Outline

[The Unknown](#page-1-0) σ Model

The χ^2 [Distribution](#page-3-0)

[Conjugate Prior for Normal](#page-5-0) σ

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

[The Likelihood](#page-8-0)

[The Posterior](#page-9-0)

[Ball-parking the Prior](#page-11-0)

[Prediction](#page-12-0)

The Unknown σ Model

The model is

$$
Y_i = \mu + \epsilon_i, \ \epsilon_i \sim N(0, \sigma^2), \ i = 1, 2, \ldots, n.
$$

K ロ K K (P) K (E) K (E) X (E) X (P) K (P)

We will assume we know μ and want inference for σ .

Given we know μ , we act as if we observe the errors

$$
Y_i - \mu = \epsilon_i \sim N(0, \sigma^2), i = 1, 2, \ldots, n.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 ... 9 Q Q ·

The χ^2 Distribution

Recall the χ^2 distribution.

If $Z_i \sim N(0, 1), i = 1, 2, ..., \nu$, then

$$
X=\sum_{i=1}^{\nu} Z_i^2 \sim \chi_{\nu}^2.
$$

 $E(X) = \nu$.

The pdf of X is

$$
f(x) = \frac{\left(\frac{1}{2}\right)^{\frac{\nu}{2}}}{\Gamma(\frac{\nu}{2})} x^{\frac{\nu}{2}-1} e^{-\frac{x}{2}}.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 ... 9 Q Q ·

Conjugate Prior for Normal σ

A prior for a standard deviation (or, equivalently, the variance) we will use a lot is

$$
\sigma^2 \sim \frac{\nu \lambda}{\chi_{\nu}^2}.
$$

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

This is called an inverse- χ^2 distribution for obvious reasons.

Lot's of people work with σ^2 as the variable but I prefer to work with $\sigma.$ I don't like having a variable " x^{2} " and σ is actually the more interpretable quantitity.

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

I need the pdf of σ .

$$
\sigma^2 \sim \frac{\nu \lambda}{X}, \ X \sim \chi^2_{\nu}.
$$

$$
x = \frac{\nu \lambda}{\sigma^2}, \quad |\frac{dx}{d\sigma}| = \frac{2\nu\lambda}{\sigma^3}.
$$

イロトメタトメミトメミト (ミ) の女々

$$
p(\sigma) = p_X(x(\sigma)) \times |\frac{dx}{d\sigma}| =
$$

\n
$$
p(\sigma) = \frac{\left(\frac{1}{2}\right)^{\frac{\nu}{2}}}{\Gamma(\frac{\nu}{2})} \left(\frac{\nu \lambda}{\sigma^2}\right)^{\frac{\nu}{2}-1} e^{-\frac{\nu \lambda}{2\sigma^2}} \times \frac{2\nu \lambda}{\sigma^3}
$$

\n
$$
= \frac{(\nu \lambda)^{\frac{\nu}{2}}}{2^{\frac{\nu}{2}-1} \Gamma(\frac{\nu}{2})} \sigma^{-(\nu+1)} e^{-\frac{\nu \lambda}{2\sigma^2}}.
$$

The Likelihood

$$
p(\epsilon_1,\epsilon_2,\ldots,\epsilon_n \mid \sigma) = \prod_{i=1}^n (2\pi)^{-1/2} \sigma^{-1} e^{-\frac{\epsilon_i^2}{2\sigma^2}}.
$$

Let
$$
S = \sum_{i=1}^{n} \epsilon_i^2
$$
.

$$
L(\sigma) \propto \sigma^{-n} e^{-\frac{S}{2\sigma^2}}.
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ 9 Q @

The Posterior

$$
p(\sigma \mid \epsilon_1, \epsilon_2, \ldots, \epsilon_n) = p(\sigma \mid S)
$$

$$
\propto L(\sigma) \times \rho(\sigma)
$$

\n
$$
\propto \sigma^{-n} e^{-\frac{S}{2\sigma^2}} \times \sigma^{-(\nu+1)} e^{-\frac{\nu\lambda}{2\sigma^2}}
$$

\n
$$
= \sigma^{-(\nu+n+1)} e^{-\frac{\nu\lambda+S}{2\sigma^2}}
$$

K ロ K K (메 K K X B K X B H X B K O Q Q C

Let

$$
\nu' = \nu + n, \ \nu' \lambda' = \nu \lambda + S.
$$

then,

$$
\sigma^2\mid \text{data} \sim \frac{\nu'\,\lambda'}{\chi^2_{\nu'}}.
$$

So, the prior is indeed conjugate with remarkably simple updates for the parameters ν and λ .

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Ball-parking the Prior

Since $E(\chi^2_\nu)=\nu$, for large ν we have

$$
\sigma^2 \sim \frac{\nu \lambda}{\chi_{\nu}^2} \approx \lambda.
$$

Large ν means a "tight" prior.

So, you can roughly pick the prior by choosing $\sqrt{\lambda}$ to be your "guess" at σ and ν "small enough" to capture your uncertainty.

KORKAR KERKER E VOOR

Prediction

To predict the next ϵ , we need to compute

$$
p(\epsilon \mid \epsilon_1, \epsilon_2, \ldots, \epsilon_n)
$$

= $\int p(\epsilon, \sigma \mid \epsilon_1, \epsilon_2, \ldots, \epsilon_n) d\sigma$
= $\int p(\epsilon \mid \sigma, \epsilon_1, \epsilon_2, \ldots, \epsilon_n) p(\sigma \mid \epsilon_1, \epsilon_2, \ldots, \epsilon_n) d\sigma$
= $\int p(\epsilon \mid \sigma) p(\sigma \mid S) d\sigma$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 ... 9 Q Q ·

Let's just use ν and λ to denote the distribution of σ since we are using the conjugate prior.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

$$
\propto \int \left(\frac{1}{\sigma} e^{-\frac{1}{\sigma^2} \epsilon^2}\right) \left(\sigma^{-(\nu+1)} e^{-\frac{\nu \lambda}{2\sigma^2}}\right) d\sigma
$$

$$
\propto \int \sigma^{-(\nu+1+1)} e^{-\frac{1}{2\sigma^2} (\epsilon^2 + \nu \lambda)} d\sigma
$$

$$
\propto (\nu \lambda + \epsilon^2)^{-\frac{\nu+1}{2}}
$$

$$
\propto (1 + \frac{1}{\nu} (\frac{\epsilon}{\sqrt{\lambda}})^2)^{-\frac{\nu+1}{2}}
$$

Now note:

(i)

If X has a t distribution with ν degrees of freedom then

$$
X \sim t_{\nu} \Rightarrow f(x) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}}
$$

K ロ K K (P) K (E) K (E) X (E) X (P) K (P)

(ii)

If $Y = c X$ then $f_Y(y) = \frac{1}{c} f_X(\frac{y}{c})$ $\frac{y}{c}$). Hence

$$
\epsilon/\sqrt{\lambda} \sim t_{\nu}, \text{or, } \epsilon = \sqrt{\lambda} t_{\nu}.
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ 9 Q @

An alternative derivation:

$$
\epsilon = \sigma Z, Z \sim N(0, 1), \sigma^2 = \frac{\nu \lambda}{\chi_{\nu}^2}.
$$

so,

$$
\epsilon = \sqrt{\lambda} \frac{Z}{\sqrt{\chi_{\nu}^2/\nu}} \sim \sqrt{\lambda} t_{\nu}.
$$

KOX KOX KEX KEX E 1990

An alternative computation:

Suppose we have $p(\theta)$ that we can draw from and $p(y | \theta)$ that we can draw from.

We can always draw from the marginal distribution of Y by drawing (θ, y) from the joint and then discarding θ .

We can draw from the joint by drawing $\theta \sim p(\theta)$ and then $y \sim p(y | \theta)$.

In this case we draw $\sigma = \sqrt{\frac{\nu\lambda}{\chi_{\nu}^2}}$ and then $\epsilon = \sigma Z$, $Z \sim {\cal N}(0,1).$

AD A 4 4 4 5 A 5 A 5 A 4 D A 4 D A 4 PM

You might notice your are drawing a t, or, you might not!