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We want to “fit” the fundamental model:

Yi = f(Xi)+ €

BART is a Markov Monte Carlo Method that draws from

Fl(xy)

We can then use the draws as our inference for f.



To get the draws, we will have to:

» Put a prior on f.

» Specify a Markov chain whose stationary distribution is the
posterior of f.



Simulate data from the model:
Yi=x?+e €~ N0,o?) iid

n = 100

sigma = .1

f = function(x) {x~3}
set.seed(14)

x = sort(2*runif (n)-1)

y = £(x) + sigma*rnorm(n)
xtest = seq(-1,1,by=.2)

Here, xtest will be the out of sample x values at which we wish to
infer f or make predictions.



plot(x,y)
points(xtest,rep(0,length(xtest)),col="red’,pch=16)

Red is xtest.



library(BayesTree)
rb = bart(x,y,xtest)
length(xtest)

(1] 11
dim(rb$yhat.test)
[1] 1000 11

The (i,/) element of yhat.test is

the it" draw of f evaluated at the j value of xtest

1,000 draws of f, each of which is evaluated at 11 xtest values.



plot(x,y)

lines(xtest,xtest~3,col="blue’)
lines(xtest,apply(rb$yhat.test,2,mean),col="red’)
qm = apply(rb$yhat.test,2,quantile,probs=c(.05,.95))
lines(xtest,qm[1,],col="red’,1ty=2)
lines(xtest,qm[2,],col="red’,1ty=2)
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Example: Out of Sample Prediction

Did out of sample predictive comparisons on 42 data sets.
(thanks to Wei-Yin Loh!!)

> p=3 — 65, n=100 — 7,000.

for each data set 20 random splits into 5/6 train and 1/6 test

> use 5-fold cross-validation on train to pick hyperparameters (except
BART-default!)

> gives 20*¥42 = 840 out-of-sample predictions, for each prediction, divide rmse
of different methods by the smallest
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A Regression Tree Model

Let T denote the

tree structure including
the decision rules. </ \ .
Let M = {pa, 2, ..., b}

denote the set of wy =7

bottom node u's.

Let g(x;0), 6 = (T, M) X, <d
be a regression tree function

that assigns a alue to x.
ig 1 valu X b = =5

A single tree model:
y=g(x0)+e



A coordinate view of g(x; )
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Easy to see that g(x;#) is just a step function.
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The BART Model

Y = g(X;T‘l!M‘]) + g(X;T27M2) .ot g(X;Tm’Mm) + oz, Z~ N(071)
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m = 200,1000, . .., big, . . ..

f(x|-) is the sum of all the corresponding s at each bottom
node.

Such a model combines additive and interaction effects.



Complete the Model with a Regularization Prior

w(0) = 7((T1, M1), (T2, M2), ..., (Tm, M), 0).

7T wants:

» Each T small.
» Each p small.

> “nice” o (smaller than least squares estimate).

We refer to 7 as a regularization prior because it keeps the overall
fit small.

In addition, it keeps the contribution of each g(x; T;, M;) model
component small.



Consider the prior on p.
Let 6 denote all the parameters.

f(x|0)=p1+p2+ - pm.

Let p1j ~ N(0,07), iid.
f(x|0) ~ N(O,mo?).

In practice we often, unabashadly, use the data by first centering
and then choosing 0, so that

f(X ‘ 6) € (yminv)/max)

with high probability:

[y



BART MCMC

Y =9(xT{My)+...+gxT M) +0z
plus
a((T4,My),....(Tr,Mp,),0)

First, it is a “simple” Gibbs sampler:

(Ti, M) | (Ti,My,...,Tici, Mi—1, Tiz1, Miz1, ..., Tmy M, 0)
o | (Tl,/\/ll,...,...,Tm,Mm)

To draw (T;, M;) |- we subract the contributions of the other
trees from both sides to get a simple one-tree model.

We integrate out M to draw T and then draw M| T.



To draw T we use a Metropolis-Hastings with Gibbs step.
We use various moves, but the key is a “birth-death” step.

PN = O\Q
/O\ O, /Q\ O propose a more complex tree
O
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Y=9(xT M)+ ... +g(xT M) +oz
plus
T(T1;Mp)seeo(TrsMp),0)

Connections to Other Modeling ldeas:

Bayesian Nonparametrics:
- Lots of parameters to make model flexible.
- A strong prior to shrink towards a simple structure.
- BART shrinks towards additive models with some interaction.

Dynamic Random Basis:
- g(x; T1, My), g(x; To, M), ..., g(x; Tm, Mp,) are
dimensionally adaptive.

Gradient Boosting:
- Overall fit becomes the cumulative effort
of many weak learners.



Some Distinguishing Feastures of BART:

BART is NOT Bayesian model averaging of single tree model.

Unlike Boosting and Random Forests, BART updates a set of m
trees over and over, stochastic search.

Choose m large for flexible estimation and prediction.

Choose m smaller for variable selection
- fewer trees forces the x's to compete for entry.



The Friedman Simulated Example

y="f(x)+2Z, Z~ N(0,1).
f(x) = 10sin(mx1x2) + 20(x3 — .5) + 10xq + 5xs.
n = 100.

Add irrelevant x's.
x; ~ uniform(0, 1).



Results for one draw.

95% posterior intervals vs true f(x) o draws
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Frequentist coverage rates of 90% posterior intervals:
in sample: 87%
out of sample: 93 %.



Added many
useless x's to
Friedman’s
example

With only

100 observations
ony and 1000 x's,
BART yielded ~
"reasonable”

results Il

In-sample
post int vs f(x)
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Big p, small n.

n = 100.

Compare BART-default,BART-cv,boosting, random forests.
Out of sample RMSE.




Partial Dependence plot:

Vary one x and average out the others.
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Variable selection, frequency with which a variable is used.

percent used

0.00 0.05 010 0.15 020 0.25

—— #trees = 10

-~ - #trees=20
#trees = 50
#trees = 100
#trees = 200

variable



Recode with MPI to make it faster!!

With Dave Higdon, James Gattiker, and Matt Pratola at Los
Alamos National Labs..

Dave came to me and said, “we tried your stuff (the R package)
on the analysis of computer experiments and it seemed promising
but it is too slow”.

1. Rewrote code so that it is leaner.

2. Used MPI to compute.

num obs new-parallel new-serial old

1 1000 7 9 43
2 2000 8 18 95
3 3000 9 28 149
4 4000 10 36 204
5 5000 12 45 262
6 10000 18 90 547
7 50000 70 439 NA
8 100000 138 902 NA
9 500000 904 6410 NA



With 10,000 observations the new algorithm is 547/90 = 6 times
faster than the old algorithm.

The parallel version is 90/18 = 5 times faster than the serial
version (with 7 cores).

Thus, the parallelized new algorithm is 30 times faster than the old
BART algorithm (available in the R package BayesTree).

With 500,000 observations, the old algorithm cannot be run on the
machine being used. The parallel version is 6410/904 = 7 times
faster than the serial version. Recall that we are using 7 cores to
do the basic computations.

linear in the number of cores!!



100,000 observations, p = 251.
For regression, cor(y, ) = .84 for BART = .99.

Blue is BART, red is least-squares.

bart=blue,reg=red

T T T T T T T T T T T T
11 1.2 13 1.4 15 1.6 11 12 13 1.4 15 1.6

¥, n=2000 ¥, N=5000



Keys to Parallel implementation:

» Metropolis Hastings step just requires simple sufficent
statistics.

> Rewrote code so that model representation is very lean.

then,

Basic SPMD (single program, multiple data)
MPI (message passing interface)
approach works.



Simple Sufficient Statistics:

Consider the birth-death step:

(@)
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Given a tree, we just have { Y} ~ N(p;,0?) iid

in jt bottom node.

Evaluating a birth-death is just like testing equality of two normal
means with an independent normal prior.

Sufficient statistics are just ) ; y;; and Ziyg.



Lean Code:

class tree {
public:

private:
//
//parameter for node
double mu;
//
//rule: left if x[v] < xinfol[v][c]
size_t v;
size_t c;
//
//tree structure
tree_p p; //parent
tree_p 1; //left child
tree_p r; //right child

};

1 double, two integers, three pointers.



SPMD:

Same program runs on each processor (or node), but it branches
depending on the node.

All current model info is maintained by each node.
So, model changes (as MCMC runs) are “broadcast” to each node.

When a sufficient statistic is needed, each node works on a
separate chunck of the data.



Nice things about BART/PBART:

» don't have to think about x's
(compare: add xj2 and use lasso).

» don’t have to prespecify level of interaction
(compare: boosting in R)

» competitive out-of-sample.

» stable MCMC.

» stochastic search.

> simple prior.

> uncertainty.

> small p and big n.



