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Abstract

Methods based on binary trees play a fundamental role in modern data science. In
this paper we give a very focused review of basic Bayesian approaches to tree mod-
eling. Bayesian approaches have some fundamental advantages. Complex models are
enhanced with meaningful prior specifications and Markov chain Monte Carlo provides
a framework for useful stochastic search of the model space along with some sense of
the uncertainty. Bayesian approaches require a specification of a prior in tree space
and computation of a high and variable dimension posterior. We provide some com-
putational details that are not readily available in the literature. We also review a
few more recent extensions of the of the basic approaches to illustrate the power and
potential of the overall approach.
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1 Introduction

Our problem is to predict a target variable y give the information in a vector of predictor
variables x. Approaches based on trees play a large role in the development of predictive
methodology. The classic CART work ([3]), which uses a single tree, is still a very important
part of our toolkit. Ensemble methods, which use many trees, such as random forests ([2])
and boosting ([8]) have proven remarkably effective. The XGBoost approach to boosting
([4]) is heavily used in applications. In this paper we explore some of the modeling and
computational issues involved in an approach to a Bayesian analysis of tree based models.

The Bayesian approach offers some attractive features. Perhaps most fundamentally
priors can be used to express interesting beliefs about complex models. Computation of
the posterior motivates interesting explorations of the model space and helps us assess our
inferential uncertainty. Multiple Bayesian tree based models may be embedded in larger
models using the standard hierarchical modeling framework.

A Bayesian approach requires us formulate a tree model as a parameter, place a prior
on the parameter, and define a computable likelihood. Section 2 reviews the approach
developed in [6] (hereafter CGM98). Section 3 reviews the Markov chain Monte Carlo
(MCMC) algorithm of CGM98 for computing the posterior. The presentation in this article
spells out some important details not readily discernible from CGM98. These algorithmic
details underlie the implementations in the R packages BART and BayesTree that are both
available on the Comprehensive R Archive Network (CRAN): https://cran.r-project.
org. Section 3 reviews the more recent advances in tree model MCMC due to Pratola ([21]).
These algorithms are used in the R package rbart that is also on CRAN. All three of these
R packages are based on code written in C++ which is then called from R.

Building upon CGM98 and the boosting (in particular [9]), Section 4 reviews the Bayesian
approach to ensemble tree modeling developed in [5] (hereafter CGM10). The model devel-
oped in CGM10 is known as BART for Bayesian Additive Regression Trees. BART is applied
to the classic Boston housing values and air pollution data set in Section 5. Section 6 reviews
the MCMC algorithm for posterior computation.

In Section 7 we review two modeling approaches to illustrate the power of Bayesian tree
modeling beyond the basic development of CGM98 and CGM10. We make no attempt at
a comprehensive review of Bayesian tree models but highlight two examples which we find
compelling. Section 7.1 explores the fundamental issues of sparsity and variable selection.
Section 7.2 develops computational and modeling approaches which dramatically improve
the computational speed of Bayesian approaches making inference with large numbers of
observations and predictors feasible. Note the two papers that use multiple BART models
to address issues in causal inference are [10] and [19]. Section 8 concludes.

2 Bayesian CART

We begin by laying out the structure of a tree model. This follows the general structure of the
usual thing seen in a CART type model but our notation and discussion is targeted towards
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our ultimate goal of a Bayesian analysis. Our Bayesian approach requires a specification of a
prior on tree based model and a Markov chain Monte Carlo (MCMC) algorithm for posterior
computation.

Note that while we first cover the basics of modeling and computation for a model based
on a single tree, (Sections 2 and 3) this methodology underlies the more powerful BART
approach so that a complete understanding of the single tree material is needed to understand
BART (Sections 4 and 6).

2.1 A Single Tree Model

A binary tree consists of a set of internal nodes and a set of terminal nodes. We also call
the terminal nodes bottom nodes. Each internal node has a binary decision rule associated
with it. Internal nodes spawn left and right children, each of which in turn may be internal
nodes with decision rules or terminal nodes. Each terminal node has a parameter associated
with it. We let T denote the tree including the decision rules at the interior nodes. Let
Θ = (θ1, θ2, . . . , θb) denote the set of parameters at the b bottom nodes.

Given a predictor vector x, you “drop it down the tree” using each decision rule to send x
left or right to the left child node or the right child node. When x finally lands in a terminal
node there is a parameter value awaiting it.

Figure 1 depicts a simple example; the rest of this section will discuss this illustration.
The tree has four internal nodes with labels {1, 2, 3, 5} and five terminal nodes with labels
{4, 10, 11, 6, 7}. The left child of node i is labeled 2i and the right child is labeled 2i+ 1.

Each decision rule is based on a single predictor xi. The decision rule in node 1 uses
x2. The form of the decision rule depends on whether xi is numeric or categorical. With
numeric variables, we choose a cutpoint c and then go left if xi ≤ c and right otherwise. The
decision rule in node 2 uses x1 and c = 3. With categorical variables, a decision rule specifies
which categories go left and the rest go right. For example, x2 is categorical with possible
values {A,B,C,D}. The decision rule in node 1 of Figure 1 sends categories {C,D} left and
categories {A,B} right.

It is convenient to have a linear integer index for the bottom node parameters. Our con-
vention is that we number the bottom nodes “left to right”. For example, Θ = (1, 5, 8, 8, 2).
We have θ2 = 5 even though this corresponds to the bottom node with integer label 10. Each
predictor vector x has a corresponding bottom node and we let ζ(x) be the linear index of
the bottom node corresponding to x. So, if x = (x1, x2) = (4, B) then ζ(x) = 4.

2.2 Tree Model Likelihood

The parameter of our model is (T ,Θ). To obtain our likelihood, we start from a parametric
model Y ∼ f(y | θ). The idea is that given (T ,Θ) and x, we drop x down the tree and then
use the θ value in the terminal node x lands in. If we let ζ(x) be the index in Θ of the
terminal node corresponding to x, then

Y | x, (T ,Θ) ∼ f(y | θζ(x)).
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Figure 1: A Bayesian tree.

Given data (yk,xk), k = 1, 2, . . . , n, we can let θk = θζ(xk) so that for y = (y1, y2, . . . , yn)
and x = (x1,x2, . . . ,xn),

f(y | x, (T ,Θ)) =
n∏
k=1

f(yk | θk)

where we assume that the Y k are independent give the {xk}.
It is convenient to let yi = {yk : θk = θi}, the set of y such that x assigns to the ith

terminal node. Then we can write our likelihood by multiplying across terminal nodes,

f(y | x, (T ,Θ)) =
b∏
i=1

f(yi | θi).

Using yi = (yi1, yi2, . . . , yiv, . . . , yini), where ni is the number of observations assigned to the
ith terminal node, we can also write our likelihood for a given terminal node by multiplying
across observations assigned to that node,

f(yi | θi) =

ni∏
v=1

f(yiv | θi),

where we again assume conditional independence.
Three basic examples of such a model are

1. the binary response model θ = p with f(y | p) ∼ Bernoulli(p),
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2. the mean-variance shift model θ = (µ, σ) with f(y | µ, σ) ∼ N(µ, σ2),

3. the mean-shift model θ = µ and f(y | µ, σ) ∼ N(µ, σ2), with a common σ across all
terminal nodes.

These examples are discussed in CGM98.

2.3 Tree Model Prior

To complete our Bayesian approach, we need to specify a prior on the model parameter
(T ,Θ). Fundamental to our prior is the decomposition

p(T ,Θ) = p(T ) p(Θ | T ).

This decomposition greatly facilitates the prior choice. In particular, note that the dimension
of Θ depends on T . Since T captures the partitioning, and Θ captures parameters within
partitions, it seems reasonable to think about T first and then Θ conditional on T .

2.3.1 p(T )

We specify p(T ) be describing the process by which a tree T may be drawn from p(T ).
We start with a tree which consists of a single node. We then recursively grow the tree by
specifying:

� pSPLIT (η, T ): the probability we split terminal node η of tree T so that it gains left
and right node children.

� pRULE(η, T ): a distribution over the decision rules assignable to the current terminal
node η of tree T , should we decide to split it into left and right children.

Given pSPLIT (η, T ) and pRULE(η, T ), we randomly grow the tree, recursively, until we
have decided not to split each bottom node. Each time we split, we assign the rule by drawing
from pRULE(η, T ). We choose pSPLIT (η, T ) and pRULE(η, T ) so that they only depend on the
part of T above the current terminal node η. This ensures that our bottom node splitting
process does not depend on the order in which we consider the bottom nodes for splitting.

We let pSPLIT (η, T ) have the form

pSPLIT (η, T ) =
α

(1 + dη)β
(1)

where dη is the depth of node η in tree T , and hyperparameters are 0 < α < 1 and β > 0.
A single node tree has depth zero. This allows us to express the idea that it gets harder
to split as the tree grows. This plays a crucial role in the BART model where we need
to express a prior preference for smaller trees. In a single tree model, a value of β = 0.5
would be reasonable, while in BART β = 2 is a common default. Interesting alternative
enhancements of these choice for p(T ) have been proposed by [16, 22, 23].
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We now turn to the choice of pRULE(η, T ). Essentially, the basic default choice is uniform,
but taking in account which variables and rules are available given η and T . Recall that a
predictor is considered to be either numeric or categorical.

For a given categorical x and current bottom node η, the set of available categories are
all the categories that have been sent to that bottom node. For example in Figure 1 the
categories {C,D} are available in bottom nodes 4, 10, and 11. A categorical variable is said
to be available in a bottom node if there are at least two categories available in the node.

For a numeric x, a rule is determined by the choice of cutpoint. For each xi, we initially
choose a discrete set of possible cutpoints. Typically we base our choice on the observed
values in the training data. Basic choices would be a set of unique x values or quantiles or a
uniform grid of value between the min and max. At a bottom node η a subset of the possible
splits are available for forming a new rule. For example in Figure 1, you would not consider
split value greater less than or equal to 5 for x1 in terminal node 7, since observations in
that bottom node are already restricted to have x1 > 5. Given our initial set of discrete
cut points, a choice of numeric predictor, and a bottom node, we can determine the set of
available cutpoints. The numeric variable is said to be available if the the set of available
cutpoints is non-empty.

We can now define pRULE(η, T ) by drawing uniformly from the set of available predictors
and then uniformly from the set of available rules given the choice of predictor. The R

package BayesTree uses this prior specification for numeric and categorical predictors and
much of detail in the underlying C++ code is devoted to determining the availability of
variables and rules. The R packages BART and rbart only allow numeric predictors. With
only numeric predictors, a categorical variable must be encoded with dummy variables with
consequences for the implied prior. Note that unlike in the linear model, K dummies are
included for a variable with K categories.

There are many interesting alternative specifications. See for example Section 7.1.
With a discrete set of cutpoints for each numeric variable, T belongs to a large but

discrete set. MCMC steps involving draws of T will be sampling from a discrete parameter
space, and will rely on Metropolis-Hastings proposals (Section 3).

2.3.2 p(Θ | T )

Recall that Θ = (θ1, θ2, . . . , θb) where b is the number of bottom nodes in the tree T . A
simplifying assumption is prior independence across bottom nodes,

p(Θ | T ) =
b∏
i=1

p(θi).

The θ values for the bottom nodes are IID θi ∼ p(θ). With this assumption, we only have
to choose the distribution p(θ).

Our model is (suppressing x)

p(y, T ,Θ) = p(T ) [
b∏
i=1

p(θi)] [
b∏
i=1

p(yi | θi)] = p(T )
b∏
i=1

p(θi) p(yi | θi).
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Basic computations are then simplified by choosing p(y | θ) from a standard family and
p(θ) from the corresponding conjugate prior. For example, in BART, θ is just a normal mean
so that the (conditionally) conjugate prior is just a univariate normal.

3 Tree MCMC

In this section we outline MCMC approaches for drawing from

p(T ,Θ | y) ∝ p(T ) p(Θ | T ) p(y | T ,Θ)

where we have again suppressed x.
Our basic strategy is to integrate out Θ and then use a variety of Metropolis-Hastings

(MH) transitions to propose changes to T .
To integrate out Θ, first note

p(T | y) ∝ p(T ) p(y | T ).

Then p(y | T ) can be computed as

p(y | T ) ∝
∫

p(Θ | T ) p(y | T ,Θ) dΘ

=

∫
[
b∏
i=1

p(θi) p(yi | θi)]dθ1dθ2 . . . dθb

=
b∏
i=1

∫
p(θi) p(yi | θi) dθi

=
b∏
i=1

p(yi).

With the choice of a conjugate prior, each p(yi) is computable in closed form. It is just
the joint predictive density (or probability mass function) for the subset of observations
assigned to bottom node i of the tree T .

This decomposition has important computational benefits. We will draw from p(T | y)
using various MH schemes each of which propose changes to a current tree T . When just
a part of T changes, some individual observations will move from one terminal node to
another. That is, only a subset of the yi will change and only the corresponding subset of
the integrals

∫
p(θi) p(yi | θi) dθi have to be recomputed.

Below, we detail the MH proposals used in CGM98. We will have

� A pair of complementary BIRTH/DEATH moves. In a BIRTH move we propose adding
a rule and pair of children to a terminal node. In DEATH move we propose killing a
pair of children so that their parent become a terminal node.
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� CHANGE Rule move. We propose changing the rule at an interior node.

� SWAP Rule move. We propose swapping the rules for a parent/child pair of interior
nodes.

These moves are used in the R package BayesTree. At each MCMC iteration the
BIRTH/DEATH move is chosen with probability 0.5, the CHANGE Rule move is cho-
sen with probability 0.4, and the SWAP Rule is chosen with probability 0.1. Within a
BIRTH/DEATH move, BIRTH or DEATH are chosen at random with equal probability,
unless one of these moves is not possible (e.g. DEATH for a tree with a single bottom node).
Probabilities of BIRTH, DEATH, CHANGE and SWAP are hard coded into the procedure.

Notably, the R package BART only uses the BIRTH/DEATH move in the marginal T
space and and redraws each θi at each MCMC step and still works remarkably well. This is
because the BART MCMC works much better than then single tree MCMC.

All of our moves construct a proposed Markov transition. Let T0 be the current tree and
T ∗ be the proposed tree which is some modification of T0. We accept the proposal with
Metropolis-Hastings probability

α = min

{
1,
P (T ∗ | y)P (T ∗ → T0)
P (T0 | t)P (T0 → T ∗)

}
(2)

where P (T0 | y) and P (T ∗ | y) are the posterior probabilities of trees T0 and T ∗ respectively.
Thus P (T | y) ∝ p(T ) p(y | T ). P (P → T0) is the probability of proposing T0 while at T ∗,
and P (T0 → T ∗) is the probability of proposing T ∗ while at T0. P (T0 | y) and P (T ∗ | y) will
depend on both the likelihood and our prior, while the transition probabilities depend on
the mechanics of our proposal.

Given T we can easily draw Θ using

p(Θ | T , y) ∝
b∏
i=1

p(yi | θi)p(θi).

Hence, each θi may be drawn independently. With the choice of a standard likelihood and
conjugate prior, methods for making these draws are typically readily available.

Clearly, the fundamental moves are the BIRTH/DEATH moves. These moves allow trees
to grow and shrink in size.

3.1 The BIRTH/DEATH Move

In a BIRTH proposal, a bottom node of the current tree is chosen and we propose to give it
a pair of children. A nog node of a tree is a node which has children, but no grandchildren.
Thus, both children of a nog node are bottom nodes. In a DEATH proposal, we choose a
nog node from the current tree and we propose “killing its children”. In Figure 1 we might
propose a BIRTH at any of the bottom nodes 4,10,11,6, and 7. We could propose a DEATH
move at the two nog nodes 5 and 3.
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We first describe the BIRTH move in detail. Let T0 denote the current tree and T ∗
denote the proposed tree. Thus, T ∗ differs from T0 only in that one of the bottom nodes of
T0 has given birth to a pair of children in T ∗.

First we discuss the likelihood contribution. As noted above,

p(y | T ) =
b∏
i=1

p(yi |T ). (3)

Thus the contribution of the likelihood to the ratio P (T ∗ | y)/P (T0 | y) in (2) is just

p(yl, yr | T ∗)
p(yl, yr | T0)

=
p(yl | T ∗) p(yr | T ∗)

p(yl, yr | T0)
(4)

where yl denotes the observations in the new left child in T ∗, yr denotes the observations in
the new right child in T ∗. All other contributions to the likelihoods cancel out because of
the product form of (3).

As with the likelihood, much of the prior contributions to the posterior ratio cancel out
since the trees differ only at the 2 new bottom nodes and our stochastic tree growing prior
draws tree components independently at different “places” of the tree. Hence the prior
contribution to the P (T ∗ | y)/P (T0 | y) ratio is

(PG) (1− PGl) (1− PGr)P (rule)

(1− PG)
, (5)

where (the following three bullets are from (1)):

� PG: prior probability of growing at chosen bottom node of T0,

� PGl: prior probability of growing at new left child in T ∗,

� PGr: prior probability of growing at new right child in T ∗, and

� P (rule): prior probability of choosing the rule defining the new children in T ∗, given
by pRULE.

We draw the candidate rule for T ∗ by drawing from the prior so that P (rule) is given by
pRULE(η, T0) where η is the bottom node we have randomly chosen for a potential birth.

Finally, the ratio P (T ∗ → T0)/P (T0 → T ∗), is given by

(PD) (Pnog)

(PB) (Pbot)P (rule)
, (6)

where

� PD: probability of choosing the death proposal at tree T ∗.
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� Pnog: probability of choosing the nog node that gets you back T0.

� PB: probability of choosing a birth proposal at T0.

� Pbot: probability of choosing the T0 bottom node such that a birth gets you to T ∗.

� P (rule): probability of drawing the new splitting rule to generate T ∗’s children.

Our proposal draw of the new rule generating the two new bottom nodes is a draw from the
prior. It is in this draw that variable selection (or, perhaps, variable proposal) occurs! Note
that since our proposal for the rule is a draw from the prior, it cancels out in the ratio (2).

The final MH ratio used for BIRTH is

min

{
1,

(PG)(1− PGl)(1− PGr)
(1− PG)

(PD)(Pnog)

(PB)(Pbot)

p(yl | T ∗) p(yr | T ∗)
p(yl, yr | T0)

}
.

The formulas given above correspond exactly to the C++ source code in the R packages
BayesTree and BART.

For a DEATH move, we choose a nog node of T0 and propose killing the two children to
create T ∗. The MH acceptance probability is

min

{
1,

(1− PG)(PB)(Pbot)

(PG)(1− PGl)(1− PGr)(PD)(Pnog)

p(yl, yr | T ∗)
p(yl | T0) p(yr | T0)

}
,

where

� PG: prior probability of spawning children at the proposed new bottom node of T ∗
(nog node of T0).

� PB: probability of a BIRTH move at T ∗.

� Pbot: probability of choosing the the bottom node of T ∗ such that a birth gets you
back to T0.

� PGl: prior probability of adding children at the proposed left child of T0.

� PGr: prior probability of adding children at the proposed right child of T0.

� PD: probability of a DEATH move at T0.

� Pnog: probability the choosing the nog node at T0.
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3.2 CHANGE Rule

The CHANGE Rule move picks an interior node and then modifies the current tree by
changing the decision rule at the chosen node. Our transition P (T0 → T ∗) is made up of
the steps:

1. Draw node η from T0 by drawing uniformly from the set of interior nodes.

2. Draw a rule from pRULE(η, T0).

3. Replace the decision rule at node η of T0 with the rule drawn in the second step to
obtain T ∗.

After we draw T ∗, we check that the resulting tree has nonzero prior probability. For
example, our prior does not allow logically empty bottom nodes since rules are always checked
to be drawn using available variables. If T ∗ is such that p(T ∗) is 0, then we can immediately
reject the move without further computation.

The number of interior nodes in T0 and T ∗ are the same and each interior node of each
tree clearly has available variables (otherwise it could not have a splitting rule). Also recall
that pRULE(η, T ) only depends on the part of T above η in T . Hence we have the property
that P (T0 → T ∗) = P (T ∗ → T0) so that the ratio cancels in the MH acceptance ratio.

α = min

{
1,
p(T ∗) p(y | T ∗)
p(T0) p(y | T0)

}
.

To compute p(y | T ) for either of T0 or T ∗, we only have to consider observations in bottom
nodes below η since the contributions for other bottom nodes will cancel.

3.3 SWAP Rule

In the SWAP Rule step, we randomly pick a parent-child pair that are both internal nodes.
We then swap their splitting rules. If both children have the identical rule, we swap the
splitting rule of the parent with both children.

Similar to the CHANGE Rule proposal, a key observation is that the proposal step for
SWAP is symmetric. The general expresssion of the MH acceptance probability is as in (2).
For SWAP, the proposal distributions P (T0 → T ∗) and P (T ∗ → T0) will cancel in (2). Only
the likelihood and prior terms need to be calculated.

The proposal for SWAP is a draw (with equal probability) from the list of interior nodes
having at least one child that is nonterminal. This list constitutes the parents of the swap.
For each parent there will be at least one child with a rule that could be swapped with the
parent. Once a parent is chosen, the 2 children are inspected. If only 1 child is nonterminal,
that child will be the one chosen for the SWAP. If both children are nonterminal and they
have different rules, then 1 of the 2 children will be chosen (with equal probability) for the
swap. If both children have identical rules, then the parent rule and the child rules are
swapped, and both children get the parent rule.
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Once the proposal has chosen a parent-child pair to swap, the rules are swapped and
the resulting tree checked to determine if the swap produces any necessarily empty terminal
nodes. If there are necessarily empty terminal nodes, this corresponds to a proposed tree T ∗

with prior probability 0 and thus the MH step will not accept. This check can be carried
out without referring to the data, since only the rules of T0 and T ∗ need to be checked.

Assuming that the proposal does not have 0 prior probability, then the prior probabilities
for T ∗ and T0 are calculated for the entire trees. Although there is cancellation in the ratio
of prior terms for parts of the tree that do not change, the prior computation is relatively
quick and so is simply carried out for the full trees.

The calculation of likelihood for T ∗ requires re-assignment of data among all bottom
nodes that are below the parent. The likelihoods can be calculated for subsets of T ∗ and T0,
for all bottom nodes below the parent of the proposal. The 2 likelihood values and 2 prior
values are sufficient to evaluate α in (2).

If the SWAP proposal is not accepted, then the tree is restored to T0. If the proposal is
accepted, the change to the tree has already been made (to allow computation of prior and
likelihood at T ∗).

3.4 Improved Tree Space Moves

As is well known, the proposal distribution is a key user-specified parameterization of the
Metropolis-Hastings MCMC algorithm that has a large effect on how well, and how efficient,
MH sampling can be performed. In the best case scenario, draws from the true posterior
are directly available giving an acceptance ratio of 1. In practice, a distribution that is
simple to draw from is used as the proposal. This leads to an algorithm that is practically
implementable, but uses a proposal having only moderate accuracy (often only locally) to
the true posterior, leading to many rejected (i.e. wasted) samples and slower convergence.
Nonetheless, the practical usefulness of MH has lead to its widespread adoption.

The situation becomes more challenging in the modern setting where one is interested
in performing Bayesian inference for complex, high-dimensional models. In CGM98 and
CGM10, a pragmatic approach for the case of Bayesian regression trees (a complex, high-
dimensional model) was taken by designing the proposals described above that explore tree-
space by incrementally making the model just slightly more or less complex (via BIRTH or
DEATH at a single terminal or nog node respectively) or just slightly adjusting an existing
tree’s ruleset (via CHANGE or SWAP at a single node or pair of nodes respectively). How-
ever, in some settings, it has been recognized that this proposal distribution may lead to
slow convergence and/or inaccurate sampling – an issue of eminent practical relevance even
if required properties for the asymptotic convergence of MH sampling are satisfied.

Good alternatives to the CGM98 algorithm are not neccesarily obvious since one would
like to retain the simplicity, locality and efficiency of the algorithm. Recent work has pro-
vided some alternatives and refinements at moderate increases in computational cost when a
problem demands more effective sampling of the posterior. [21] introduces a new ROTATE
proposal, defines a PERTURB proposal as a refined version of CHANGE, and also revises
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the basic MCMC loop, as described in Algorithm 1 below. Algorithm 1 is for the mean-shift
model, which will be a building block for BART in Section 4.

Algorithm 1 Updated Bayesian CART MCMC Algorithm
procedure Bayesian CART-Iteration(y,X,num trees)
output An approximate draw from the tree posterior

Draw T |σ2,y via BIRTH, DEATH or ROTATE at one random eligible internal node
Set num internal = number of internal nodes of tree T
Set num terminal = number of terminal nodes of tree T
for j in 1 to num internal do

Draw rule (vj , cj)|T , σ2,y via PERTURB

for j in 1 to num terminal do
Draw µj |T ,y via Gibbs

Draw σ2|T ,Θ,y via Gibbs
return

3.4.1 Rotate

Like SWAP, ROTATE maps the existing internal structure of a tree into a plausible alter-
native (i.e. one that could have been generated by a longer sequence of BIRTH/DEATH
proposals). But while SWAP only considers 1 or 2 possible alternatives, ROTATE generates
a larger (stochastic) set of possible transitions. Unlike SWAP, ROTATE also considers the
descendants of the ROTATE node in forming the possible transitions, and the further up
(down) the tree, the more (less) possible ROTATE transitions there are. If one thinks of
BIRTH/DEATH as the simplest possible ‘rearrangement’ of a tree, ROTATE can then be
thought of as generalizing the ideas of SWAP, BIRTH and DEATH in an elegant way to
arbitrary internal locations of a tree. For instance, while BIRTH/DEATH involves the like-
lihood contributions for yl, yr, ROTATE involves the likelihood contributions for the data
involved in the left/right subtrees of the ROTATE proposal, say yTl , yTr . Heuristically then,
ROTATE is a less local proposal than BIRTH/DEATH and more diverse than SWAP, but not
so global nor so diverse as to be too inefficient. Finally, ROTATE is its own inverse, making
application of this algorithmically-generated proposal distribution practically tangible.

3.4.2 Perturb

Similar to CHANGE, PERTURB aims to update the rules in an existing tree. This is
done in two ways: updating the cutpoints, or updating the (variable,cutpoint) pairs. Note
that PETURB is applied to all nodes in a tree, leading to more efficient exploration of this
aspect of the posterior distribution. This is made possible by more efficient generation of
cutpoint proposals, which are conditioned on both the ancestral and descendant parts of
the tree for the node being updated. Similarly, variable proposals are made more efficient
by using a preconditioned proposal distribution; [21] suggest using a correlation metric such
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as Spearman rank correlation to form the preconditioned transition matrix, although other
choices are possible. Note also that both variants of PETURB can simultaneously update
all internal nodes that are at the same tree depth, thereby exploiting parallelism to make
such computations more efficient.

3.4.3 The Complex Mixtures that are Tree Proposals

Modifying the individual proposals as described above only goes part of the way to amelio-
rating Bayesian Tree MCMC algorithms. Part of the tale is in how smartly these propoals
are used. Recall that for BIRTH/DEATH, the particular proposal selected from either of
these choices is determined by the flip of an equally weighted coin. And the corresponding
terminal or nog node selected for the chosen move is also randomly drawn with equal weight.
But why not prefer a BIRTH in shallower parts of tree-space, or a DEATH in deeper parts
of tree space? Similarly, in the BIRTH/DEATH/ROTATE mixture, should these be equally
weighted or should one proposal be preferred depending on the state of the tree? Such issues
are very much non-trivial, and would lead away from the simple, pragmatic, proposal distri-
butions that have seen so much success. One alternative is to leverage parallel computation
to explore a large set of possible transitions to avoid devising a clever strategy to determine
what the mixture ought to be at any given iteration of the algorithm. Such is the strategy
of [20], who use the BD-MCMC algorithm to select amongst all possible BIRTH/DEATH
moves (or BIRTH/DEATH/ROTATE moves) at a rate that is proportional to their posterior
probability rather than the default (weighted) mixture. While this increases the number of
required computations needed at each step of the MCMC, such computations can be largely
hidden via effective parallelization, resulting in more efficient sampling of the posterior per
unit time.

4 The BART Model

BART (Bayesian Additive Regression Trees, CGM10) builds on the Bayesian analysis of a
single tree to consider an ensemble of trees. BART is inspired by Friedman’s work ([9]) on
boosting but uses the power of the Bayesian machinery.

To transition from the single tree development of Section 2, we start with a single tree
but let θ = µ be a single mean parameter. Rather than using Θ to denote the collection
of bottom node parameters, we will switch notation to M = (µ1, µ2, . . . , µb), a collection of
mean parameters for the bottom nodes.

We then define the function g(x; T ,M) to be µζ(x) where ζ is as in Section 2. That
is, we drop x down the tree T until it lands in a bottom node and finds a µi awaiting it,
which is then the value of g. Clearly g looks like a step function corresponding to the classic
regression tree of classic CART.

We can turn a single tree model indexed by parameter (T ,M) into a probability model
with a likelihood by adding an error term,

Y = g(x; T ,M) + ε, ε ∼ N(0, σ2).
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BART follows Friedman (and more generally the boosting literature) by replacing the
single tree mean model g(x; T ,M) with a sum of m trees f(x) =

∑m
j=1 g(x; Tj,Mj).

Y = f(x) + ε, ε ∼ N (0, σ2) where f
prior∼ BART. (7)

As in Section 2, each Tj is a recursive binary regression tree. Mj contains the terminal
node constants µij, for which g(x; Tj,Mj) is the step function which assigns µij ∈ Mj to x
according to the sequence of splitting rules in Tj.

For each value of x, under (7), E(Y | x) is equal to the sum of all the terminal node
µij’s assigned to x by the g(x; Tj,Mj)’s. Thus, the sum-of-trees function is flexibly capable
of approximating a wide class of functions from Rn to R, especially when the number of
trees m is large. Note also that the sum-of-trees representation is simply the sum of many
simple multidimensional step functions from Rn to R, namely the g(x; Tj,Mj), rendering
it much more manageable than basis expansions with more complicated elements such as
multidimensional wavelets or multidimensional splines.

The BART model specification is completed by introducing a prior distribution over all
the parameters of the sum-of-trees model, namely (T1,M1), . . . , (Tm,Mm) and σ. Note that
(T1,M1), . . . , (Tm,Mm) entail all the bottom node parameters as well as the tree structures
and splitting rules, a very large number of parameters, especially when m is large. To cope
with this parameter explosion, we use a “regularization” prior that effectively constrains the
fit by keeping each of the individual tree effects from being unduly influential. Without such
a regularizing influence, large tree components would overwhelm the rich structure of (7),
thereby limiting its scope of fine structure approximation.

4.1 Specification of the BART Regularization Prior

To simplify the specification of this regularization prior, we restrict attention to symmetric
independence priors of the form

p((T1,M1), . . . , (Tm,Mm), σ) =

[∏
j

(∏
i

p(µij | Tj)

)
p(Tj)

]
p(σ), (8)

where µij ∈ Mj, thereby reducing prior specification to the choice of prior forms for
p(Tj), p(µij | Tj) and p(σ). To simplify matters further we use identical prior forms for every
p(Tj) and for every p(µij | Tj). As detailed below, each of these prior forms are controlled by
just a few interpretable hyperparameters that can be calibrated to yield surprisingly effective
default specifications for regularization of the sum-of-trees model.

For p(Tj), we use the prior developed in Section 2. Note however that the values for
α and β are typically very different in BART. In BART we often use α = .95 and β = 2
whereas with a single tree we use a much smaller β. This expresses the idea that we do not
expect the individual trees to be large.

For p(µij | Tj), we use the conjugate normal distribution N (µµ, σ
2
µ) which allows µij to

be marginalized out as in Section 3, vastly simplifying MCMC posterior calculations. To
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guide the specification of the hyperparameters µµ and σµ, we note that under (7), it is
highly probable that E(Y | x) lies between ymin and ymax, the minimum and maximum
of the observed values of Y in the data, and that the prior distribution of E(Y | x) is
N (mµµ,mσ2

µ), (because E(Y | x) is the sum of m independent µij’s under the sum-of-trees
model). Based on these facts, we use the informal empirical Bayes strategy of choosing µµ
and σµ so that N (mµµ,mσ2

µ) assigns substantial probability to the interval (ymin, ymax).
This is conveniently done by choosing µµ and σµ so that mµµ − k

√
mσµ = ymin and

mµµ +k
√
mσµ = ymax for some preselected value of k such as 1, 2 or 3. For example, k = 2

would yield a 95% prior probability that E(Y | x) is in the interval (ymin, ymax). The goal of
this specification strategy for µµ and σµ is to ensure that the implicit prior for E(Y |x) is in
the right “ballpark” in the sense of assigning substantial probability to the entire region of
plausible values of E(Y |x) while avoiding overconcentration and overdispersion of the prior
with respect to the likelihood. As long as this goal is met, BART seems to be very robust
to variations of these specifications.

For p(σ), we also use a conjugate prior, here the inverse chi-square distribution σ2 ∼
ν λ/χ2

ν . Here again, we use an informal empirical Bayes approach to guide the specification of
the hyperparameters ν and λ, in this case to assign substantial probability to the entire region
of plausible values of σ while avoiding overconcentration and overdispersion of the prior.
Essentially, we calibrate the prior df ν and scale λ with a “rough data-based overestimate”
σ̂ of σ. Two natural choices for σ̂ are (i) a “naive” specification, the sample standard
deviation of Y , or (ii) a “linear model” specification, the residual standard deviation from a
least squares linear regression of Y on all the predictors. We then pick a value of ν between
3 and 10 to get an appropriate shape, and a value of λ so that the qth quantile of the prior
on σ is located at σ̂, that is P (σ < σ̂) = q. We consider large values of q such as 0.75, 0.90
or 0.99 to center the distribution below σ̂.

5 BART Example: Boston housing values and air pol-

lution

Here, we demonstrate BART with the classic Boston housing example [12]. This data is
based on the 1970 US Census where each observation represents a Census tract in the
Boston Standard Metropolitan Statistical Area. For each tract, there was a localized air
pollution estimate, the concentration of nitrogen oxides, nox, based on a meteorological
model that was calibrated to monitoring data. Restricted to tracts with owner-occupied
homes, there are N = 506 observations. We’ll predict the median value of owner-occupied
homes (in thousands of dollars), mdev, by thirteen covariates including nox which is our
primary interest.

However, BART does not directly provide a summary of the effect of a single covariate,
or a subset of covariates, on the outcome. Friedman’s partial dependence function [9] can
be employed with BART to summarize the marginal effect due to a subset of the covariates,
xS, by aggregating over the complement covariates, xC , i.e., x = [xS,xC ]. The marginal
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dependence function is defined by fixing xS while aggregating over the observed settings of
the complement covariates in the data set: f(xS) = N−1

∑N
i=1 f(xS,xiC). For example,

suppose that we want to summarize mdev by nox while aggregating over the other twelve
covariates in the Boston housing data. In Figure 2, we demonstrate the marginal estimate
and its 95% credible interval: notice that BART has discerned a complex non-linear rela-
tionship between mdev and nox from the data. N.B. this example including data and source
code can be found in the BART R package [24] as the nox.R demonstration program.

6 BART MCMC

Combining the regularization prior with the likelihood, L((T1,M1), . . . , (Tm,Mm), σ | y) in-
duces a posterior distribution

p((T1,M1), . . . , (Tm,Mm), σ | y) (9)

over the full sum-of-trees model parameter space. Here y is the observed n × 1 vector of
Y values in the data which are assumed to be independently realized. Note also that here
and below we suppress explicit dependence on x as we assume x to be fixed throughout.
Although analytically intractable, the following backfitting MCMC algorithm can be used
to very effectively simulate samples from this posterior.

This algorithm is a Gibbs sampler at the outer level. Let T(j) be the set of all trees in the
sum except Tj, and similarly define M(j), so that T(j) will be a set of m− 1 trees, and M(j)

the associated terminal node parameters. A Gibbs sampling strategy for sampling from (9)
is obtained by m successive draws of (Tj,Mj) conditionally on (T(j),M(j), σ):

(Tj,Mj) | T(j),M(j), σ, y, (10)

j = 1, . . . ,m, followed by a draw of σ from the full conditional:

σ | T1, . . . Tm,M1, . . . ,Mm, y. (11)

The draw of σ in (11) is simply a draw from an inverse gamma distribution, which can be
straightforwardly obtained by routine methods. More subtle is the implementation of the m
draws of (Tj,Mj) in (10). This can be done by taking advantage of the following simplifying
reduction. First, observe that the conditional distribution p(Tj,Mj |T(j),M(j), σ, y) depends
on (T(j),M(j), y) only through Rj = (rj1, . . . , rjn)′, the n× 1 vector of partial residuals

rji ≡ yi −
∑
k 6=j

g(xi;Tk,Mk), (12)

obtained from a fit that excludes the jth tree. Thus, the m draws of (Tj,Mj) given
(T(j),M(j), σ, y) in (10) are equivalent to m draws from

(Tj,Mj) | σ,Rj, (13)
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Figure 2: The Boston housing data was compiled from the 1970 US Census where each
observation represents a Census tract in Boston with owner-occupied homes. For each tract,
we have the median value of owner-occupied homes (in thousands of dollars), mdev, and
thirteen other covariates including a localized air pollution estimate, the concentration of
nitrogen oxides nox, which is our primary interest. We summarize the marginal effect of
nox on mdev while aggregating over the other covariates with Friedman’s partial dependence
function. The marginal estimate and its 95% credible interval are shown. The red line with
short dashes comes from the linear regression model of [12] where a quadratic effect of nox
with respect to the logarithm of mdev is assumed.

17



j = 1, . . . ,m. Each of these draws is then done using the methods along the lines of those
discussed in Section 3. We margin outMj and then use MH proposals to modify Tj. Given
Tj we can draw Mj.

The R package BayesTree uses all MH tree proposals in CGM98 and Section 3 for BART
estimation. The R package BART just uses the BIRTH/DEATH step and redraws all the
µij at each MCMC iteration. This very simple approach works remarkably well in practice.
The R package rbart implements BART (and a heteroskedastic version) using the more
sophisticated tree moves of Section 3.4.

We initialize the chain with m simple single node trees, and then repeat iterations until
satisfactory convergence is obtained. Fortunately, this backfitting MCMC algorithm appears
to mix very well, as we have found that different restarts give remarkably similar results even
in difficult problems. At each iteration, each tree may increase or decrease the number of
terminal nodes by one, or change one or two splitting rules. The sum-of-trees model, with
its abundance of unidentified parameters, allows the “fit” to glide freely from one tree to
another. Because each move makes only small incremental changes to the fit, we can imagine
the algorithm as analogous to sculpting a complex figure by adding and subtracting small
dabs of clay.

For inference based on our MCMC sample, we rely on the fact our backfitting algorithm
is ergodic. Thus, the induced sequence of sum-of-trees functions

f ∗(·) =
m∑
j=1

g(· ; T ∗j ,M∗
j), (14)

from the sequence of draws (T ∗1 ,M∗
1), . . . , (T ∗m,M∗

m), is converging to p(f | y), the posterior
distribution of the “true” f(·). Thus, by running the algorithm long enough after a suitable
burn-in period, the sequence of f ∗ draws, say f ∗1 , . . . , f

∗
K , may be regarded as an approximate,

dependent sample of size K from p(f |y). Bayesian inferential quantities of interest can then
be approximated with this sample as follows.

To estimate f(x) or predict Y at a particular x, in-sample or out-of-sample, a natural
choice is the average of the after burn-in sample f ∗1 , . . . , f

∗
K ,

1

K

K∑
k=1

f ∗k (x), (15)

which approximates the posterior mean E(f(x) | y). Posterior uncertainty about f(x) may
be gauged by the variation of f ∗1 (x), . . . , f ∗K(x). For example, a natural and convenient
(1−α)% posterior interval for f(x) is obtained as the interval between the upper and lower
α/2 quantiles of f ∗1 (x), . . . , f ∗K(x).

7 BART Extentions

In this section we mention some BART extensions. The Bayesian formulation and corre-
sponding MCMC approaches provide a rich environment for model and algorithm enhance-

18



ment. We do not attempt to survey developments in Bayesian trees, but point to two very
powerful examples of extending or modifying the BART approach. In Section 7.1, the BART
prior is modified to enhance search for models that use a small number of predictors. In
Section 7.2 the computational and modeling approach is extensively modified to enable a
“BART like” inference for which is much faster and can handle much larger data sets.

7.1 The DART sparsity prior

Various Bayesian variable selection techniques applicable to BART have been studied [5, 7, 1,
11, 18, 16, 17]. Here we focus on the sparse variable selection prior of Linero [16] for which we
use the acronym DART (where “D” stands for the Dirichlet distribution). Let’s represent the
variable selection probabilities by sj where j = 1, . . . , P . Now, replace the uniform variable

selection prior in BART with a Dirichlet prior as [s1, . . . , sP ] | θ prior∼ D (θ/P, . . . , θ/P ). The

prior for θ is induced via θ/(θ + ρ)
prior∼ Beta (a, b). Typical settings are b = 1 and ρ = P .

The distribution of θ controls the sparsity of the model: a = 0.5 induces a sparse posture
while a = 1 is not sparse and similar to the uniform prior with probability sj = P−1. If
additional sparsity is desired, then you can set ρ to a value smaller than P .

The key to understanding the inducement of sparsity is the distribution of the arguments
to the Dirichlet prior: θ/P . It can be shown that θ/P ∼ F (a, b, ρ/P ) where F (.) is the
beta prime distribution scaled by ρ/P [15]. The non-sparse setting is (a, b, ρ/P ) = (1, 1, 1).
As you can see in the Figure 3 [24], sparsity is promoted by reducing ρ, reducing a, or even
further by reducing both.

Now, let’s turn our attention to the posterior computation of the Dirichlet sparse prior.
For a Dirichlet prior placed on the variable splitting probabilities, s, its posterior samples
are drawn via Gibbs sampling with conjugate Dirichlet draws. The Dirichlet parameter
is updated by adding the total variable branch count over the ensemble, mj, to the prior
setting, θ

P
, i.e.,

[
θ
P

+m1, . . . ,
θ
P

+mP

]
. In this way, the Dirichlet prior induces a “rich get

richer” variable selection strategy. The sparsity parameter, θ, is drawn on a discrete grid of
values [16]: this draw only depends on [s1, . . . , sP ].

7.1.1 Grouped variables and the DART prior

Here we take the opportunity to address a common pitfall of a Dirichlet prior for variable
selection with a so-called grouped variable. Suppose that we have P variables, but Q of the
covariates correspond to a grouped variable such as a series of dummy indicators encoded
for a single categorical variable (suppose that these are the first Q variables without loss
of generality): x1, . . . , xQ. N.B. Obviously, these developments apply to multiple grouped
variables; however, for brevity, a single grouped variable will suffice to elucidate the problem
and a solution. We denote the variable selection probabilities for all covariates as s =
[s1, . . . , sP ]. There are two other probabilities of interest: the collapsed probabilities, p =
[s1 + · · ·+ sQ, sQ+1, . . . , sP ] and the re-scaled probabilities q = [s̃1, . . . , s̃Q] where s̃j ∝ sj
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Figure 3: The distribution of θ/P and the sparse Dirichlet prior [24]. The key to understand-
ing the inducement of sparsity is the distribution of the arguments to the Dirichlet prior:
θ/P ∼ F (a, b, ρ/P ) where F (.) is the beta prime distribution scaled by ρ/P . Here we
plot the natural logarithm of the scaled beta prime density, f(.), at a non-sparse setting and
three sparse settings. The non-sparse setting is (a, b, ρ/P ) = (1, 1, 1) (solid black line). As
you can see in the figure, sparsity is promoted by reducing ρ (long dashed red line), reducing
a (short dashed blue line), or even further by reducing both (mixed dashed gray line).
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such that
∑Q

j=1 s̃j = 1. If we blindly use Dirichlet variable selection probabilities on data
such as this, then we arrive at the following.

s|θ prior∼ DP (θ/P, . . . , θ/P )

where the subscript P is the order of the Dirichlet

p|θ prior∼ DP̃ (Qθ/P, θ/P, . . . , θ/P )

where P̃ = P −Q+ 1

q|θ prior∼ DQ (θ/P, . . . , θ/P )

The distribution of p1, the first element of p, puts more prior weight on the grouped
variable than the others. And now, the solution to the problem is trivial: re-scale q by Q−1

while naturally re-defining p and s as follows.

p|θ prior∼ DP̃

(
θ/P̃ , . . . , θ/P̃

)
q|θ prior∼ DQ

(
Q−1θ/P̃ , . . . , Q−1θ/P̃

)
s|θ prior∼ DP

(
Q−1θ/P̃ , . . . , Q−1θ/P̃ , θ/P̃ , . . . , θ/P̃

)
prior∼ DP ((q|θ), (p|θ))

7.2 XBART

Markov chain algorithms based on independent local modifications to individual trees, or
even just nodes of trees, are potentially slow to explore the immense space of binary trees. In
some respects, it is remarkable that randomly selecting a variable to split on and a cut-point
to split at work as well as it does! Greedy procedures based on recursive partitioning and
exhaustive search, like those used in CART, may be able to more rapidly converge to local
modes, especially when sample sizes are large and deep trees are required to approximate
the response surface. However, optimization-based procedures produce a single output even
when quite different trees fit the data essentially equally well. The XBART algorithm (for
“Xcellerated”, or “accelerated”, BART) is a hybrid approach, which borrows elements of
recursive partitioning by exhaustive search with elements of stochastic likelihood-weighted
posterior sampling. The result is a stationary Markov chain that can be used to define its
own estimator of the response surface, or draws from which can be used to initialize BART
MCMC algorithms, reducing burn-in time. This section describes the XBART algorithm,
with a special focus on the computational innovations this hybrid approach facilitates. For
theoretical discussion and extensive simulation evidence, see [14] and [13].
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7.2.1 The XBART algorithm and GrowFromRoot

At a high level, the XBART algorithm proceeds according to a series of iterative parameter
updates, much like the original BART Gibbs sampler. Indeed, the sampling steps for σ
and the leaf parameters µ are exactly the same as the full conditional updates from BART
back-fitting. Likewise, XBART’s tree updates are based on the residualized response, given
the other trees in the collection and their parameters. Where XBART differs is that indi-
vidual trees are re-grown anew at each update, rather than being modified incrementally.
That is, rather than making a single transition to each tree, the current tree is deleted and
regrown in full according to a recursive, but stochastic, growing process (individual branches
stop growing stochastically). The main algorithm is presented in 2; the key subroutine,
GrowFromRoot, is shown in 3. Although samples from this algorithm do not constitute
draws from a bona fide Bayesian posterior, Monte Carlo averages may still be computed to
define various estimators, specifically, predictions for new observations.

Algorithm 2 Accelerated Bayesian Additive Regression Trees (XBART)

procedure XBART(y,X, C, L, num samples)
output Samples of forest

p← number of columns of X
N ← number of rows of X
Initialize r

(0)
l ← y/L.

for k in 1 to num samples do
for l in 1 to L do

Calculate partial residual r
(k)
l as shown in CGM10.

if k < I then
GrowFromRoot(r

(k)
l ,X)

else
GrowFromRoot(r

(k)
l ,X)

σ2 ∼ Inverse-Gamma(N + α, r
(k)t
l r

(k)
l + η)

return

The GrowFromRoot subroutine can be conceptualized as a sequence of draws from the
posterior of “local Bayesian agents”. At each node of the tree, the local Bayesian agent
who “lives” at that node is given the data from the node above and updates her prior over
a finite set of parameters, corresponding to partitions of the data. The likelihood used by
these agents is the same as that from the BART model, but the local parameter set consists
only of the available local partitions, irrespective of the previous or subsequent structure of
the tree. Accordingly, the “local posterior” at each node is computed as a simple application
of Bayes rule to a discrete parameter set. All available divisions are considered at each step,
making the XBART algorithm comparatively fast at isolating partitions that are strongly
indicated by the data. Formally, each local agent is tasked with partitioning the data into
two parts (or leave it unpartitioned). Observations in the same partition are assumed to
have the same, unknown, location parameter; therefore, the prior predictive distribution
— obtained by integrating out the partition-specific mean — is a mean-zero multivariate
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Algorithm 3 GrowFromRoot
procedure GrowFromRoot(r, X) . Fit a tree to response vector r with predictors X.
output A tree Tl.

N ← number of rows of r,X
p← number of columms of r,X
Evaluate expression 16 for C evenly spaced cut-points for each of p predictors.
Sample a cut-point with probabilities given in expression 17.
if sample no-split option then

Sample leaf parameter according to µ ∼ N
(∑

r/
[
σ2
(
1
τ + N

σ2

)]
, 1/

[
1
τ + N

σ2

])
. return

else
Partition data according to the selected cut-point.
GrowFromRoot(yleft,Xleft)
GrowFromRoot(yright,Xright)

normal distribution with covariance

V = τJJt + σ2I,

where τ is the prior variance of the leaf-specific mean parameter, σ2 is the variance of
the additive error, and J is a column vector of all ones. The prior predictive density of
y ∼ N (0,V) is

p(y | τ, σ2) = (2π)−n/2 det(V)−1/2 exp

(
−1

2
ytV−1y

)
,

which can be simplified, using the matrix inversion lemma, to:

V−1 = σ−2I− τ

σ2(σ2 + τn)
JJt.

Sylvester’s determinant theorem applied to det V−1 yields a log-predictive likelihood of

−n
2

log (2π)− n log (σ) +
1

2
log

(
σ2

σ2 + τn

)
− 1

2

yty

σ2
+

1

2

τ

σ2(σ2 + τn)
s2,

where s ≡ ytJ =
∑

i yi so that ytJJty = (
∑

i yi)
2 = s2. Considering both partitions,

b ∈ {left, right}, gives a combined log-predictive likelihood of∑
b

{
−nb

2
log (2π)− nb log (σ) +

1

2
log

(
σ2

σ2 + τnb

)
− 1

2

ytbyb
σ2

+
1

2

τ

σ2(σ2 + τnb)
s2b

}
= −n log (2π)− n log (σ)− 1

2

yty

σ2

+
1

2

∑
b

{
log

(
σ2

σ2 + τnb

)
+

τ

σ2(σ2 + τnb)
s2b

}
.
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The first three terms are not functions of the partition yielding a “local likelihood” propor-
tional to ∑

b

{
log

(
σ2

σ2 + τnb

)
+

τ

σ2(σ2 + τnb)
s2b

}
, (16)

where nb and sb are functions of the partition (which is defined by the cut-point). These for-
mulae have been written in terms of data y to emphasize the “local” interpretation/justification
of the model. In the implementation, however, the data are the partial residuals.

Selection of a variable to split on, and a cut-point to split at, are then sample according
to Bayes rule:

π(v, c) =
exp (`(c, v))κ(c)∑p

v′=1

∑C
c′=0 exp (`(c′, v′))κ(c′)

(17)

where

`(v, c) =
1

2

{
log

(
σ2

σ2 + τn(≤, v, c)

)
+

τ

σ2(σ2 + τn(≤, v, c))
s(≤, v, c)2

}
+

1

2

{
log

(
σ2

σ2 + τn(>, v, c)

)
+

τ

σ2(σ2 + τn(>, v, c))
s(>, v, c)2

}
for c 6= 0. The partition size is denoted n(≤, v, c), which is the number of observations such

that xv ≤ c; similarly, s(≤, v, c) is the sum of the residual r
(k)
l of those same observations.

The complement quantities, n(>, v, c) and s(>, v, c), are defined analogously. A uniform
prior is applied to the cut-points so that, κ(c 6= 0) = 1.

Stochastic termination of the growing process is achieved by including a “no split” option
in the local agents’ parameter sets, effectively corresponding to a cut location that lies outside
of the range of the data. The prior on this parameter can be chosen such that the XBART
prior predictive (the algorithm applied to no data) corresponds to the usual BART prior
predictive. Formally, for c = 0, which corresponds to no split,

`(v, c) =
1

2

{
log

(
σ2

σ2 + τn

)
+

τ

σ2(σ2 + τn)
s2
}

and κ(0) = 1−α(1+d)−β
α(1+d)−β

. With this weight, the probability of splitting is the complement set
of not splitting:

pSPLIT = 1− |C|(α−1(1 + d)β − 1)

|C|(α−1(1 + d)β − 1) + |C|
= α(1 + d)−β,

just as in the original BART prior.

Relative to BART MCMC samplers, XBART has higher per-iteration cost because it
must evaluate the likelihood at |C| points at each node during GrowFromRoot. The benefits
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of this higher cost are (usually) improved posterior exploration leading to dramatically fewer
required iterations. Still, any improvement to the per iteration computational burden are
beneficial and the recursive structure of XBART permits a number of helpful improvements.

Two particular innovations deserve to be highlighted: pre-sorting the predictor variables
and using cut point values based on local quantiles (as opposed to using all valid cut points
at each node).

Pre-sorting predictor variables Because the BART marginal likelihood depends only on par-
tition sums, the sufficient statistics for all cut points at a given node can be calculated with a
single pass through the data at each variable by computing a cumulative sum, provided that
the response values (in the form of the partial residual) are accessible in sorted order (for
each predictor). More formally, define the cumulative sums in terms of a matrix of indices,
O, with elements ovh denoting the index of the hth largest observation of the xthv variable in
the original data matrix. In terms of O, the partition sums can be expressed as

s(≤, v, c) =
∑
h≤c

rovh (18)

and

s(>, v, c) =
n∑
h=1

rlh − s(≤, v, c). (19)

where r denotes the vector of partial residuals from the other trees. These sums are the in-
puts to the GrowFromRoot split criterion. To perform a similar operation at the subsequent
node, the variable sorting must be maintained; fortunately this can be achieved efficiently by
“sifting” the variables. After a variable v and cut point c are drawn, the algorithm partitions
O into two matrices O≤ and O> which are populated sequentially by evaluating each element
of O in turn and sending it to the next element of either O≤ and O>, according to whether
the corresponding element has xj ≤ c or not. By populating each row of O≤ and O> by se-
quentially scanning the rows of O, the ordering is preserved for the next step of the recursion.

Adaptive nested cut points The discrete Bayes rule calculation at the heart of the stochastic
GrowFromRoot procedure is computationally intensive when sample sizes are large (especially
at early stages of the growing process, such as the split at the root), because each data point
defines a valid cutting location. In some measure, this is why the BART MCMC imple-
mentations favor a pre-defined grid of candidate cut locations (perhaps based on marginal
quantiles or a uniform grid). The recursive nature of the GrowFromRoot algorithm permits
an “adaptive” alternative, where a non-exhaustive set of quantiles can be considered at each
node, where the quantiles are computed relative to the available data at the present node.
Conveniently, these quantiles need never be computed explicitly; instead, one simply evalu-
ates the likelihood at “strides” by skipping a fixed number of observations (in sorted order)
when calculating the marginal likelihood split criterion. All of the cumulative sums must
still be computed, but the sampling is performed among a much smaller subset of cut points,
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saving significant computational effort on both the likelihood evaluations as well as the ran-
dom variable generation. This approach does not reduce the expressivity of the model, as
any cut point can eventually be selected, just perhaps further down the tree.

Thus there is a trade-off between coarser/sparser cut point candidates and eventual tree
depth. In practice, using tens or hundreds of cut points (rather than thousands or more)
seems to gives good performance. Intuitively, the adaptive cut point strategy will work well
when there are large regions of covariate space where the function is relatively flat and others
where it is comparatively variable. Coarser cut point sets permit rapid identification of the
flat regions, while simultaneously growing deeper trees in regions of high response surface
variation. A function which oscillates rapidly uniformly over the predictor space may be
more efficiently fit with a denser set of candidate cut points.

7.2.2 Warm-start XBART

An especially appealing aspect of the XBART algorithm is its use in conjunction with tra-
ditional MCMC BART, by initializing independent Markov chains at draws from XBART.
This approach combines XBART’s ability to rapidly find potentially large trees that fit the
data well with the valid posterior uncertainty assessment that MCMC provides. Provided
that each draw from XBART is from a starting location in a high probability region of the
BART posterior, burn-in times are negligible for each chain, leading to substantially lower
run times. Meanwhile, the diversity of the various starting locations results in wider cred-
ible intervals for quantities of interest, such as point-wise predictions. Nearness of the tree
draws (according to various metrics) from the separate chains may also be used as a gauge of
mixing, although in practice simply appending the separate draws appears to yield conserva-
tively wide intervals, which has its own appeal. Simulation results indicate that warm-start
XBART is faster and has better point-wise coverage of the mean function compared to either
XBART or MCMC BART [13].

8 Conclusion

Bayesian tree modeling is a rich area of ongoing research, with challenges ranging from fun-
damental modeling to the construction of computational algorithms. The Bayesian approach
offers many advantages, for example, BART infers the depth of each tree rather than having
to tune it using cross-validation as in most non-Bayesian boosting approaches. But there is
cost to the Bayesian advantages. Not everyone wants to choose a prior, and not everyone
wants MCMC draws.

As empirical analysis continues to take center stage today, we see a growing variety
of applications in data science with many different kinds of objectives. We believe that
the fundamentals of Bayesian thinking will continue to play in role in the development of
methodology that is relevant to real world decision making, and Bayesian tree models will
continue to be a useful part of that bigger picture.
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