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The Unknown µ Model

The model is

Yi = µ+ εi , εi ∼ N(0, σ2), i = 1, 2, . . . , n.

We will assume we know σ and want inference for µ.



The Conjugate Prior

The normal is conjugate:

µ ∼ N(µ̄, τ2).



The Likelihood

p(y1, y2, . . . , yn | µ) ∝ e−
1

2σ2

P
(yi−µ)2

∑
(yi − µ)2 =

∑
(yi − ȳ)2 + n(µ− ȳ)2

L(µ) ∝ e−
n

2σ2 (µ−ȳ)2



The Posterior

L(µ) × p(µ)

∝ e−
n

2σ2 (µ−ȳ)2

× e−
1

2τ2 (µ−µ̄)2

= e−
1
2

(a(µ−ȳ)2+b(µ−µ̄)2)

with

a =
n

σ2
, b =

1

τ2



(a(µ− ȳ)2 + b(µ− µ̄)2)

= (a + b)µ2 − 2µ (a ȳ + b µ̄) + C

where C does not have µ in it.

= (a + b)(µ2 − 2µ (a ȳ+b µ̄)
a+b ) + C

Let

µ̃ =
(a ȳ + b µ̄)

a + b
.



(a(µ− ȳ)2 + b(µ− µ̄)2)

= (a + b)(µ− µ̃)2 + C̃



p(µ | y) ∝ e−
a+b

2
(µ−µ̃)2

µ | y ∼ N(µ̃,
1

a + b
).

with

a =
n

σ2
, b =

1

τ2
, µ̃ =

(a ȳ + b µ̄)

a + b
.



Comments

Note:

You can think of a as the weight given to the data and b as the
weight given to the prior.

As n gets big the data dominates, as τ gets small the prior
dominates.

b is called the prior precision.

The posterior mean is a weighted combination of the sample mean
and the prior mean.



Note:

If you let τ →∞ to get

µ ∼ N(ȳ ,
σ2

n
)

which looks like the frequentist approach.

If you use the “improper prior” p(µ) ∝ 1 you get the above.

This prior is often describe as “ non-informative”.

Don’t do this!



Note:

We often use the posterior mean as our estimate of µ.

This is optimal under squared error loss.

For finite τ we “shrink” the posterior from the sample mean
towards the prior mean, where the amount of shrinkage is
determined by τ .



L(µ) × p(µ)

∝ e−
n

2σ2 (µ−ȳ)2

× e−
1

2τ2 (µ−µ̄)2

If we take the log we get

log(p(µ | y)) = − n

2σ2
(µ− ȳ)2 − 1

2τ2
(µ− µ̄)2

If we set µ̄ = 0, the second term is called a “penalty term” by
data-miners.



Note:

For finite τ , the posterior mean is always a biased estimator.

Good.



Prediction

Let X denote the “next X”.

What is the predictive distribution of X?

Have
X | µ ∼ N(µ, σ2).

µ ∼ N(µ̄, τ2),

where, again, µ̄ and τ could correspond to the prior or posterior
versions.



then

Y = µ+ ε, ε ∼ N(0, σ2)

∼ N(µ̄, σ2 + τ2).
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