
STP 498: Machine Learning (Final Project)
Ernest Dela Cruz, Hamza Amjad, Jeremy Liu, Yassine Mazboudi

(1) Introduction
We begin by introducing the concept of dimensionality reduction, which in the linear
space includes techniques (but not limited to) Principle Components Analysis, Singular
Value Decomposition, and Factor Analysis. Our project will be focused on Autoencoders
used with the MNIST dataset which can be thought of as one of the many non-linear
analogs of the previously mentioned techniques, one can also view Autoencoders in the
realm of topology and differentiable geometry as finding features in the manifolds of
our data. The motivation for all of these tools is for dimensionality reduction. We will
refer to the matrix of our data as X where every row corresponds to an observation in
p-dimensions x ∈ Rp, now per the discussion from class and our intuitive understanding
of the bias-variance tradeoff it may be beneficial to reduce the number of variables used
in a supervised/unsupervised learning scenario, especially when p is large. So what we
want then is a new representation of our observations x̃ ∈ Rq where q << p. There are
a multitude of benefits from this representation of our data which includes:
(a) Intuition of Bias-Variance tradeoff as mentioned earlier
(b) Improved Computational Efficiency
(c) Potentially better understanding of the data and best subset for representing our

observations

(2) Dimensionality Reduction (Example and Auto-encoders)
To start we introduce some definitions. The term ”Latent” can mean to be something
hidden or unknown, and we have something known as ”Latent Variables” within our data.
The purpose of finding these Latent Variables is to reduce our data to bare essentials
that best represent our data, and this is beneficial for the reasons mentioned prior such
as computational efficiency. Below is an example of PCA and a Latent Space. The data
for this example is based on the IRIS data set whose four variables were the length and
width of the flower, and then the length and width of the petals. These were used to
help determine the clusters of the three types of flowers in the data set Iris Sestosa, Iris
Versicolor, and Iris Virginica. The R-Code used for this example was sourced from [1].



In the above image our representation of the data has been compressed to two Princi-
ple Components {PC1, PC2} with our original variables plotted along with all of the
observations. With this all of the data points were represented by just two variables
and fortunately the various types of Iris within the dataset clustered together in this
2-dimensional representation of a 4-dimensional data set.

We now divert our attention to Autoencoders which was the primary topic of interest
for our project. An Autoencoder in summary is an neural network used in unsupervised
learning for feature representation. The goal of an autoencoder is very similar to that
of the previously mentioned techniques for data reduction, but is not confined to lin-
ear subspaces (non-linear subspaces/manifolds). An Autoencoder is composed of three
components:
1. Input Layer X ∈ Rp.
2. A hidden layer that compresses this to q << p.
3. An an output layer which is the latent representation of our data.
For our project we used very standard Autoencoder that was just a simple feed forward
neural network. The goal is to be able to classify data accurately by utilizing Latent
Variables within the data. Often these non-linear subsets of the data are termed as
Data Manifolds in that in Manifold Learning the distributions that generate the data
are hypothesized to be confined to a lower dimensional space in our full data set. The
purpose of feature learning is to find this lower dimensional space and use this subspace
rather than the full data set to represent our observations. Further more, we attempt to
explore the Latent space as well. Unlike PCA, the Latent space is much more difficult
to understand what every latent variable represents because of the non-linearity of the
transformations.

(3) Data
The Data used for this project was the MNIST Data set provided on the course web-
page. The inidividual images are 28 x 28 pixel grey scale coded in the data frame as
784 columns, each column representing a pixel of values 0 to 255, and the 785th column
representing the actual digit of the image.

(4) Method
Our intent is to train an autoencoder to take a high dimensional image of 784 dimensions
and accurately represent it on a 2-dimensional plane. Furthermore, we intend to explore
the latent space by taking weighted-averages of the 2-dimensional latent variables that
represent the original images and observe the output.
The autoencoder was trained on simple feed-forward neural net composed of 9 layers.
Layer 1 takes the input X where X ∈ R784. Hidden layers 2 to 4 represent the encoder,
which reduces the 784 dimensions down to 2 dimensions through a series of non-linear
transformations. Hidden layer 5 represents the reduced 2-D latent variables ẑimage where

ẑimage ∈ R2. Layers 6 to 8 represent the decoder which takes ẑimage and reconstructs X̂

where X̂ ∈ R784 , the original 784-dimensional representation of the image. The count
of nodes in each layer was constructed as: 784, 128, 64, 12, 2, 12, 64, 128, 784. The
epoch parameter was set at 100, batch size at 128, learning rate at .001, and a rectifier
activation function was applied to each layer. Our autoencoder was trained in Python
using the framework PyTorch.



After constructing the autoencoder, we attempted to explore the latent space as they are
not simple to understand. Understanding the latent space would imply understanding
what the autoencoder found unique of each image to be able to remove the noise and
reduce the image down to 2-D. We explored the latent space by taking weighted-averages
of the latent variables of 2 images and walked the weight value ω by small increments,
observing how the autoencoder decoded the new latent variable ẑaverage into a new image.

ẑaverage = ω ∗ ẑimage1 + (1− ω) ∗ ẑimage2

In the equation, ω ∈ [0, 1]. We would then pass the new variable ẑaverage into the

decoder and generate our new image X̂ We took the weighted-average of 2 different
representations of the digit 1, 4, and 2 seeing how the different shapes take form as we
incremented ω. We also experimented with taking the weighted-average of 2 separate
digits and observed how completely different digits were formed. Essentially, by taking
a weighted average, a line is drawn between the 2-D points on the X-Y plane, therefore,
any digit on that line could be represented by some combination of the 2 latent variables.



(5) Results

Pictured are 5000 digits from the MNIST dataset and their 2-D latent variables plotted.
Clearly, certain clusters representing the different digits formed speaking to the quality
of the autoencoder. It appears the autoencoder clustered the digits 0, 5, 7, and 1
particularly well.

Pictured is the weighted-average of a partially rotated 1 and another partially rotated 1
in the opposite direction walking ω by .2 at each step. Note at = 1 it is the autoencoder
output of image1 and at ω = 0 is it the autoencoder output of image2. Notice the
rotation of the 1 which makes us believe the latent space in between the 2 latent variables
is examining the rotation of the digits.

Pictured is a similar weighted-average procedure of two differently-shaped 4s. Notice
the autoencoders outputs were fuzzier than those of the digit 1 showing the loss of clarity
caused by the reduction in dimensions. It is unclear what to make of the latent spanned
by those two latent variables. It is still interesting to see the different shapes take form!



Pictured is a similar weighted-average procedure of two differently-shaped 2s. Again,
notice the loss of clarity in the loop of the first image lost in the encoder process of
reducing the dimensions. Notice the dissipation of the loop at the bottom of the 2 as
the weights transition.

Pictured is a similar weighted-average procedure but with steps of .075 to explore the
full extent of the latent space between the two latent vectors. Because taking a weighted
average of a 2-D point implies drawing a line of between two points, any point that is on
this line can be recreated by a linear combination of the two latent variables. Referencing
the 2-D plot of the 5000 MNIST digits, taking a 0 which clustered on one corner of the
plot and a 1 which is clustered on the polar end of the plot, we can recreate digits that
fall in between them. Without any calculations to extract the exact linear combination
needed to recreate an already existing image on the plot, observable images naturally
developed! Clearly, the 1 transitions into an 8 which slowly transitions into a 3, which
finally transitions to the original image of 0. Fascinating!



(6) Conclusion
In conclusion, the MNIST data of 784 dimensions was reduced to 2-dimensions using a

simple feed-forward autoencoder. Clusters of digits were clearly visible for some and not
clear for others using an autoencoder. Understanding the manifolds and the latent space
is extremely difficult as they are essentially random in the training of the autoencoder.
If the model was to be retrained, an entirely different latent space would be formed. To
explore the latent space of this particular model, we successfully took weighed-averages
of differently shaped single digits 2-D latent variables to recreate images that did not
already exist in the dataset. Furthermore, we successfully took weighted-averages of
two different digits latent variables and created entirely new digits whose image did
not exist in the data set either. Although it is unclear what to conclude about what
the autoencoder identified as unique per image or add intuition behind the non-linear
transformation made, it is clear there are observable patterns the model proxies. Further
research can be conducted to identify which features of the images are particularly being
targeted per digit and which are ignored as noise. Furthermore, it would be interesting
to explore in higher dimensions whether this weighted-average of latent variables would
still produce observable digits as we were able to do in this project.



References:
1. https://www.r-bloggers.com/computing-and-visualizing-pca-in-r/


