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Time-Varying Coefficients

Recall the hotels example where we regressed mothly observations
of one hotel’s occupancy rate on the overall downtown Chicago
occupancy rate:
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Here is the time series plot of the residuals.
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The trend line is fit to the residuals using

rt = α + β t + ε

The hotel might argue that, based on the plot, there could be
some doubt about this simple specification.
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To think about a more general model let

rt = θt + εt

The trend model uses the very “tight” specification:

θt = α + β t.
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We could be more flexible by transforming t:

θt = α + β t + γ t2.

Clearly we have to impose some kind of “restriction” on the {θt}.

We do not what the “perfect” fit: rt = θt .

But how can we avoid the nuisance of picking the transformations?
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We can put a random-walk prior on the {θt}:

θt = θt−1 + Wt , Wt ∼ N(0,W 2).

If we pick W “small”, then we can say each the θt can be
anything, but successive ones cannot be too different.
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Our model (for the residuals) is:

p(θ0, θ, r) = p(θ0) p(θ | θ0) p(r | θ),

where

θ = (θ1, θ2, . . . , θT ), r = (r1, r2, . . . , rT ),

and,

p(θ | θ0) = ΠT
t=1 p(θt | θt−1), p(r | θ) = ΠT

t=1 p(rt | θt).
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Using FFBS (forward filtering, backward sampling)
we can get draws:

(θ0, θ) | r .

I ran FFBS and got a nd×T matrix where each row is a draw of θ.
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blue: median of {θt} draws.
green: 25% and 75% quantiles of {θt} draws.
red: 5% and 95% quantiles of {θt} draws.
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We can write a comprehensive model for the hotel data
(rather than just the residuals):

Ht = θt + βCt + vt , vt ∼ N(0,V ).

θt = θt−1 + Wt , Wt ∼ N(0,W ).

With priors:
p(θ0), p(β), p(V ), p(W ).

and draw:

(θ0, θ) | . . .

β | . . .

V | . . .

W | . . .
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We can think of this as a time-varying parameter model.

We can start with
Ht = θ + β Ct + vt ,

and then let the intercept vary over time.

It is also very common to let the slope vary over time.
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State Space Models

We observe a time series {Xt}.

We imagine that the distribution of Xt depends on some
unobserved “latent” state θt which is evolving over time.

Our model consists of the observation equation:

p(Xt | θt),

and the state equation:

p(θt | θt−1).

In addition, we need a prior on the initial state: p(θ0).
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Each X is a "peek" at the corresponding θ.

If you margin out the θ's get a model in which
future X's depend on past X's.

The general picture:
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