
Optimization

Rob McCulloch

1. Optimization
2. Derivatives
3. Logit Log Likelihood Derivatives
4. Taylor’s Theorem and Local Minimums
5. Convexity
6. Gradient Descent
7. Stochastic Gradient Descent
8. Momentum
9. Newton’s Method

1. Optimization

Optimization plays an important role in statistics/Machine
Learning/data science.

The basic we example we have seen is maximum likelihood
estimation.

Let
ℓ(θ) = − log(f (y | θ)) ≡ − log(L(θ))

be the negative log likelihood.

We can think of − log(L(θ)) as our “lack of fit” or loss on the
training data used to estimate θ.

Then the maximum likelihood estimate of θ is

θ̂ = argmin
θ

ℓ(θ)
1

In machine learning we often consider regularized versions:

θ̂ = argmin
θ

J(θ) = ℓ(θ) + P(θ, λ)

where

▶ ℓ(θ) is a measure of lack of fit on training data.

▶ P(θ, λ) is a complexity penalty with tuning parameter λ.

▶ P(θ, λ) is often expressed as λΩ(θ), where Ω meaures
complexity and λ controls the complexity penalty.

For example, in the popular Ridge regression approach

θ = β, Loss(θ) = ||y − Xβ||2, P(θ, λ) = λ
∑

β2
j .

giving,

minimize
β

||y − Xβ||2 + λ

p∑
j=1

β2
j .

2

In the linear regression problem with squared error loss

minimize
β

||y − Xβ||2

we can best understand the solution as on orthogonal projection of
y onto the subspace spanned by the columns of X .

We obtain the solution

β̂ = (X ′X)−1X ′y .

Computational and statistical insights into this solution are gained
by considering basic matrix decompostions of X or X ′X .

3

For non-linear models, we need to develop alternative solutions.

Typically, these is not a closed form solution.

Most approaches involve an iterative scheme where we seek to get
closer to the minimum at each iteration.

Often iterative schemes are along the lines of

▶ Let θt be the value of θ at iteration t.

▶ At θt , approximate J(θ) is some way.

▶ based on the approximation update θ from θt to θt+1.

▶ keep iterating θt ⇒ θt+1, and monitor J(θt) and/or θt ,
stop when J(θt) or θt does not change very much.

For example the EM algorithm works this way.

4

A basic approach to approximating J(θ) is Taylor’s Theorem.

First order methods use the first derivative of J and second order
methods use the first and second derivatives.

We will look at the key first order methods, gradient descent and
stochastic gradient descent.

Stochastic gradient descent is the workhorse approach to
optimization in the Machine Learning literature. For example,
neural nets are typically optimized using a version of stochastic
gradient descent.

Then we will look at the basic second order method, Newton’s
method.

5

2. Derivatives

We will need the first derivative:

f ′(x) = ∇f (x) = [
∂f (x)

∂x1
,
∂f (x)

∂x2
, . . . ,

∂f (x)

∂xp
]

and the second derivative:

f ′′(x) = [
∂2f (x)

∂xi∂xj
] = H(x)

▶ the first derivative is called the gradient vector. My
convention is that it is a 1× p row vector.

▶ the second derivative is a p × p symmetric matrix. It is called
the Hessian.

6

3. Logit Derivatives

We will use maximizing the logit likelihood as an example.

The logit is a good example because:

▶ logistic regression is a key statistical model that must be
optimized numerically.

▶ it is convex.

It is a bad example because
convex ⇒ too easy.

Let’s compute the gradient and Hessian for logistic regression.

7

The Likelihood

Yi ∼ Bernoulli(F (x ′i β)).

L(β) =
n∏

i=1

F (x ′iβ)
yi (1− F (x ′iβ))

(1−yi)

− log L(β) = −
∑

[yi log(Fi) + (1− yi) log(1− Fi)]

where Fi = F (x ′iβ).

So here, “θ = β”.

Also, we could think of F (x ′iβ) as pi with Yi ∼ pi .

8

3D plot of − log L(β0, β1) simulated data, one x, slope and
intercept.

9

Contours of − log L.

10

We will compute the first and second derivatives of the logit log
likelihood.

First, we differentiate F (η) = exp(η)
1+exp(η) :

F ′(η) =
(1 + eη)eη − eηeη

(1 + eη)2
= F (η)(1− F (η))

11

Fi = F (x ′iβ).

− log L(β) = −
∑

[yi log(Fi) + (1− yi) log(1− Fi)]

Let’s drop the i and just differentiate y log(F (x ′β)).

12

13

− log L′(β) = −
∑

[yix
′
i

Fi (1− Fi)

Fi
+ x ′i (1− yi)[−

Fi (1− Fi)

(1− Fi)
]]

= −
∑

[yix
′
i (1− Fi)− x ′i (1− yi)Fi]

= −
∑

x ′i (yi − Fi)

= −(y − Fv)
′X

where the i th of X is x ′i and Fv is the vector [Fi].

14

To compute the second derivative, let’s drop the i again.

15

Put i back in, and sum over i = 1, 2, . . . , n.

− log L′′(β) =
∑

xix
′
iFi (1− Fi)

= X ′DX

where,

D = diag(Fi (1− Fi))

16

4. Taylor’s Theorem and Local Minimums

▶ The first derivative give as a local linear approximation to a
function.

▶ The first and second derivates give us a local quadratic
approximation to a function.

17

We approximate f (x) in a neighborhood of x0,

x ∈ Rp, f : Rp → R.

First order:

f (x) ≈ f (x0) + f ′(x0)(x − x0)

Second order:

f (x) ≈ f (x0) + f ′(x0)(x − x0) +
1

2
(x − x0)

′f ′′(x0)(x − x0)

18

Or (different notation):

First order:

f (x) ≈ f (x0) +∇f (x0)(x − x0)

Second order:

f (x) ≈ f (x0) +∇f (x0)(x − x0) +
1

2
(x − x0)

′H(x0)(x − x0)

19

First and Second Order Approximation 1D

Simulated data with one x and no intercept so
θ = β, p(x) = F (xβ).

J(β) = − log(L(β)), the negative log-likelihood.

J ′(β) = −
n∑

i=1

(yi − F (xiβ))xi

J ′′(β) =
n∑

i=1

(1− F (xiβ))F (xiβ)x
2
i

First order:
J(β) ≈ J(βo) + J ′(βo)(β − βo)

Second order:

J(β) ≈ J(βo) + J ′(βo)(β − βo) +
1

2
J ′′(βo)(β − βo)

2

Note: J ′′(β) > 0, ∀β. 20

Here are the first order (linear) and second order (quadratic)
approximation to -loglikelihood for the logit.

0.2 0.4 0.6 0.8 1.0

0.
66

5
0.

67
0

0.
67

5
0.

68
0

0.
68

5

beta

m
in

us
 lo

g
lik

el
ih

oo
d

Taylor's Theorem, one dimension, minus logistic log likelihood in slope

minus log L

linear approximation

quadratic approximation

21

Local Minimums, 1D

xo is a local minimum of f (x) if small changes in xo make f bigger.

If xo is a local min, we must have f ′(xo) = 0, otherwise we would
know how to change it to make f smaller.

If f ′′(xo) > 0, xo is a local min.

22

First Order Approximation More than 1D

In higher dimensions (more than 1), things get much more
interesting in the we have to think about directions rather than
just up or down.

23

The gradient is a multivariate derivative in that (skipping some
technical details):

f (x) ≈ f (a) +∇f (a)(x − a)

Note that ∇f (x) is a row vector so that the product above makes
sense with x a column vector.

An alternative notation is:

f (x) ≈ f (a)+ < ∇f (a), (x − a) >

24

Stolen off the web:

25

We can visualize the gradient using the contours of f .
A contour is the set {x : f (x) = c}.

▶ If you want to increase f as fast as possible, go in the direction of the gradient
∇f .

▶ If you want to decrease f as fast as possible, go in the direction of the negative
gradient −∇f .

▶ If you want to move without changing f go in a direction orthogonal to the
gradient.

26

Left: - log lik, logit. Right: linear approx.

beta[1]

be
ta

[2
]

−
log lik

beta[1]

be
ta

[2
]

−
log lik

27

28

Contours of logit -logL and contours of linear approximation.

β1

β 2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
1

2
3

4

contours of −log likelihood, red dot at true value, magenta at mle

29

First Order Condition of a local Min/Max

Neccessary Condition for a local min/max:

If x∗ is a local min (or max) then we must have

∇f (x∗) = 0

Otherwise, you would know which way to move to make f bigger
or smaller.

30

Second Order Approximation, More than 1D

f (x) ≈ f (xo) +∇ f (xo)(x − xo) +
1

2
(x − xo)

′H(xo)(x − xo)

The Hessian is a symmetric matrix.

We can gain insight into the nature of this approximation using the
eigen vector/ eigen value decompostion of H.

31

We do a reparametrization in terms of the orthonormal eigen
vectors.

32

x1

x2

f

positive eigen values

x1

x2

f

negative eigen values

x1

x2

f

positive and negative eigen values

33

What are the eigen values for our logit problem?

H = − log L′′(β) =
∑

xix
′
iFi (1− Fi)

= X ′DX

where,

D = diag(Fi (1− Fi))

Let w = Xv , for any v .

v ′Hv = (Xv)′D(Xv) =
∑

Diw
2
i > 0 as long as X has full rank.

34

Simulated logit data with 2 highly correlated x variables.

True, linear approx, quadratric approx.

beta[1]

be
ta

[2
]

−
log lik

beta[1]

be
ta

[2
]

−
log lik

beta[1]

be
ta

[2
]

−
log lik

35

Expand around beta1o = 1.5 beta2o = .5.

Gradient:

[,1]

x1 -0.03511730

x2 -0.03727138

Hessian:

x1 x2

x1 0.07029308 0.04867294

x2 0.04867294 0.04590770

Eigen:

eigen() decomposition

$values

[1] 0.108277245 0.007923534

$vectors

[,1] [,2]

[1,] -0.7883509 0.6152259

[2,] -0.6152259 -0.7883509

36

-logL contours and contours of the quadratic approximation.

Expand around black dot.

β1

β 2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
1

2
3

4

contours of −log likelihood, red dot at true value, magenta at mle

37

Second Order Conditions for a local Min/Max

If ∇ f (xo) = 0, xo is a critical point

If H(xo) is positive definite, than it is a local min.

38

5. Convexity

A set S is convex if:

x1, x2 ∈ S ⇒ α x1 + (1− α) x2 ∈ S ,∀α ∈ [0, 1].

39

Recall: a function is convex if, for α ∈ [0, 1]:

40

The function is strictly convex if

f (αx0 + (1− α)x1) < α f (x0) + (1− α)f (x1)

Convexity is key in optimization because if f is strickly convex then,

a local min is a global min !!!

If we are optimizing a convex function over a convex set, life tends
to be easier !!!!

41

Sufficient condition for Convexity:

If the Hessian is postitive definite everywhere , then the function is
strictly convex.

Our key example is the logit − log L.

H = − log L′′(β) =
∑

xix
′
iFi (1− Fi)

= X ′DX

where,

D = diag(Fi (1− Fi))

Let w = Xv , for any v .

v ′Hv = (Xv)′D(Xv) =
∑

Diw
2
i > 0 as long as X has full rank.

42

6. Gradient Descent

Typically it is difficult to solve

∇J(θ) = 0

To find a local minimum.

In large problems (e.g. neural nets) it may be out of the question
to compute the Hessian.

A neural net could have a million parameters and a million squared
is big.

Hence simple iterative approaches that just depend on computing
the gradient are very useful.

43

Iterative methods are a basic tool in optimization.
We want to minimize J(θ).

Start at θ0.

For t in 1:nit:

Figure out something about J at θt .
Based on what you figured out, θt+1 ← θt somehow.

Choose nit big enough that “you have converged”, that is θt or
J(θt) does not seem to be changing much.

Maybe a “while not converged loop” instead of a for loop.

If you can compute the gradient, the obvious thing to do is head of
the direction −∇J(θt).

44

The objective function J(θ) goes down fastest in direction
−∇J(θ), so why don’t we head off in that direction.

θt+1 = θt − αt ∇J(θt), αt > 0.

We have to pick how far to go which is the role of αt which is
called the learning rate.

There are various schemes for making the learning rate depend on
the iteration and this is a major part of the game. “optimization”
in keras means choosing the scheme for adjusting the learning rate.

#compile model

nn1.compile(loss=’mse’,optimizer=’rmsprop’,metrics=[’mse’])

45

Alternatively, this kind of algorithm is often written as:

θ ← θ − α∇J(θ)

which is very clean looking, but then it is hard to note things like
an iteration dependent learning rate.

Let’s use both notations.

46

“Gradient descent” in one dimension:

47

Here is an example using data simulated from logit model with 2
correlated x variables and no intercept.

β1

β 2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Gradient descent, learning rate= 5, niter= 100

The learning rate is small in that we make small moves, it works,
but it might take a while to get there.

48

Same data but a larger (fixed) learning rate.

β1

β 2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Gradient descent, learning rate= 35, niter= 50

With correlated x variables, -logL has narrow contours so that
gradient descent goes in the wrong direction.

We have zig-zagging !!
49

7. Stochastic Gradient Descent

In statistical/machine learning applications our objective function
often has the particular structure that is a sum over observations in
our training data.

For our logit example

L(θ) =
1

n

n∑
i=1

(− log(p(yi |xi , θ)))

where “θ = β”.

− log(p(yi |xi , θ)) measures our error or loss at training observation
(xi , yi) and parameter θ.

We seek a θ that minimizes our average (or total) loss on the
training data.

50

More generally, we can formulate a problem with an action f (x , θ)
and a loss L(f (x , θ), y) which depends on our action and the
outcome y .

In our logit example, f (x , θ) = p(y = 1|x , θ).
Our loss is − log(f (x , θ)) if y = 1 and − log(1− f (x , θ)) if y = 0.

In our general problem, we see to minimize the average (or total)
loss on the training data:

J(θ) =
1

n

n∑
i=1

L(f (xi , θ), yi)

51

In this case our gradient is

∇ J(θ) =
1

n

n∑
i=1

∇ L(f (xi , θ), yi)

We can also think of this as an estimate of the expected gradient
under the joint distribution of (X ,Y).

Recall that for our logit example, we did exactly this, that is we
differentiated for each observation and then added them up.

52

Stochastic Gradient Descent

Rather then using all the data to estimate the gradient and then
making a move, we divide the data up into “batches” and make a
move for each gradient estimate from each batch.

We divide the training data up into K batches.

Let Fk be the set of indices for the kth batch, k = 1, 2, . . . ,K .

That is

∪Kk=1 Fk = {1, 2, . . . , n}, Fk ∩ Fl = ∅, k ̸= l .

where n is the number of observations in the training data.

53

Let nk be the number of observations in batch k .

for each epoch:

For each batch k :

ĝ = 1
nk

∑
i∈Fk
∇ L(f (xi , θ), yi)

θ ← θ − α ĝ .

Here, an epoch is a pass through the entire data set.

You could try a fixed number of epochs, or keep going until you
have converged.

54

For example, here is the python code to fit a neural net in keras.

You have to choose:

▶ the loss

▶ the optimizer, which corresponds to the learning rate

▶ the size of the batches

▶ the number of epochs

#compile model

nn1.compile(loss=’mse’,optimizer=’rmsprop’,metrics=[’mean_absolute_error’])

fit

nepoch = 1500

nhist = nn1.fit(Xtr,ytr,epochs=nepoch,verbose=1,batch_size=32,

validation_data=(Xte,yte))

55

The batch scheme does not have to be a partition, but that seems
to be a common simple way to make up the batches.

More generally, you just need a scheme for selecting the next batch
and you keep updating θ using the gradient information from each
batch. But usually you schedule the batches so that you pass
through the entire data set with a batch sequence so that you have
an epoch.

56

Commonly the learing rate is decreased as you iterate and there
are a variety of schemes:

αt = (1− t

τ
)αo +

t

τ
ατ , t = 1, 2, . . . , τ, αt = α, t > τ.

αt = αo exp(−kt).

αt =
αo

1 + kt

We will see that there a more sophisticated adjustments of the
descent such as momentum.

57

Here is 50 epochs with batch size 10.

The epochs are color coded.

β1

β 2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Stochastic Grad descent, learning rate= 5, nepoch= 50, batch size= 10

58

8. Momentum

Since gradient descent just depends on the first derivative in can
encounter a variety of problems:

▶ slow down in flats.

▶ stuck in local min/max.

▶ zig zag.

A variety of methods use the history of gradients to improve
performance.

This may be done at the level of an individual parameter.
Parameters may have large partial derivatives associated with
zig-zagging.

59

8.1. Momentum

The goal is to modify simple gradient descent so that we are able
to avoid slowing down in local flat spots and get out of local mins.

Implicitly, we use second order information by using information
from previous gradient evaluation.

But we do it in a computationally cheap way.

60

Momentum based methods address the problems with local
optima, flat spots, and zigzagging by incorporating the overall
direction of past moves.

Our next step is the a weighted combination of the previous step
and the current gradient information.

vt = γ vt−1 − η∇θJ(θt−1)

θt = θt−1 + vt

vt−1 will capture information from past gradients.

γ is the “momentum parameter” or the “friction parameter”.

γ ∈ [0, 1), e.g. .8. γ = 0 is simple gradient descent.

61

Useful to look at this by simply replacing vt−1 with θt−1 − θt−2.

θt = θt−1 + vt

= θt−1 + γ vt−1 − η∇θJ(θt−1)

= θt−1 + γ (θt−1 − θt−2)− η∇θJ(θt−1)

62

Think of a marble rolling down a surface, it’s momentum will
enable it roll past local shallow spots.

We use our overall, consistent direction rather than the one totally
dependent on our current position.

63

Momentum captures the overall direction, mitigating the the zig
zag you get with contours that are long and narrow.

64

Left: gradient descent

Right: with momentum.

β1

β 2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Grad descent, momentum, eta: 35, gamma: 0 niter= 50

β1

β 2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Grad descent, momentum, eta: 35, gamma: 0.2 niter= 50

Obviously, how you intitialize v is an issue.

Here I started at v0 = 0.

65

8.2. AdaGrad and RMSProp
AdaGrad

This approach will tailor the update mechanism to individual
parameters.

The idea is that zig-zagging in the θj in basic SGD will be driven

by large values of (∂J(θ)∂θj
)2.

In AdaGrad we keep track of the sum of the values over iterations
and use it to adjust our step size on an individual parameter basis.

Ait = Ai ,t−1 + (
∂J(θt−1)

∂θi
)2

θit = θi ,t−1 −
α√
Ait

∂J(θt−1)

∂θi
.

▶ Initialize A at 0.

▶ Use
√
Ait + ε instead of

√
Ait . 66

RMSProp

First note:

Observe sequence of values yt which depend on previous yt−1 and

“new information” ϵt .

The current y is an exponential smooth of the past ϵ. 67

RMSProp

Ait = ρAi ,t−1 + (1− ρ) (
∂J(θt−1)

∂θi
)2

θit = θi ,t−1 −
α√
Ait

∂J(θt−1)

∂θi
.

▶ Initialize A at 0.

▶ ρ ∈ (0, 1).

▶ Use
√
Ait + ε instead of

√
Ait .

68

8.3. Adam

Adam builds on AdaGrad and RMSprop.

RMSprop has an exponential smoothed summary of the past
squared partial derivates.

Adam adds an exponential smoothed summary of the past partial
derivates giving a momentum type flavor.

In addition, an iteration dependent learning rate is used to dampen
the initial moves which may be suspect due to the initialization of
the smoothed values.

69

Adam

Ait = ρAi ,t−1 + (1− ρ) (
∂J(θt−1)

∂θi
)2

Fit = ρf Fi ,t−1 + (1− ρf)
∂J(θt−1)

∂θi

θit = θi ,t−1 −
αt√
Ait

Fit

αt = α

√
1− ρt

(1− ρtf)
.

▶ Initialize A and F values at 0.

▶ ρ, ρf ∈ (0, 1), e.g. ρ = .9, ρf = .999.

▶ Use
√
Ait + ε instead of

√
Ait .

70

Note that

ρt , ρtf → 0, as t →∞.

so that the effect on αt goes away as the number of iterations
increases.

This adjustment is designed to migitgate the effects of early values
of A and F due to the crude intialization.

71

8.4. Momentum and SGD

With SGD we can make our adjustments on a batch basis.

For example, SGD with momentum would be:

Let nk be the number of observations in batch k .

Initialize v , choose γ, η.

for each epoch:

For each batch k :

ĝ = 1
nk

∑
i∈Fk
∇ L(f (xi , θ), yi)

v ← γ v − η ĝ

θ ← θ + v

72

9. Newton’s Method

Newton’s method is iterative.

Let βi the value at iteration i .

▶ approximate f at βi by a quadratic using Taylors’s theorem.

▶ optimize the quadratic: the solution is βi+1.

▶ repeat until converged.

73

Taylor approximation:

f (β) ≈ f̃ (β) = f (βi) + f ′(βi)(β − βi) +
1

2
(β − βi)

′f ′′(βi)(β − βi)

Now to optimize the quadratic, we compute its gradient and set it
equal to 0.

∇f̃ (β) = f ′(βi) + (β − βi)
′f ′′(βi)

We can solve ∇f̃ (β) = 0 with

0 = f ′(βi) + (β − βi)
′f ′′(βi)

−f ′(βi)[f ′′(βi)]−1 = β′ − β′
i

β′ = β′
i − f ′(βi)[f

′′(βi)]
−1

βi+1 = βi − [f ′′(βi)]
−1[f ′(βi)]

′

74

Newton’s method and the logit mle

We will maximize the the logit log-likelihood.

βi+1 = βi − [−X ′DX]−1X ′(y − Fv)

= βi + [X ′DX]−1X ′(y − Fv)

75

Iteratively Reweighted Least Squares

Recall weighted least squares

Y = Xβ + ϵ, ϵ ∼ N(0,Σ)

then,

β̂ = (X ′Σ−1X)−1X ′Σ−1y

76

It may be helpful to rewrite the Newton iteration as a series of
weighted regressions:

Let Σ−1 = D and

Z = Xβi + D−1(y − Fv)

then,

(X ′Σ−1X)−1X ′Σ−1Z = (X ′Σ−1X)−1X ′Σ−1(Xβi + D−1(y − Fv))

= βi + [X ′DX]−1X ′(y − Fv)

Hence doing an iteratively (re)weighted least squares problem
(IRLS) gets you the mle.

77

