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1. Introduction and a Single Layer Fit

There is a lot to take in when learning neural nets.

In general, neural net models are composed of layers where each
layer consists of a set of units also called neurons.
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Lots of issues to address:

I how do the units in a layer help us to build up interesting
functions?

I how do the layers help us to build up interesting functions?

I how do you use neural nets with (i) numeric outcomes, (ii)
binary outcomes, (iii) multinoulli outomes

I optimization issues in learning neural nets.

I regularization with L1 and L2 penalties and dropout.

Let’s start by understanding a neural net model with a single layer
first.
This will help us get a feeling for the first issue above.

After we understand a single layer we can move on to multiple
layers.
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There will be a lot to learn with just a single layer !!!

In general, you can actually fit just about anything with a single
layer.

But we will see that having multiple layers can be are good way to
build complex models.
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2. Understanding the Basic model, what are units?

Let’s use a single layer neural net model to fit y=medv x=lstat.

Here is the fit with “500 units”.

We use all the data as training data.

The x=lstat was scaled to have mean 0 and variance 1.
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single layer neural net fit, 500 units

looks good !!!
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Here is the fit with “5 units”.
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Does not look quite as good as with 500 units, but let’s pull this
simpler fit apart to see how it actually works.
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Here are the learned parameters.

x weights

(1, 5)

[[-1.6415458 -1.3937181 -3.2372243 -0.6942747 -3.719547 ]]

x bias

(5,)

[ 0.9728854 -0.33562386 -3.4881692 3.0414855 -4.071572 ]

output weights

(5, 1)

[[6.4191284]

[7.04142 ]

[9.101682 ]

[6.1671214]

[9.624342 ]]

output bias

(1,)

[6.1394553]

So how do these numbers give us the function on the previous slide ??? 6



x weights are the wk , k = 1, 2, 3, 4, 5.
x bias are the wk0, k = 1, 2, 3, 4, 5.
output weights are the βk , k = 1, 2, 3, 4, 5.
output bias is β0, k = 1, 2, 3, 4, 5.
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K is the number of units.

In our example, K = 5.

zk = wk0 + wk x , Ak = g(zk), k = 1, 2, . . .K .

f (x) = β0 +
K∑

k=1

βk Ak .

Or, all in one fell swoop,

f (x) = β0 +
K∑

k=1

βk g(wk0 + wk x)

In neural net world the intercepts (β0, wk0) are called the biases.
The coefficients (βk , wk) are called the weights.
g is the activation function.
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Model:

I make K different linear functions of x , one for each unit.

I put the results of each linear function into a nonlinear
activation function giving the activations, one for each unit.

I return a linear function of the K activations.

Why is this such a great idea ????
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Various functions of the form β g(w0 + w1 x) for different values of
β, w0, and w1.

We can get get just about any function we want just by adding up
these kinds of functions !!
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Here are the plots of x vs βk Ak for each k = 1, 2, 3, 4, 5 from our
example.
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Here are the plots of x vs βk Ak for each k = 1, 2, 3, 4, 5
and the sum of the pieces with β0 added on.
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Let’s try this function.

The line drawn through the data is a neural net fit with just three
units.
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Here are the three pieces of the form β g(w0 + w1 x).

The blue is the sum of the black, red, and green.

Then we add the constant β0 to move it down to fit the data.

See how they add up to the bump??
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I did this in R with the nnet package.
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3. More than one x

How does it work with more than one variable in x?

Just make each unit a linear function of the the vector x .
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X = (X1,X2, . . . ,Xp).

zk = wk0 +
∑p

j=1 wkj Xj , Ak = g(zk), k = 1, 2, . . . ,K .

f (X ) = β0 +
∑K

k=1 βk Ak .
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A function of the form

β g(w0 +

p∑
j=1

wjXj)

(we dropped k)

Obviously, we can we any function we like by summing up
functions like this !!!
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Different notation, very simple model.

g is the activation function.
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Note

We will be using regularization.

Neural net models have many linear functions !!!

As with our basic linear regression model, if helps a lot if we first
standardize our features.

Note

The features (X ) are the input layer.

The final layer is the output layer.
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Example: Used Cars with mileage and year

75% - 25% train-test split.

In [5]: Xtrs.shape

Out[5]: (750, 2)

In [6]: ytr.shape

Out[6]: (750,)

In [7]: Xtes.shape

Out[7]: (250, 2)

In [8]: yte.shape

Out[8]: (250,)

We use the ”standard scaling” for both mileage and price.
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Here are some plots of the training data.
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Training data. 3D plot of (mileage,year) (scaled) vs price.
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Neural net result with 2 input features (mileage,year) and 50 units
in a single hidden layer.

top row: In and out of sample fits and predictions.
second row: comparison to linear predictions and fit.
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Correlations and rmse on test data.

Compare yte: test y=price, yprednn: neural net prediction,
ypredlin: linear regression prediction.

yte yprednn ypredlin

yte 1.000000 0.938916 0.896020

yprednn 0.938916 1.000000 0.950466

ypredlin 0.896020 0.950466 1.000000

In [16]: f’{minrmse:0.2f}’

Out[16]: ’6.60’

In [17]: f’{rmselin:0.2f}’

Out[17]: ’8.57’
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3D plot of (mileage,year) vs neural net fit on train data.

26



4. Deep Neural Networks

A deep neural network is a neural network with more than one
hidden layer.

The activations at each unit are a linear function of the activations
from the all the units in the previous layer (plus an intercept) put
into a nonlinear activation function. 27



A simple version with 2 layers.
Input layer is X .
First hidden layer has 3 units.
Second hidden layer has 2 units.
Output layer has 2 units.

http://ufldl.stanford.edu/wiki/index.php/Neural_Networks
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The input layer is the feature vector.

Note that the output layer can have more than on unit.

This will be useful when we consider multinoulli outcomes
(categorical outcomes with more than two categories) but for our
basic cases of a single numeric outcome and a binary outcome,
there will be just one unit in the output layer.

In theory, any function can be approximated arbitrarily well with
just a single layer.

But, in some problems in turns out to be effective to incrementally
understand what transformation of X helps us understand Y .
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Chollet, “Deep Learning with Python”, section 2.3.6.

Deep learning .. takes the approach of incrementally de-
composing a complicated geometric transformation into a
long chain of elementary ones. ... Each layer in a deep net-
work applies a transformation that disentangles the data
a little - and a deep stack of layers makes tractable an
extremely complicated disentanglement process.
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Chollet, “Deep Learning with Python”, section 1.2.6.

Two essential essential characteristics of how deep learning learns
from data:

...the incremental, layer-by-layer way in which increasingly
complex representations are developed ...

and
... these intermediate incremental representations are
learned jointly.

Rather than have to do a lot of “feature engineering” the deep
neural net can figure out the potentially complex high dimensional
transformation of the features which is best for predicting y.
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Reality check, section 10.6 of ISLR.

Tried Hitters data with neural nets and lasso and with much less
effort got a better out of sample mse with lasso than neural nets.

In addition, the linear model is much simpler and more
interpetable.

Deep learning folks might scoff at this example, but the bulk of
applied statistics is more like the Hitters data than like digit
recognition.

32



The notation for the general case gets a bit intense.
You can skip this if you like.

Let’s start by letting ` index the layers.

` goes from 1 to L where ` = 1 is the input layer (x) and L is the
final output layer.

To keep things simple, we will have just one outcome with
associated activation function gL. For a single numeric outcome,
gL would typically be the identity function I (x) = x .

We will use the same activation function g at all the interior units
(neurons), but it would be a minor change to have activation
function g (`) at layer `.

Let p` be the number of neurons at layer `.
Note that p1 = p where p is the dimension of x since that is the
input layer.
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Lots of Notation !!!!:

Z
(`)
k : the value of the linear function of the activation from the

previous layer at the kth unit of layer (`), k = 1, 2, . . . , p`.

We have Z
(layer)
unit . Similary, we have activations a

(`)
k with,

a
(`)
k = g(Z

(`)
k ).

w
(`)
kj = weight from a

(`)
j (at layer `) to Z

(`+1)
k (at layer (`+ 1)).

Think of w as w
(`)
kj = w

(`)
k←j .

b
(`)
k = intercept for Z

(`+1)
k (at layer (`+ 1)).

Z
(`)
k = b

(`−1)
k +

p(`−1)∑
j=1

w
(`−1)
kj a

(`−1)
j , k = 1, 2, . . . , p`.
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Z
(`)
k = b

(`−1)
k +

p(`−1)∑
j=1

w
(`−1)
kj a

(`−1)
j , k = 1, 2, . . . , p`.

Matrix/Vector version:

Z (`) = (Z
(`)
1 ,Z

(`)
2 , . . . ,Z

(`)
p` )′

a(`) = g(Z (`))

b(`) = (b
(`)
1 , b

(`)
2 , . . . , b

(`)
p(`+1)

)′

W (`) =
[
w

(`)
kj

]
, p(`+1) × p`

Then,
Z (`) = b(`−1) + W (`−1)a(`−1)
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5. Activation Functions

Up until now we have used the sigmoid (or logistic) activation
function:

g(z) =
1

(1 + e−z)

Other commonly used activation functions are tanh (hyperbolic
tangent):

g(z) =
ez − e−z

(ez + e−z)

and the rectified linear unit, or RELU:

g(z) = z for z > 0, and 0 else.
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Intuitively, it does not seem like there should be much of a
difference between sigmoid and tanh, but it turns out tanh works
better for gradient computations and seems to be favoured in the
deep world.

RELU is very popular, especially for images. 37



6. Regularization and Dropout
We can choose L1 and L2 penalties to regularize the parameter
estimation.

Typically, the regularization is applied to the weights but not the
biases.

Here is a snippet of keras/python code illustrating the building of a
model with two layers and regularization at each layer.

#make model

lp1pen = .0500 #l1 penalty

#nunit = 500

nunit = 100

nx = Xtrs.shape[1] # number of x’s

nn2 = tf.keras.models.Sequential()

## add one hidden layer

nn2.add(tf.keras.layers.Dense(units=nunit,activation=’tanh’,

kernel_regularizer = tf.keras.regularizers.l1(lp1pen),input_shape=(nx,)))

## add second hidden layer

nn2.add(tf.keras.layers.Dense(units=nunit,activation=’tanh’,

kernel_regularizer = tf.keras.regularizers.l1(lp1pen)))

## one numeric output

nn2.add(tf.keras.layers.Dense(units=1))
38



Dropout

Dropout is another popular way to regularize a neural net fit.
Eliminate some of the connections.
You simply randomly pick some of the connections to eliminate.
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7. Optimization

How do we learn all the weights and biases !!!!

There could be a lot of them !!!!

Suppose we have 2 numeric inputs, two hidden layers with 100
units each and 1 numeric output.

Then we have

(2*100) + (100)*(100)+100*1 = 10,300

weights to estimate!!

One thing that makes working with neural nets different is that
you have to have a little understanding of the optimization to run
the software.

You even have to make choices about the optimization !!
41



Gradient Descent

As usual we have training data and a loss function L(x , y , θ) where
θ denotes all the weights and biases.

For example with a numeric outcome we have

L(x , y , θ) = (y − ŷ(x , θ))2

We seek to minimize:

n∑
i=1

L(xi , yi , θ).

where θ is all the biases and weights.
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Computing the Hessian matrix is not practical, so the methods are
based on the gradient.

Gradient descent just uses the update

θ → θ − ε 1
n

n∑
i=1

∇L(xi , yi , θ).

where the gradient is with respect to the elements of θ (all the
biases and weights) and ε is called the “learning rate”.
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Stochastic Gradient Descent

If n is big, each update will take a long time to compute.

Stochastic gradient descent computes the gradient using subsets of
the data called minibatches.

At iteration k of the algorithm we select a set of minibatch subsets
of data {xbi , ybi }, i = 1, 2, . . . ,m.

Then we cycle through the minibatches using the update (at each
minibatch):

θ → θ − εk 1
m

m∑
i=1

∇L(xbi , y
b
i , θ).

An epoch is one pass through the entire data set.
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Note:

How do we compute the gradient?

It is just the chain rule.

However, a lot of work has gone into organizing the the
computations so they can be done efficiently and the method for
computing the gradient is called back propogation.

To evaluate the model, you move “forward” through the layers
from inputs to output layer.

To evaluate the gradient you move backward from the output layer.
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Here is a (stolen) picture showing basic gradient descent.

We always move downhill, perpendicular to the contours.

Note, stochastic gradient descent will tend to move downhill but
not with the full gradient information at each move.

46



https://www.internalpointers.com/post/gradient-descent-function

This picture illustrates going to different local minimums
depending on the starting value.
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This picture gives the basic idea of how gradient descent could be
much worse than Newton’s method.
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Gradient descent.

Path at left was l2 regularized.
Path at right was not.
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Stochastic Gradient descent.
Epochs color coded.
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This picture shows “gradient” descent in 1-d and illustrates the
role of the learning rate.

x → x − εk f ′(x)

At left we have a small fixed εk .

At right we have a big fixed εk .
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Adaptive Learning rates

Clearly, the learning rate is a key part of procedure.

The are a variety of schemes for adaptively adjusting the learning
rates for individual weights.

Momentum:
Momentum based methods address the problems with local
optima, flat spots, and zigzagging by incorporating the overall
direction of past moves.

Our next step is the a weighted combination of the previous step
and the current gradient information.

θt = θt−1 − εk∇L + γ(θt−1 − θt−2)

where t indexes iteration.
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RMSprop

Weights that have varied a lot in past interations have
downweighted learning rates.

Adam:

Combines momentum and RMSprop idea.
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Clearly fitting a neural net model is no joke !!

The stochastic gradient descent algorithm is typically intiallized
with random values for the parameters.

Since there are local minimum,

you can run it twice and get different answers !!!!

In practice it can be important to ”run it” several times and play
with basic parameters like the number of epochs. This can all end
up being very labour intensive.
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Fitting neural networks: Tips from h2o

I more layers for more complex functions (more nonlinearity).

I more neurons per layer to fit finer structure in data.

I add regularization (max w2=50 or L1 = 1e-5).

I do a grid search to get a feel for parameters.

I try “Tanh”, the “Rectifier”.

I try dropout (input 20%, hidden 50%).

Note: max w2:
An upper limit for the (squared) sum of the incoming weights to a
neuron.
h2o default is to have no limit.
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8. Cars Example with Deep Learning

Let’s do cars with (mileage,year) and price with more than one
layer.

Note all the choices we have to make about model architecture,
optimization, and regularization.

To make all this concrete, let’s look at the python-keras code.
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Two layers, each with 100 units.
L1 regularization at each layer.
tanh activation at each layer (except output layer).
rmsprop learning rate.
mse loss.

seed=34

random.seed(seed)

np.random.seed(seed)

tf.random.set_seed(seed) ## ? just need this one ??

#make model

lp1pen = .0500 #l1 penalty

nunit = 100

nx = Xtrs.shape[1] # number of x’s

nn2 = tf.keras.models.Sequential()

## add one hidden layer

nn2.add(tf.keras.layers.Dense(units=nunit,activation=’tanh’,

kernel_regularizer = tf.keras.regularizers.l1(lp1pen),input_shape=(nx,)))

## add second hidden layer

nn2.add(tf.keras.layers.Dense(units=nunit,activation=’tanh’,

kernel_regularizer = tf.keras.regularizers.l1(lp1pen)))

## one numberic output

nn2.add(tf.keras.layers.Dense(units=1))

#compile model

nn2.compile(loss=’mse’,optimizer=’rmsprop’,metrics=[’mse’])

# fit

nepoch = 400

nhist2 = nn2.fit(Xtrs,ytr,epochs=nepoch,verbose=1,batch_size=20,validation_data=(Xtes,yte))
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Training.
In out out sample loss (rmse) by epoch.
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Fit on train.
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Out of sample predictions.
yprednn is from the single layer model and yprednn2l is the 2 layers
of 100 units model.
ypredlin is the linear model.

yte yprednn ypredlin yprednn2l

yte 1.000000 0.938916 0.896020 0.942015

yprednn 0.938916 1.000000 0.950466 0.997156

ypredlin 0.896020 0.950466 1.000000 0.942825

yprednn2l 0.942015 0.997156 0.942825 1.000000

In [22]: f’{minrmse:0.2f}’

Out[22]: ’6.63’

Correlation and out-of-sample rmse is about the same as the single
layer model.
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9. Binary classification, IMDB example

blah.
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10. MNIST: classification with 10 outcomes
Handwritten digits captured as 0-255 grayscale values on a 28× 28
grid.
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Digit recognition:

Guess the digit, given the 282 = 784 values:

where “b” is model parameters (e.g. weights).

Easy for a person, hard for a machine !!
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Note:

Our black and white images are values in [0,255] on a 2
dimensional grid of pixels.

Color images are (r,g,b) values on a grid of pixels.

(r,g,b): red, green, blue.

For example: the input might be 32 x 32 x 3.
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11. Simple Gradient Example

How do we compute the gradient vector?

Let’s explicitly compute the gradient for the simplest version of a
neural net model: one x, one layer of 2 units, one numberic
outcome, squared error loss.
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But how does this work in a general deep network?

The back propagation algorith works by going back through the
network starting at the loss. At each step backwards all the partial
derivatives are computed which enable us to keep track of the
downstream effect on the loss due to a change in the parameters
upstream.

While an overall deep network is complex is is composed of many
basic linear (often called tensor) operations. Automatic
differentiation used the chain rule to compute the derivative given
a chain of operations with know derivatives.

Another key to making all this work is parallel computing with
GPU has been used to speed things up.

See section 2.4.4 of Chollet.
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12. How Does it Work Again, XOR

Let’s look again at how a neural net works by playing around with
the famous XOR example.

This is example is famous because it is a simple example where
linear classification:

y = 1 if a + b1x1 + b2x2 > 0

cannot work.
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Basically, y is 1 if the sign(x1) 6= sign(x2) but I added noise so a
few points cross the boundaries.

Here is a plot of the (simulated) data.
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Here is the decision boundary (ŷ = 1 if p̂ > .5) for a linear logit fit.

logit fit to xor data
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Here is a plot of p̂(x1, x2) from the logit fit.

px1

px
2

phatlg

Really all the p̂ are close to .5 !! 72



> print(summary(lgfit))

Call:

glm(formula = y ~ ., family = binomial, data = dfd)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.25921 -1.17512 0.02788 1.17894 1.23320

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.01013 0.20113 0.050 0.960

x1 0.10058 0.17129 0.587 0.557

x2 0.03688 0.18028 0.205 0.838

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 138.63 on 99 degrees of freedom

Residual deviance: 138.27 on 97 degrees of freedom

AIC: 144.27

Number of Fisher Scoring iterations: 3

> summary(phatl)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.4217 0.4676 0.4964 0.4964 0.5253 0.5713
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Let’s try a nn fit.

#uses random starting values for iterative optimization

set.seed(99) #misses

xnn = nnet(y~.,dfd,size=2,decay=.1)

phat1 = predict(xnn,gd)[,1]

set.seed(14) #works

xnn = nnet(y~.,dfd,size=2,decay=.1)

phat = predict(xnn,gd)[,1]

#plot fits, far out!!

plot(phat1,phat)
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Far out.
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Here is the nn decision boundary (from the one that worked).

neural network −− 1 hidden layer with 2 neurons
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Beautiful !!!
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Here is a plot of p̂(x1, x2) from the nn fit.

px1

px
2

phatg

Obvious !!!!????
(see plot3d in xor.R). 77



> summary(xnn)

a 2-2-1 network with 9 weights

options were - entropy fitting decay=0.1

b->h1 i1->h1 i2->h1

3.35 2.38 -2.66

b->h2 i1->h2 i2->h2

-2.73 2.28 -2.90

b->o h1->o h2->o

2.54 -5.84 6.30

Basically uses x1 − x2 !!!!.
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A plot of xnn:

I1

I2

x1

x2

H1

H2

O1 y

B1 B2
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13. More on Digit Recognition

The digit recognition problem is a famous problem of basic
importance in Machine Learning/Statistics.

Deep neural nets have been very successful
with some special twists !!!

The pixel layout is a very special structure and some approaches
have been developed to take advantage of it.

These approaches coupled with deep learning are the
“state of the art”.

Let’s just get a rough idea of what is involved.
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Besides the usual hidden layers we have looked at, different kinds
of layers are used to take advantage of the pixel structure:

Convolution layers replace a pixel value with the average of nearby
pixels.

Pooling layers replace of rectangular set of pixels with the
maximum value.

See http://yann.lecun.com/exdb/lenet/
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Convolution Layers:

Here is our 282 input layer:

From: http://neuralnetworksanddeeplearning.com/chap6.html
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To get single neuron for the next layer, take a weighted average of
neurons in a box where the neuron is at the top left corner.
(in images you often make the origin the top left).

You have to pick the weights and number of neighbors.
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This will give an ouput layer a little smaller or about the same size
depending on how you do it.
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Pooling Layer:

A pooling layer replaces the pixel values in non-overlappying
regions with the maxiumum value.

This will typically reduce the number or neurons in the next layer.
The pooling layer “introduces an elmement of local translation
invariance” (Efron and Hastie).
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Another cool idea:

Expand the set of examples.

For each (x , y) pair produce a set a pairs
(xs , y) where xs is obtained from x by small distortions:

scaling, rotation, . . .

Then add all the generated (xs , y) to your training data!!!
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Another cool idea:

Use the output of the last layer as a representation of your data.

Fit a model with this representation.
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