################################################## ### claude: Here's how to implement L2 regularization (also known as weight decay or Ridge regularization) in the R torch package: # Method 1: Using weight_decay in optimizer (recommended approach) # Weight decay parameter is the L2 regularization strength optimizer <- optim_sgd(net$parameters, lr = 0.01, weight_decay = 0.01) The key difference compared to L1 regularization is: 1. For L2 regularization, most optimizers (like SGD, Adam, etc.) have a built-in weight_decay parameter that implements L2 regularization efficiently. 2. If implementing manually, L2 uses the sum of squared weights (torch_pow) instead of absolute values. ################################################## ### help for optim_rmsprop optim_rmsprop package:torch R Documentation RMSprop optimizer Description: Proposed by G. Hinton in his course. Usage: optim_rmsprop( params, lr = 0.01, alpha = 0.99, eps = 1e-08, weight_decay = 0, momentum = 0, centered = FALSE ) Arguments: params: (iterable): iterable of parameters to optimize or list defining parameter groups lr: (float, optional): learning rate (default: 1e-2) alpha: (float, optional): smoothing constant (default: 0.99) eps: (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay: optional weight decay penalty. (default: 0) momentum: (float, optional): momentum factor (default: 0) centered: (bool, optional) : if ‘TRUE’, compute the centered RMSProp, the gradient is normalized by an estimation of its variance weight_decay (float, optional): weight decay (L2 penalty) (default: 0)