
Monte Carlo

Rob McCulloch

1. Monte Carlo
2. Transformations
3. Rejection Sampling
4. Importance Sampling
5. SIR: Sampling Importance Resampling

1. Monte Carlo

Often our goal is to understand the distribution of a random
variable X (scalar or vector) and/or compute some expectation
E (h(X)) of some function of X .

If X is known to come from a “nice” family (e.g multivariate
normal) and h is linear we can do a lot analytically.

As soon as X is complicated and h is non-linear, we cannot.

To understand X we get draws Xi , i = 1, 2, . . . ,m from it’s
distribution and look at the draws.

We can use monte carlo to estimate an expectation:

µ ≡ E (h(X)) ≈ 1

m

m∑
i=1

h(Xi) ≡ µ̂.

1

In basic Monte Carlo, the draws Xi are iid.

When the draws are iid then h(Xi) are iid so basic law of large
number and central limit theorem ideas apply.

E (µ̂) = µ, Var(µ̂) =
1

n
Var(h(X)).

Since Var(µ̂) gets small when n gets small, our monte carlo
estimates can be made accurate by choosing n large.

µ̂ ⇒ µ.

And, you get to choose n.

2

Var(h(X)) ≈ 1

n

∑
(h(Xi)− µ̂)2 ≡ s2h .

So, by the central limit theorem,

µ̂ ≈ N(µ, s2h/n).

Giving monte carlo error:

±zα/2
sh√
n
.

E.g. zα/2 = 2.0.

3

Note

An important function is

h(X) = IB(X)

where B is a set and IB(X) is 1 if X ∈ B and 0 otherwise.

Then E (h(X)) = P(X ∈ B).

So, we talk about estimating E (h(X)), but in practice we are often
looking at the histogram of draws h(Xi).

4

Monte Carlo, can mean a lot of things.

Two examples of fundamental tools are:

▶ rejection sampling: you are able to compute the density of
the distribution f (x) and you want draws from the
distribution.

▶ importance sample: you can get draws from a distribution
similar to that of X and you can reweight these draws to
estimate an expectation.

In general, we need tools for drawing from a distribution, given
limited knowledge (typically the density) of the distribution.

5

We will assume that we can get iid draws from the uniform and
then learn ways to get iid draws from other distributions given iid
uniform draws.

Of course, getting iid uniforms from a computer is a major issue
but we will assume we “have a good random number generator”.

Note that when we say Monte Carlo we usually mean we are
getting iid draws.

Later we will look at Markov Chain Monte Carlo where the draws
are dependent.

6

Example

In Bayesian statistics, we can often evaluate:

p(θ | y) ∝ f (y | θ) p(θ) = L(θ) p(θ)

where p is the prior and L is the likelihood function.

But, we don’t know what “kind” of random variable θ | y is and
we cannot compute ∫

L(θ) p(θ) dθ

the normalizing constant.

7

2. Transformations

The transformation approach looks for a transformation (function)
g such that

X = g(U1,U2, . . . ,Up), Up ∼ uniform

has the desired distributon.

8

Drawing an Exponential

So, to draw and exponential we can draw a uniform and then just
compute -log.
We can then rescale it to get a general exponential.

9

Drawing Gammas and chi-squared

Let Xj ∼ Exp(1).

Then

Y = 2
ν∑

i=1

Xj ,∼ χ2
2ν

Y = β

α∑
i=1

Xj ,∼ Gamma(α, β)

For integer α we have a simple way to draw a Gamma.

10

Drawing a Normal (Box Muller Algorithm)

11

Draw U1 and U2 uniform.
− log(U1) ∼ exponential , −2 log(U1) ∼ χ2

2.

X1 =
√

−2log(U1) cos(2πU2), X2 =
√
−2log(U1) sin(2πU2)

Then X1, X2 are iid N(0,1).

12

Inverse CDF (cumulative distribution function

A general transformation approach is to use the inverse-CDF.

Suppose you want to draw X such that

F (x) = P(X ≤ x)

where we know F and can compute F−1.

Let X = F−1(U), U ∼ U(0, 1).

Then,

P(X ≤ c) = P(F−1(U) ≤ c) = P(U ≤ F (c)) = F (c).

13

Example: Drawing from a truncated distribution

Suppose X has CDF F .

We want to draw X conditional on X ∈ (a, b).

Let Ft be the conditional or truncated CDF of X ,

Ft(x) =
F (x)− F (a)

F (b)− F (a)

To draw from the truncated distrubtion we let

X = F−1
t (u), U ∼ uniform(0, 1).

14

solve:
Ft(x) = u

or,

u =
F (x)− F (a)

F (b)− F (a)

which gives,

x = F−1(u(F (b)− F (a)) + F (a))

15

Note that for X ∼ N(µ, σ2),

F (x) = P(X < x)

= P(µ+ σZ < c)

= P(Z < (c − µ)/σ)

= FZ ((c − µ)/σ).

So if we can compute the standard normal CDF and inverse CDF
we have a simple way to draw truncated normals.

16

3. Rejection Sampling

Very often what we do is get draws from a distribution that
approximates the distribution we want to draw from and then
modify these draws to get what we want.

Rejection sampling is a fundamental method.

Let f be density we want to draw from and suppose we can
compute f1 ∝ f .

The density g will be our approximation and we assume we can
draw from g .

17

We need to be able to multiply g by some M so that f1 ≤ M g :

18

Rejection Sampling Algorithm

▶ (i) Draw Y ∼ g .

▶ (ii) with probability h(y) = f1(y)
M g(y) let X = Y .

▶ (iii) with probability 1− h(y) return to (i).

That is, you keep sampling Y from g until it is accepted, then that
is your draw from X ∼ f ∝ f1.

19

It works!!

20

At a drawn y , the probability to accept is h(y) = f1(y)
M g(y) .

Equivalently, you accept if

U M g(y) ≤ f1(y), U ∼ Unif (0, 1).

21

May be efficient to make g fit f1 snugly by letting M = max f1/g .

22

Truncated Normal with Rejection Sampling

The inverse CDF approach to drawing a truncated normal is simple
and works.

But, computing the inverse CDF is costly (a complex series
expansion).

It can be more efficient to use rejection sampling.

23

We can restrict attention to the case:

Z ∼ N(0, 1), restricted to Z ≥ a.

If we wanted X ≤ a, then we can flip it using −X ≥ −a.

If X ∼ N(µ, σ2), then

X ≥ a ⇔ µ+ σZ ≥ a ⇔ Z ≥ (a− µ)

σ
.

24

If a is not far out in the right tail, then you can just draw from a
N(0, 1) until you get one bigger than a.

The tricky case is when a is out in the right tail, then you cannot
just wait until you get one there.

We use rejection sampling with

Y ∼ a+ Exp(a) = a+ (1/a)Exp(1)

so,

g(y) = a e(−a(y−a)), y > a

25

So, f1/g has the optimal value M = 1
a e

−a2/2 at y = a.

26

▶ Draw Y ∼ a+ Exp(a).

▶ accept with probability e−(1/2)(y−a)2 .

27

Inutition for Rejection Sampling

The math for rejection sampling was pretty easy.

But, we can make this algorithm more intuitive.

First we consider a very special case.

28

Simple but informative special case, X ∈ (a, b), g ∼ U(a, b).

29

h(y) = f1(y)
(Mg(y)) =

f1(y)
f1(x∗)

.

For U ∼ Unif (0, 1), accept if U ≤ h(y) or Uf1(x
∗) ≤ f1(y).

▶ Draw y = U1 ∼
Unif (a, b).

▶ Draw U2 ∼
Unif (0, f1(x

∗)).

▶ Accept U1 as X if
U2 ≤ f1(U1).

Hit or Miss

Draw (U1,U2) uniformly on (a, b)× (0, f1(x
∗)).

Keep X = U1 if (U1,U2) is below f1.

Obviously,
we are drawing (U1,U2) uniform on S = {(x , y); y ≤ f1(x)}.
Obviously, the marginal for X = U1 has density proportional to f1.

30

General Hit or Miss

Draw (U1,U2) uniformly on {(U1,U2) s.t. U2 ≤ Mg(U1)}.

Keep X = U1 if U2 ≤ f1(U1).

Obviously,
we are drawing (U1,U2) uniform on S = {(x , y); y ≤ f1(x)}.
Obviously, the marginal for X = U1 has density proportional to f1.

31

32

Squeezed Rejection Sampling

Sometimes it is costly to evaluate f1(y).

If we can find a function s such that s(y) ≤ f1(y) then we can just
check s first.

That is, we accept if

UMg(y) ≤ f1(y)

But,
UMg(y) ≤ s(y) ⇒ UMg(y) ≤ s(y) ≤ f1(y).

33

34

Example

f1(x) = e(−x2/2), g(y) =
1

2
e(−|x |).

g is the double exponential.

Then we can use,

s(x) = (1− x2

2
) ≤ e(−x2/2)

35

−3 −2 −1 0 1 2

0.
5

1.
0

1.
5

x

fx

f_1
s
Mg

36

Adaptive Rejection Sampling

To use rejection sampling you have to come up with a clever
envelope g .

Adaptive rejection sampling gives us an automatic way of
constructing an efficient envelope!!

Everytime you do an accept/reject step you have to do an
evaluation of f (x) (or f1(x)).

The idea of adaptive rejection sampling is that you can use the
information to update an envelope g(x) that you can draw from.

The method assumes that f is log convcave, that is, log(f (x)) is
concave.

37

As an example, suppose X ∼ N(0, 1).

f (x) ∝ exp(−1

2
x2).

and then

log(f (x)) = −1

2
x2

which is concave.

38

The method constructs a piecewise linear h(x) such that

log(f (x)) ≤ h(x)

and then,

f (x) ≤ exp(h(x)) = g(x) ∝ g̃(x).

And it turns out we can sample from g̃(x) fairly easily.

39

We assume we have a set of function evaluations:

{(xi , f (xi)) : xi < xi+1}.

There are two schemes for constructing the linear envelope for
log(f (x)) depending on whether or not the derviative is available.

40

41

ARS with the derivative.

42

ARS without derivative.

43

With either construction we have:

Let Ri = [zi , zi+1].

44

Let Ri = [zi , zi+1].

We draw from g̃ by

▶ First drawing the Ri with probability wi
w .

▶ Then drawing X | X ∈ Ri .

45

46

Using the concavity, we can also construct a lower envelope
squeezing function:

47

4. Importance Sampling

Often the goal may be expressed as the estimation of the
expectation of a function:

Ef (h(X)) =

∫
h(x) f (x)dx ≡ µ.

Importance sampling follows from the identity:

∫
h(x) f (x)dx =

∫
h(x)

f (x)

g(x)
g(x)dx = Eg (w(X)h(X)).

with

w(X) =
f (X)

g(X)
.

48

So, for Xi , iid ∼ g ,

µ̂IS =
1

m

m∑
i=1

w(Xi) h(Xi)

estimates µ, with

w(Xi) =
f (Xi)

g(Xi)
.

Intuitively, the weights tell us when f would have given X more (or
less) weight than g .

49

Why would you do this?

▶ You can’t draw from f , but you can draw from g .

▶ Even if you can draw from f , it might be smart to get draws
where h is big.

50

The optimal g is

g∗(x) =
|h(x)| f (x)∫
|h(x)| f (x)dx

∝ |h(x)| f (x)

Typically, you can’t actually use g∗, but it does give the basic
intuition that it makes sense to draw where both f and |h| are big.

For example, if h(x) ≥ 0 then the normalizing constant is exactly
what you are trying to estimate.

If h(x) ≥ 0, then g∗ = f h/(
∫
f h),

w h = (f /g∗)h = (

∫
f h)

f

f h
h = (

∫
f h),

which has 0 variance.

51

Why is g∗ optimal?

Have to min E (Y 2)
for Y = hf /g , Y ∼
g .

Then find a lower
bound for E (Y 2)
using Jensen’s in-
equality.

Then show the
bound is obtained at
g∗.

52

Typically, you want to choose g so that the weights,
w(x) = f (x)/g(x) are well behaved.

If a few weights dominate the sum, then you know you can’t be
sure of the result.

If you did it again, you could get something completely different.

Often this means you want g to have heavier tails than f .
You definitely want g to cover the “effective support” of f .

53

Normalized Importance Sampling

A second version of importance sampling divides the weights by
their sum so that things look like a weighted average.

We have,

µ =

∫
h(x) f (x) dx∫

f (x) dx
=

∫
h(x)(f (x)/g(x))g(x) dx∫
(f (x)/g(x))g(x) dx

.

Which motivates

µ̂ =

∑
w(Xi) h(Xi)∑

w(Xi)
, Xi ∼ g .

Or

µ̂ =
∑

w∗(Xi)h(Xi), w∗(Xi) =
w(Xi)∑
w(Xj)

.

54

Why Normalize

Sometimes we can only compute f and/or g up to a
proportionality constant.

A basic example is Bayesian statistics where X = θ and

f (θ | y) ∝ L(θ) p(θ) ≡ f1(θ).

Then

w(θ) =
L(θ)p(θ)

g(θ)

55

An example of this is prior sensitivity.

Suppose we have prior p1(θ) and prior p2(θ).
Let pi (θ | y) be the posterior obtained from prior pi (θ) and
likelihood L(θ).

We have developed an algorithm for drawing from p1(θ | y), the
prior 1 posterior.

If we want an expectation with respect to the prior 2 posterior, we
can draw from the prior 1 posterior and use

g(θ) = p1(θ | y) ∝ L(θ) p1(θ), f (θ) = p2(θ | y) ∝ L(θ) p2(θ).

Then

w(θ) ∝ L(θ) p2(θ)

L(θ) p1(θ)
=

p2(θ)

p1(θ)
.

56

If you know the normalizing constants so that computation of
w(x) = f (x)/g(x) is not an issue then which is better can depend
on h.

You can show that the standardized version can be better when
w(X) and w(X) h(X) are strongly positively correlated.

Note that the normalized version may be slightly biased, but the
basic version is unbiased.

57

Note:

you can’t reweight to a different place !!!!!

58

5. SIR: Sampling Importance Resampling

Let δx put mass 1 on x .

Given iid draws Xi ∼ P, the empirical distribution is

P̂ =
∑ 1

n
δXi

.

Our basic monte carlo idea is that P̂ approximates P so that,∫
h(x)dP(x) ≈

∫
h(x)dP̂(x) =

1

n

n∑
i=1

h(Xi).

Note: If P has density f , then
∫
h(x)dP(x) =

∫
h(x)f (x)dx .

In this case, P̂ is a discrete approximation to the continuous
distribution corresponding to f .

59

The normalized version has the nice interpretation that if we let

P̂w (x) =
∑

w∗(Xi) δXi

then the weighted version is just the expection with respect to P̂w

and we can think of P̂w as an approximation to the distribution
corresponding to f (x) in that, for any h

EP(h(X)) =

∫
h(x) dP(x) ≈

∑
h(Xi)w

∗(Xi) =

∫
h(x) dP̂w .

60

SIR: Sampling Importance Resampling

Sometimes it makes life simpler if the weights are uniform.

We can get an iid sample approximating P by drawing from P̂w .

▶ Let Xi be iid from g , i = 1, 2, . . . ,m.

▶ Let w∗
i (Xi) =

f (Xi)/g(Xi)∑m
j=1 f (Xj)/g(Xj)

, i = 1, 2, . . . ,m.

▶ P̂w =
∑m

i=1 w∗
i (Xi) δXi

.

▶ Draw X̃i , i = 1, 2, . . . , n, iid from P̂w .

▶ P̃ =
∑n

i=1
1
n δX̃i

.

61

Note:

In principle need large n and m.

Should have n/m → 0, that is, a big m.

G & H:
“We have sometimes found n/m < 1

10 tolerable so long as the
resulting sample does not contain too many replicates of any initial
draw.”

62

Example: Bayesian Statistics without Tears (Gelfand and Smith)

A Bayesian model: {f (y | θ), p(θ)}.

Let g = p and f ∝ f (y | θ) p(θ).

▶ Draw θi from the prior.

▶ Reweight draws by w = f /g = f (y | θ) = L(θ).

Beautiful idea, typically does not work.

63

Typically you hope the data is informative so that the likelihood is
much more concentrated than the prior.

64

