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The Unknown σ Model

The model is

Yi = µ+ εi , εi ∼ N(0, σ2), i = 1, 2, . . . , n.

We will assume we know µ and want inference for σ.



Given we know µ, we act as if we observe the errors

Yi − µ = εi ∼ N(0, σ2), i = 1, 2, . . . , n.



The χ2 Distribution

Recall the χ2 distribution.

If Zi ∼ N(0, 1), i = 1, 2, . . . , ν, then
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Z 2
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ν .

E (X ) = ν.
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Conjugate Prior for Normal σ

A prior for a standard deviation (or, equivalently, the variance) we
will use a lot is

σ2 ∼ ν λ

χ2
ν

.

This is called an inverse-χ2 distribution for obvious reasons.



Lot’s of people work with σ2 as the variable but I prefer to work
with σ. I don’t like having a variable “x2” and σ is actually the
more interpretable quantitity.

I need the pdf of σ.



σ2 ∼ ν λ

X
, X ∼ χ2

ν .
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The Likelihood

p(ε1, ε2, . . . , εn | σ) = Πn
i=1 (2π)−1/2 σ−1 e−

ε2i
2σ2 .

Let S =
∑n

i=1 ε
2
i .

L(σ) ∝ σ−n e−
S

2σ2 .



The Posterior

p(σ | ε1, ε2, . . . , εn) = p(σ | S)

∝ L(σ) × p(σ)

∝ σ−n e−
S

2σ2 × σ−(ν+1) e−
νλ
2σ2

= σ−(ν+n+1) e−
νλ+S
2σ2



Let
ν ′ = ν + n, ν ′ λ′ = νλ+ S .

then,

σ2 | data ∼ ν ′ λ′

χ2
ν′
.

So, the prior is indeed conjugate with remarkably simple updates
for the parameters ν and λ.



Ball-parking the Prior

Since E (χ2
ν) = ν, for large ν we have

σ2 ∼ ν λ

χ2
ν

≈ λ.

Large ν means a “tight” prior.

So, you can roughly pick the prior by choosing
√
λ to be your

“guess” at σ and ν “small enough” to capture your uncertainty.



Prediction

To predict the next ε, we need to compute

p(ε | ε1, ε2, . . . , εn)

=

∫
p(ε, σ | ε1, ε2, . . . , εn) dσ

=

∫
p(ε | σ, ε1, ε2, . . . , εn) p(σ | ε1, ε2, . . . , εn) dσ

=

∫
p(ε | σ) p(σ | S) dσ.



Let’s just use ν and λ to denote the distribution of σ since we are
using the conjugate prior.

∝
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Now note:

(i)

If X has a t distribution with ν degrees of freedom then

X ∼ tν ⇒ f (x) =
Γ(ν+1

2 )

Γ(ν2 )
(1 +

x2

ν
)−

ν+1
2

(ii)

If Y = c X then

fY (y) =
1

c
fX (

y

c
).



Hence
ε/
√
λ ∼ tν , or, ε =

√
λ tν .



An alternative derivation:

ε = σZ , Z ∼ N(0, 1), σ2 =
νλ

χ2
ν

.

so,

ε =
√
λ

Z√
χ2
ν/ν
∼
√
λ tν .



An alternative computation:

Suppose we have p(θ) that we can draw from and p(y | θ) that we
can draw from.

We can always draw from the marginal distribution of Y by
drawing (θ, y) from the joint and then discarding θ.

We can draw from the joint by drawing θ ∼ p(θ) and then
y ∼ p(y | θ).

In this case we draw σ =
√

νλ
χ2

ν
and then ε = σZ , Z ∼ N(0, 1).

You might notice your are drawing a t, or, you might not!
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