not wash away, but the ¢; wash out.

For us, the signal is the part of y we can guess from knowing x!!

29



Bagging works the same way.

We randomize our data and then build a lot of big
(and hence noisy!) trees.

The relationships which are real get captured in a lot of the trees
and hence do not wash out when we average.

Stuff that happens “by chance” is idiosyncratic to one (or a few)
trees and washes out in the average.

Brilliant. Leo Brieman.

30



Bagging and the Bias-Variance Tradeoff

A nice way to think about bagging is in terms of the Bias-Variance
tradeoff.

A big tree is a complex model which gives us high variance and low
bias.

What does low bias mean? We can find a good f on average,
where average means average over data sets you might get from
the population or process generating the data.

So, if we could average the results from many data sets, we could
reduce the variance, and get the good average f!!

But we only get one data set !!!!

We get many data sets by bootstrap sampling from our
observations and then average the results !!!

31



Note:

You need B big enough to get the averaging to work, but it does
not seem to hurt if you make B bigger than that.

The cost of having very large B is in computational time.

We can build trees fast, but if you start building thousands of
really big trees on large data sets, it can end taking a while.

32



Random Forests:

Random Forests starts from Bagging and adds another kind of
randomization.

Rather than searching over all the x; in x when we do our greedy
build of the big trees, we randomly sample a subset of m variables
to search over each time we make a split.

This makes the big trees “move around more” so that we explore a

rich set of trees, but the important variables will still shine
through!!.

33



Have to choose:

» B: number of Bootstrap samples (hundreds, thousands).

» m: number of variables to sample.

A common choice is m = ,/p,
where p is the dimension of x.

Note:

Bagging is Random Forests with m = p.

Note:

There is no explicit regularization parameter as in the lasso and
single tree prediction.

34



Note:

The parameters that determine how big the big tree is could also
matter.
Usually the default seems to work ok on this.

For example, rpart in R has the rpart.control data structure.

For example, you can specify a minimum number of observations
you can have in a bottom node

or the minimun needed to split (or some other stuff).

minbucket=100
cat ("minbucket: " ,minbucket,"\n")

cntrl = rpart.control(minsplit = 2#minbucket,
minbucket=minbucket)

## get big tree

temptree = rpart(R”.,data=ddf,control=cntrl)
szbt = length(unique(temptree$where))
cat("size of big tree: ",szbt,"\n")



OOB Error Estimation:

OOB is “Out of Bag".

For a bootstrap sample, the observations chosen are “in the bag’
and the rest are out.

There is a very nice way to estimate the out-of-sample error rate
when bagging.

One can show that, on average, each bagged tree makes use of
about 2/3 of the observations.

By carefully keeping track of which bagged trees use which
observations you can get out-of-sample predictions.

36



Bagging for Boston: y=medv, x=lstat.

Here is the error estimation as a function of the number of trees
based on OOB.

it

Suggests you just
need a couple of
hundred trees.

&
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Bagging for Boston: y=medv, x=lstat.
With 10 trees our fit is too jumbly.

With 1,000 and 5,000 trees the fit is not bad and very similar.

Note that although our method is based on trees, we no longer
have a simple step function!!

bagging nirees = 10 bagging ntrees = 500 bagging nirees = 5000

38



7. Boosting Trees

Like Random Forests, boosting is an ensemble method is that the
overall fit it produced from many trees.

The idea however, is totally different!!

In Boosting we sequentially add in functions corresponding to
simple trees to our overall fit, where each tree added in improves
things “a bit".

39



This one is actually made clearer by the mathematical notation.

For Numeric y:
(i) Set f(x) = 0. r; = y; for all i in the training set.

(ii) for b=1,2,...B, repeat:
> Fit a tree 2 with d splits (d + 1 terminal nodes) to the

training data (X, r).
> Update f by adding in a shrunken version of the new tree:

F(x) + F(x) + A FE(x). X
> Update the residuls: r; < r; — A P(x).

(iii) Output the boosted model:

B
Fx) = AFP(x)
i=1

40



Note:

A is the “crushing” or “shrinkage” parameter.

It makes each new tree a weak learner in that is only does a little
more fitting.

Have to choose:

» B, number of iterations (the number of trees in the sum)
(hundreds, thousands).

» d, the size of each new tree.

» )\, the crush factor.

41



Note:

Boosting for categorical y works in an analogous manner but it is
more messy how you define “the part left over”, you can't just use
residuals.

Gradient boosting fits the derivative of the loss.
For squared error loss, this is the residuals.

It is always the same basic idea:

Sequentially add in small fits of fit (“weak learners”) focusing on
the errors of the current fit (e.g observations where the residuals
are large).

Efron and Hastie: “.. each tree is trying to amend errors made by
the ensemble of previously grown trees.”

42



Boosting for Boston: y=medv, x=lstat:

Here are some boosting fits where we vary the number of trees,
but fix the depth at 2 (suitable with 1 x) and shrinkage = A at .2.

boosting, niree= 5 boosting, ntree= 20 boosting, niree= 100

med

Again, this ensemble method gets away from the crude step
function given by a single tree.
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The Curse of Dimensionality

The curse of dimensionality is that as the dimension of our
problem (e.g number of features) goes up, “our data gets sparse”.

Suppose X; are iid uniform in (0,1), i =1,2,...n.

On average, how many observations are in an interval of length h?

h x n.

44



Suppose Xj; are all uniform, iid, i =1,2,...n, j=1,2,...,p.

On average, how many observation are such that Xj; are in an
interval of length h?

That is, how may X; in RP are in a cube with each dimension of
length h?

hP x n.

Boosting defeats the curse of dimensionality by just looking at
small trees!!!

But, the trees have to be big enough to capture the level of
interaction in the features.

45



8. Variable Importance Measures

The ensemble methods Random Forests and Boosting can give
dramatically better fits than simple trees. Out-of-sample, they can
work amazingly well. They are a breakthrough in statistical science.

However, they are certainly not interpretable!!
You cannot look at hundreds or thousands of trees.

Nonetheless, by computing summary measures, you can get some
sense of how the trees work.

46



In particular, we are often interested in which variables in x are
really the “important” ones.

What we do is look at the splits (decision rules) in a tree and pick
out the ones that use a particular variable. Then we can add up
the reduction in loss (eg residual sum of squares) due to the splits
using the variable.

For a single tree we are done.

For bagging we can average the effect of a variable over the B
trees and for Boosting we can sum the effects.
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Here is the variable importance for the Boston data with all the
variables obtained from a Boosting fit.

vsumsrel.inf

m Istat dis crim nox ptratio black age tax rad chas indus n

Index
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Here is the variable importance for the Boston data with all the

variables obtained from a Random Forests fit.

ptratio

indus

crim

rffit

T T T
4000 6000 8000 10000

IncNodePurity

12000
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Here is the variable importance for the Boston data with all the
variables obtained from a single tree fit (using rpart).

variable importance, rpart

10000 15000 20000 25000

5000

m

°
°
° ° °
°
°
°
° °
°
r T T T T T T T T T T T 1
Istat dis nox indus age ptratio tax crim zn rad black chas
Index
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Variable importance from XGBoost, diabetes data.

xgbmod = XGBRegressor (booster=’gbtree’,objective=’reg:squarederror’,
max_depth=2, learning_rate=0.1, n_estimators=100, random_state=2, n_jobs=-1)

xgbmod. fit (X,y)

fimp = pd.DataFrame({’nms’:xvnms,’imp’:xgbmod.feature_importances_})

print (fimp)

nms imp
0 age 0.031797
1 sex 0.040149
2 bmi 0.243854
3 map 0.084954
4 tc 0.038039
5 1dl 0.028799
6 hdl 0.054243
7 tch 0.088452
8 1ltg 0.335191
9 glu 0.054523



9. Trees, Random Forests, Boosting: The California Data

Let’s try all this stuff on the California Housing data.

That is, we'll try trees, Random Forests, and Boosting.

How will they do !!!
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We'll do a simple three set approach since we have a fairly large
data set.

We randomly divide the data into three sets:
Train: 10,320 observations.
Validation: 5,160 observations.

Test: 5,160 observations.

We,

» Try various approaches using the Training data to fit and see
how well we do out-of-sample on the Validation data set.

> After we pick an approach we like, we fit using the combined
Train+Validation and then predict on the test to get a final
out-of-sample measure of performance.
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Trees:

> Fit big tree on train.

» For many cp=q, prune
tree, giving trees of
various sizes.

» Get in-sample loss on
train.

»  Get out-of-sample loss
on validation.

The loss is RMSE.

loss

200

T
400

tree size

600

We get the smallest out-of-sample loss (.307) at a tree size of 194.

54



Boosting:

Let's try:

» maximum depths of 4 or 10.

» 1,000 or 5,000 trees.
> )\ = .2 or .001.

olb:
out-of-sample loss
ilb:

in-sample loss.

min loss of .231 is quite
a bit better than trees!

O NO Ok WN -

tdepth ntree

4
10
4
10
4
10
4
10

1000
1000
5000
5000
1000
1000
5000
5000

O O O O O O o o

lam

.001
.001
.001
.001
.200
.200
.200
.200

O O O O O O o o

olb

.414
.378
.279
.262
.232
.233
.231
.233

O O O O O O o o

ilb

.416
.380
.282
.250
.164
.098
.081
.014
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Random Forests:

Let's try:

» m equal 3 and 9 (Bagging).
P> 100 or 500 trees.

olrf is the out-of-sample loss and ilrf is the in-sample loss.

mtry ntree olrf ilrf
9 100 0.241 0.255
3 100 0.236 0.250
9 500 0.241 0.253
3 500 0.233 0.245

ISV

Minimum loss is comparable to boosting.
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Let's compare the predictions on the Validation data with the best

performing of each of the three methods.

It does look like
Boosting and Ran-
dom Forests are a lot
better than a single
tree.

The fits from Boost-
ing and Random
Forests are not too
different (this is not
always the case).

logMedVal(val)

boosting

random forests
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Test Set Performance, Boosting

Let's fit Boosting using depth=4, 5,000 trees, and shrinkage =

A=.2 on the combined train and validation data sets.

The RMSE on
test data is
.231.

This is consis-
tent with what
we had before
from the train-
validation data.

boost pred

100 105 110 115 120 125 130

test logMedval
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Boosting gives us a measure of variable importance:

var rel.inf %4
1 medianIncome 39.065051
2 longitude 13.963321 ]
3 latitude 12.988301 o
4 AveOccupancy 11.055079
5 AveRooms 8.093967 ¢ %]
6
7
8
9

msrelint

AveBedrms .480044
population .708594
households .520058 21

housingMedianAge .125583

W ww e

medanincoms longtuce liude  AvOccupancy  AwRooms  AvBedms populaion

ncex

medianIncome is by far the most important variable.
After that, it is location - makes sense.
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The boosting package also generated plot which are supposed to
show the plot of x; vs. y for each individual x; by averaging out

the other x's.

This is supposed to
be a plot of x; vs.
y=logMedVal for each
i=1,2,...,9.

It is not clear this works,
or should work, when
there are interactions!!




Test Set Performance, Random Forests

Let’s fit Random Forests using m=3 and 500 trees on the
combined train and validation data sets.

Let's see how the predictions compare to the test values.

130

Not too bad!!

25

120

tprea

The RMSE is .23,
so our train-validation
results hold up.
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Random Forests: Variable Importance:

Random Forests give a measure of variable importance. It just
adds up how much the loss decreases every time a variable is used

in a split.

Not suprisingly,
medianlncome is
by far the most

important variable.

medianincome

latitude

longitude:

AveOccupancy

AveRooms.

housingMedianAge

AveBedrms

households

population

finrf

T T
1000 1500

IncNodePurity
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In R:

#
#load libraries
library(randomForest)
library(gbm) #boosting

#
#read in California Housing Data
ca = read.csv("calhouse.csv")

#.
#

#train, val , test

set.seed(14) #Dave Keon was captain of the Toronto Maple Leafs!!!
n=nrow(ca)

ni=floor(n/2)

n2=floor(n/4)

n3=n-nl-n2

ii = sample(1:n,n)

catrain=cal[ii[1:n1],]

caval = cal[ii[n1+1:n2],]

catest = cal[iil[n1+n2+1:n3],]
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#
#fit using random forests (on train, predict on val)

#mtry is the number of variables to try

rffit = randomForest(logMedVal~.,data=catrain,mtry=3,ntree=500)
rfvalpred = predict(rffit,newdata=caval)

#.
#

#fit using boosting

boostfit = gbm(logMedVal~.,data=catrain,distribution="gaussian",
interaction.depth=4,n.trees=5000,shrinkage=.2)

boostvalpred=predict(boostfit,newdata=caval,n.trees=5000)

#
#plot (out-of-sample) fits
pairs(cbind(caval$logMedVal,rfvalpred,boostvalpred))
print (cor(cbind(caval$logMedVal,rfvalpred,boostvalpred)))
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Let's combine the train and validation data set and refit using
boosting.
Then we'll get our out-of-sample rmse from the test data.

#

catrainval = rbind(catrain,caval) #stacks the two data frames

#refit boosting

boostfit2 = gbm(logMedVal~.,data=catrainval,distribution="gaussian",
interaction.depth=4,n.trees=5000,shrinkage=.2)

boosttestpred=predict (boostfit2,newdata=catest,n.trees=5000)

#

#plot test y vs test predictions

plot(catest$logMedVal,boosttestpred)

abline(0,1,col="red",1lwd=2)

#.
#

rmse = sqrt(mean((catest$logMedVal-boosttestpred) ~2))
cat("rmse on test for boosting: ",rmse,"\n")

#
#variable importance from boosting
summary (boostfit2)

65



#.
#

#refit random forests on train-val
rffit2 = randomForest(logMedVal~.,data=catrainval,mtry=3,ntree=500)
rftestpred = predict(rffit2,newdata=catest)

#
rmse = sqrt(mean((catest$logMedVal-rftestpred)"2))
cat("rmse on test for random forests: ",rmse,"\n")

#.
#

#variable importance from Random Forests
varImpPlot (rffit2)
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10. Classification Loss for Trees

To fit trees we need to pick our loss.

As usual, for numeric y, the usual loss is mean squared error, or,
equivalently, RMSE.

For classification it is a little more tricky choosing the loss.

The default loss is deviance, but there are a couple other loss
measures used in the tree literature.
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Recall, deviance loss
For data (x;, yi) (train) or (test)

Total loss is

> Lyixi) =Y —2log(P(Y = yi | x;))
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Example:

A tiny data set with 6 observations and model fits from model 1
(P1(Y =y | x)) and model 2 (P2(Y =y | x)).

x y P1(Y=1|x) P1(Y=0|x) devl
[1,]10 0.1 0.9 0.210721
[2,] 20 0.1 0.9 0.210721
[3,1 30 0.1 0.9 0.210721
[4,] 41 0.9 0.1 0.210721

,1 50 0.9 0.1 4.605170
,1 61 0.9 0.1 0.210721

x y P2(Y=1Ix) P2(Y=0[x) dev2
[1,]10 0.5 0.5 1.386294
[2,] 20 0.5 0.5 1.386294
[3,1 30 0.5 0.5 1.386294
[4,] 41 0.5 0.5 1.386294
[6,1 50 0.5 0.5 1.386294
[6,]1 61 0.5 0.5 1.386294

Note: -2*log(.5) = 1.386204, -2*log(.1) = 4.60517, -2*log(.9) = 0.210721
Deviance under Model 2: 6*1.386294 = 8.317764
Deviance under Model 1: 5*0.210721 + 4.605170 = 5.658775



What happens if we fit a tree to this data set in R?

xydf = data.frame(x=1:6,y=as.factor(c(0,0,0,1,0,1)))
temp = tree(y~x,xydf,control=tree.control(6,mincut=3,minsize=6))
print (temp)
node), split, n, deviance, yval, (yprob)
* denotes terminal node

1) root 6 7.638 0 ( 0.6667 0.3333 )

2) x < 3.5 3 0.000 0 ( 1.0000 0.0000 ) *
3) x> 3.533.819 1 ( 0.3333 0.6667 ) *

The deviance from the left child is
3*(-2*log(1)) = 0.

The deviance from the right child is
1*(-2*log(1/3)) + 2*(-2*log(2/3)) = 3.819085

The left child is “pure” so there is no loss.
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If we print the R summary of the tree we get:
> print (summary (temp))

Classification tree:

tree(formula = y ~ x, data = xydf, control = tree.control(6,
mincut = 3, minsize = 6))

Number of terminal nodes: 2

Residual mean deviance: 0.9548 = 3.819 / 4

Misclassification error rate: 0.1667 = 1 / 6

We get the (in sample) missclassification rate and deviance as
summaries.

The “average deviance” is obtained by dividing by
(n — number of bottom nodes) for reasons we skip.
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Notes:

While the deviance is not terribly interpretable, it gets used a fair
amount in statistics.
We have seen that it is related to the Likelihood.

For binary classification problems another obvious loss is
ly — P(Y =1| x)| where y is 0/1.
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Node Purity:
When using decision trees for classification, loss measures are often
expressed in terms of the concept of node purity.

Consider the deviance for a single bottom node.
Let px = (%y = k) out of the observations in the node.
Then

deviance =

2 > log(py)

y in node

= -2 nylog(p)
k
= —2n Zpk log (px)
k

= 2nH(p)

H(p) = —>_ pklog(px) is the information or Shannon entopy of

the discrete distribution given by p = (p1, p2, .- ., Pk)- 2



The entropy is a very famous measure of how the level of
uncertainty associated with a distribution. For example /(p) is
maximized at px = 1/k and minimized when one of the
probabilities is 1 (0log(0)=0).

High entropy means the outcome is unpredictable, and low entropy

means the outcome is more predictable.

We say that a node is “purer” when the outcome is more
predictable.

Measures of node purity that are also used:

missclassification: 1 — maxy(pk)-
Gini index: » 4 us Pk Pi-
Entropy: — > pklog(p«)-

There are various ways to motivate the Gini. For example, it is
related to the probability of getting two different outcomes from
two draws.
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These are all measures of “node impurity” so we would want any
of these to be small.

Note that when fitting trees it is often recommended to train with
gini or entropy even if your eventual out-of-sample criterion will be

miss-classification.

The tree package in R gives the choice of “deviance” or “gini”
with default of deviance.
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11. More on Boosting, Gradient Boosting and XGBoost

There a variety of extentions and modifications to the basic
boosting algorithm.
In this section we mention of few of them.

This will give us a few more options in fitting boosting beyond the
basic d, B, and .

gbm(
weights,
var .monotone = NULL,
n.trees = 100,
interaction.depth = 1,
n.minobsinnode = 10,
shrinkage = 0.1
bag.fraction =
train.fraction
cv.folds = 0,
keep.data = TRUE,
verbose = FALSE,
class.stratify.cv = NULL,
n.cores = NULL

N o«

.5,
1,
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Randomization

Rather than using all the data to fit the new tree at each boosting
iteration, we can randomly pick a subset of the observations for

training.

This can capture some of the effects of bagging, and speed up
computation.

e.gin R: gbm: :gbm we have:

bag.fraction: the fraction of the training set observations randomly
selected to propose the next tree in the expansion. This
introduces randomnesses into the model fit. If ‘bag.fraction’
< 1 then running the same model twice will result in similar
but different fits. ‘gbm’ uses the R random number generator
so ‘set.seed’ can ensure that the model can be reconstructed.
Preferably, the user can save the returned ‘gbm.object’ using
‘save’. Default is 0.5.

7



Gradient Boosting

How can we do boosting for binary y77?

How do we generalize of boosting modeling approach??
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Regression reviewed

Let's review linear regression in way we can generalize it.

We can think of our model as
Y~ N(pi,0%), pi = xi 5.
We have an associated (- log likelihood)

1
202

Since our focus is on the mean, we can drop ¢ and let

(vi — mi)*.

=

L(yi, pi) = 5 (vi — i)

79



Logit reviewed

We can think of our model as:

Y; ~ Bernoulli(p;), Iog(1 fip') =0; = x!j3,

with an associated loss:

L(yi, 0;) = —log(P(yil0i))
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General setup

We can write a generalized modeling approach as:

Yi ~ p(Yilai), ai=f(x)

with loss,

L(yiaai)-

To boost with trees, we will have

B
-zfx,:E fx,
=1

where each 2 is a simple regression tree with d splits.
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General Boosting Algorithm with Trees
(i) Set f(x) =
(ii) for b=1,2,...B, repeat:

» Solve

minimize i x, + fb X;
i Z (0 F5) + P°(x)

where 7 is a tree with d splits.

> Update f by adding in a shrunken version of the new tree:
F(x) = F(x) + A (x).

(iii) Output the boosted model:

B
f(x) = Z A Fo(x)
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Efron and Hastie:
This algorithm is easier to state than to implement.

In the squared error loss case we have

Ly, F(xi) + F2(x0)) = B(yi — (F () + FP(x1))? = .5(ri — £°(x1))?

so we get fb by fitting a regression tree to the residuals.

We will solve this by making the general case look like the squared
error case by generalizing the notion of a residual.

83



Generalized residuals

In the linear mean (normal) case we have:

[y

L(yi, pi) = 5 (vi — ).
oL(yi,pi)
o (vi — i)

We lower our loss, by moving p; towards y;.

In general we let,

o aL(ylv Qi)
oo

ri =
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Gradient Boosting Algorithm with Trees
(i) Set f(x)=0.

(i) for b=1,2,...B, repeat:

L(v: o
> compute r; = — 2L (ayc’y’.a’)
i=1,2,....n

, evaluated at o = f(x,-),

> Fit a tree 2 with d splits (d + 1 terminal nodes) to the
training data (X, r) using squared error loss.

> Update fA by adding in a shrunken version of the new tree:
F(x) « f(x) + A FP(x).

(iii) Output the boosted model:
B
Flx) =D A FP(x).
i=1

At each boosting iteration, we move f in the direction that will
lower the loss on the training data, subject to our move being a
simple tree. 85



Note:

You can boost with other weak learners besids small trees, but in
practice boosting is almost always done with trees.

Truly remarkable.
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XGBoost

We will just sketch this version of boosting.

We start by reformulating the “fit resids then crush” approach to
one the looks like regularization.

At each boosting iteration, instead of solving,

n
minimize » ~ L(y;, f(x;) + F°(x))
f 4
and then crushing, we solve
n
minimize » ~ L(y;, f(x;) + F°(x;)) + Q(F?)
i3
where Q measures the complexity of fb.
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Remember, #? corresponds to a regression tree TP.
A large complexity penalty will give us a simple T?.

Let w(T) be the values in the leaf nodes of the tree.

A 1
QF?) =T + 5 [Iw(TP)|.

At each boosting iteration we optimize to get fb and our final
function is just

fx) =2 nf*x)
i=1

So, 1 is the xgboost greek name of what we have called \.

It called the learning rate in that is controls how big a move we
make in a certain direction (f2(x)) but the space we are moving in
is function space rather in a parameter space as in our usual
gradient descent. 88



The XGBoost algorithm involve an approximate method for solving
this problem based on a quadratic expansion of L(y, «) in a.

Then there are a lot of hard core computational details that make
the algorithm effective in big data high dimensional problems.
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Note:
There are very popular versions of xgboost in both python and R.

Things people like about xgboost:

P based on gradient boosting but can handle big data.

» has our basic B and A parameters. A is called the “learning
rate” based on an analogy with gradient descent.

» has parameters to L1 or L2 shrink the leaf node parameters.

» can add in random forest type ideas by sample the data
and/or the features when building the new tree.

P several parameter control tree size, max depth , max number
of bottom nodes, min number of observations in a node ...

For “tabular data” XGBoost is very successful !!!

See also LightGBM (big data) Catboost (categorical features).



Diabetes Data

Let's run try xgboost module in python.

This implements a variety of boosting approaches, in particular,
extreme gradient boosting.

There is also an xgboost package in R.
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Here are the imports we use.

import pandas as pd
import numpy as np

from
from
from

from

sklearn import datasets
sklearn.model_selection import
sklearn.model_selection import

xgboost import XGBRegressor

import matplotlib.pyplot as plt
import seaborn as sns; sns.set()

There is a corresponding XGBClassifier module.

cross_val_score
validation_curve
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Get the diabetes data:

#ddf = pd.read_csv("diabetes.csv") # from Rob data sets webpage

ddf = pd.read_csv("https://bitbucket.org/remcc/rob-data-sets/downloads/diabetes.csv") # from Rob data set
xvoms = ddf.columns.values[1:11]

yX = ddf.to_numpy()

y = yX[:,0]

X = yX[:,1:11]

In [3]: print("X is:")

print (X.shape)
print("y is:")
print(y.shape)

X is:

(442, 10)

y is:

(442,)
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» B: n_estimators
> d: max_depth

> \: learning rate

There are many other tuning parameters !!

Init signature: XGBRegressor(*, objective=’reg:squarederror’, **kwargs)
Docstring:
Implementation of the scikit-learn API for XGBoost regression.

Parameters

n_estimators : int
Number of gradient boosted trees. Equivalent to number of boosting
rounds.

max_depth : int

Maximum tree depth for base learners.
learning_rate : float

Boosting learning rate (xgb’s "eta")
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Recall what the depth is:

Depth 0: A (just root)
Depth 1: A (root splits once)
/\
B C
Depth 2: A (root splits twice)
/' \
B C
/\
D E

So, with depth 2, we could have a split on x1 at A and a split on
x2 at B giving an iteraction.
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So compare with our previous results where we used polynomial
terms, let use d = 2, just two decision rules in our trees. This
allows for 2-way interaction.

## d=2
xgbmod = XGBRegressor(booster=’gbtree’,objective=’reg:squarederror’,
max_depth=2, learning_rate=0.1, n_estimators=500, random_state=2, n_jobs=-1)

# do cv at every value of k in kvec

lrv = np.linspace(start=.001,stop=.03,num=100)

trainS, testS = validation_curve(xgbmod,X,y,’learning rate’,
1rv,cv=10,scoring=’neg_mean_squared_error’)

# transform neg_mean_squared_error to rmse
trrmse = np.sqrt(-trainS.mean(axis=1))
termse = np.sqrt(-testS.mean(axis=1))

#plot in and out of sample rmse
plt.scatter(lrv,termse,c=’blue’,s=5)
plt.scatter(lrv,trrmse,c=’red’,s=b5)
plt.xlabel("learning-rate"); plt.ylabel("rmse")
plt.legend([’test, d=2’,’train, d=2"])
plt.savefig("xgb_d2_train-test.pdf")
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Now let's up d to 3 and see what happens.

In our previous analysis using the LASSO, we had to assume 2-way
interaction.
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test rmse
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In R:
Here is code for doing logit, rf, and boosting with a binary
categorical y using glm, randomForest, and gbm.

We the training td1.csv for train and td2.csv for test.

trainDf = read.csv("tdl.csv")

trainDf$purchase = as.factor(trainDf$purchase)
testDf = read.csv("td2.csv")

testDf$purchase = as.factor(testDf$purchase)
names (trainDf) [1]="y"

names (testDf) [1]="y"

phatL = list() #store the test phat for the different methods here
###fit logit

lgfit = glm(y~.,trainDf,family=binomial)

print (summary(lgfit))

#predict using logit

phat = predict(lgfit,testDf,type="response")

phatL$logit = matrix(phat,ncol=1) #logit phat
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##settings for randomForest

p=ncol(trainDf)-1

mtryv = c(p,sqrt(p))

ntreev = c(500,1000)

setrf = expand.grid(mtryv,ntreev)
colnames(setrf)=c("mtry","ntree")

phatL$rf = matrix(0.0,nrow(testDf) ,nrow(setrf))

###fit rf

library(randomForest)

for(i in 1:nrow(setrf)) {
cat("on randomForest fit ",i,"\n")
print(setrf[i,])

#fit and predict
frf = randomForest(y~.,data=trainDf,mtry=setrf[i,1],ntree=setrf[i,2])

phat = predict(frf,newdata=testDf,type="prob")[,2]

phatL$rf[,i]=phat
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##settings for boosting

idv = ¢(2,4); ntv = ¢(1000,5000); shv = c(.1,.01)
setboost = expand.grid(idv,ntv,shv)
colnames(setboost) = c("tdepth","ntree","shrink")
phatL$boost = matrix(0.0,nrow(testDf) ,nrow(setboost))

trainDfB = trainDf; trainDfB$y = as.numeric(trainDfB$y)-1
testDfB = testDf; testDfB$y = as.numeric(testDfB$y)-1

##fit boosting
library(gbm)
tml = system.time({ #get the time, will use this later
for(i in 1:nrow(setboost)) {
cat("on boosting fit ",i,"\n")
print(setboost[i,])

##fit and predict
fboost = gbm(y~.,data=trainDfB,distribution="bernoulli",
n.trees=setboost[i,2],interaction.depth=setboost[i,1],
shrinkage=setboost[i,3])
phat = predict(fboost,newdata=testDfB,n.trees=setboost[i,2],type="response")

phatL$boost[,i] = phat
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Let's look at the lift for the boosting fits.

The caret package has nice functions for the lift, ROC, and
AUC. The list is so simple, we can just use a little function in
“mlfuns.R".

source("mlfuns.R")

#have to store all the phats in a list.
boostL = list()
for(i in 1:ncol(phatL$boost)) boostL[[i]]= phatL$boost[,i]

#get the 1lift

par (mfrow=c(2,1))

plot(1:8,1:8)

for(i in 1:8) abline(v=i,col=i,lwd=2)
temp = liftfL(testDf$y,boostL)
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Let's try the loop over boosting settings using doParallel, the
simple R library for doing things in parallel.

library(doParallel)
cl <- makeCluster(4)
registerDoParallel(cl)

#how many workers?
cat ("number of workers is: ",getDoParWorkers(),"\n")

tm2 = system.time({
boostres = foreach(i=1:nrow(setboost), .combine=cbind) %dopar’ {
library(gbm)
fboost = gbm(y~.,data=trainDfB,distribution="bernoulli",
n.trees=setboost[i,2],interaction.depth=setboost[i,1],
shrinkage=setboost [i,3])
phat = predict(fboost,newdata=testDfB,
n.trees=setboost[i,2],type="response")
return(phat)
}
»

stopCluster(cl)
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##let’s check get similar results

par (mfrow=c(4,2))

for(i in 1:8) {
plot(boostres[,i],phatL$boost[,i])
abline(0,1,col="red",lwd=2)

}

##let’s compare the times
cat("serial time is: ",tm1[3],"\n")
cat("parallel time is: ",tm2[3],"\n")

The parallel version is quite a bit faster for almost no work.

For the big value of shrink, it does not look like two boosting runs
are giving us the same result. The gbm package actually does a
random sample of training data at each interation and this may
explain it.
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library (pROC)

par (mfrow=c(1,2))
temp=1iftf (testDf$y,phatL$logit[,1])

rocCurve = roc(response = testDf$y,predictor=phatL$logitl[,1])
plot (rocCurve)

cat("auc, logit: ", auc(rocCurve),"\n")

rocCurve = roc(response = testDf$y,predictor=phatL$boost[,5])
cat("auc, boost 5: ", auc(rocCurve),"\n")

rocCurve = roc(response = testDf$y,predictor=phatL$boost[,4])
cat("auc, boost 4: ", auc(rocCurve),"\n")
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