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Introduction 
 
 Drug invention and discovery is a highly active field and modern computer hardware and methods from 
computational statics and machine learning are routinely employed in attempts to predict performance and attributes 
of new compounds. The dataset used in this project is the same one described in the paper by R. E. McCulloch et 
al. in Annals of Applied Statistics, Vol 4 No. 1, 2010. The purpose is to predict if a certain drug compound, which 
is comprised of a specific combination of molecular descriptors, successfully treats a given disorder.  
 

The Dataset 
 
 The data consists of p = 266 molecular descriptors (variables) and one binary outcome which implies either 
success or failure of a given variable combination (compound) in treating the disorder. There are n = 29,374 
compounds of which 542 are defined as active (where Y = 1 implies success in treatment and Y = 0 otherwise). No 
specific description of the large list of variables is provided, as they are highly specialized molecular forms familiar 
only to experts in the relevant field. However, such a description is not necessary in successfully applying machine 
learning methods to the dataset. 
 

Data Pre-Processing 
 
 The pre-processing of the data was by far the most time consuming aspect of this work. Initially the dataset 
was randomly (and naively we might add) split 50/50 into training and test sets, with each set containing half of the 
active and half of the inactive compounds. First attempts to apply our well-known machine learning methods 
directly to this raw data were completely unsuccessful, yielding very poor predictive accuracy and even non-
convergence. After further study and learning about the best ways to approach the problem, it became clear that the 
underlying issue is that this is a highly unbalanced dataset, meaning one of the classes (in this case Y = 0) far 
outweighs the number of the other class (Y = 1). In the present case, only about 1.8 percent of the entire dataset was 
of the active type while the rest were inactive compounds. This presents serious problems for any machine learning 
method and can very easily bias the model being trained toward the Y = 0 class. After all, even a ridiculous model, 
one that always predicts an outcome of Y = 0, would be right 98.2 percent of the time. Of course it would be wrong 
100 percent of the time for the Y = 1 cases which is not useful. 
 This is a serious issue for binary classification but fortunately it is also a well-known one which is common 
to multiple fields including drug discovery, and several approaches exist to address it. We chose the method of up-
sampling (also called oversampling) the minority class (Y = 1). We performed repeated random draws (with 
replacement) of the training minority class (271 cases) to populate our training set until there was an equal number 
of the two classes in the training set. Thus our training set contains 14416 instances of Y = 0 and another 14416 
where Y = 1. The test set consists of 14416 instances of Y = 0 and 271 with Y = 1. This method is similar in 
principle to that employed by McCulloch et al. but differs in the details of the actual train test split. We preferred 
for the test set to have the same proportion of the two classes as the original raw dataset, and the above recipe 
achieves that. 
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Machine Learning Methods 
 
We applied four different methods to the train/test data and chose them based on their well-known strong 
performance for large and difficult datasets like the one we are using. The methods employed are Logit (as a baseline 
method), Deep Neural Nets, Boosting, and Random Forests. We use AUC and plot lift and ROC curves for each 
method as a means to judge predictive performance. Due to the large size of the dataset, a modest amount of 
parameter tuning was carried out for each method since computations were easily taking hours in some cases, even 
for a small number of options. Thus exploring larger parameter spaces would have been prohibitive with the amount 
of time and computing power available. Subsequently cross validation was not used to tune each parameter for 
optimal performance as the data set and variables were so numerous. The machine employed for the computations 
is a desktop computer with 16GB of RAM and a quad-core processor. While RAM was not an issue, it was clear 
that more cores would have been advantageous if one desired to run deep neural nets with several hidden layers and 
hundreds of neurons as well as any of the tree-based methods using thousands of trees. Such extreme settings were 
beyond the capability of our machine. Nevertheless, using a more measured and conservative choice of parameter 
settings, we were still able to achieve good results, matching and in some cases very slightly exceeding the 
predictive performance obtained by McCulloch et al.  
 

1. Logistic Regression (Logit) 
 
Using the package glm, we performed logit on the training data to construct the model as a baseline method to 
which the more sophisticated tools could be compared. Further, the package pROC and function mlfuns.R were 
called in order to obtain the ROC (Receiver Operating Characteristic) curve as well as find the corresponding Area 
Under the Curve (AUC). The related Lift curve was obtained as well. The resulting out-of-sample AUC of 0.7301 
was reasonably competitive with the other methods but was nevertheless outperformed by a nontrivial margin as 
will be seen. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Figure 1. Lift and ROC curves for out-of-sample performance of Logit. The ROC has 
  an AUC of 0.7301 indicating reasonable predictive performance. 
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2. Deep Neural Nets 
 
Using the package h2o, we trained both single-layer neural nets as a warm up exercise in order to gauge expected 
performance levels and computational demands as well as deep neural nets in order to more thoroughly train the 
model. After tuning number of layers, number of neurons, epochs, and the activation function, we settled on 2 
hidden layers with 20 neurons each using 50 epochs and the Tanh activation. We found that doubling neurons and 
epochs did not produce noticeably better results and adding hidden layers was too computationally expensive. The 
settings we have chosen yielded a strong out-of-sample AUC of 0.7559 and a very reasonable lift curve. The variable 
selection in h2o performed by the neural net identified the top five most important variables in the dataset as: 
x.MAXDN, x.IVDE, x.D.Dr12, x.D.Dr11, x.T.S..Cl.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Figure 2. The out-of-sample lift curve for the deep neural net exhibits the expected  
  behavior from a well-trained model. 
 
 
 

3. Boosting 
 
We found the tree-based methods to be the most computationally expensive, even for modest sizes and numbers of 
trees. However, they were also the best performers in predictive accuracy, yielding the best AUC values. We used 
the gbm package and looped over a handful of values for three important boosting parameters, namely: tree-depth 
(2,4), number of trees (500,1000), and shrinkage factor (0.1, 0.01). This gives 23 = 8 distinct settings, of which the 
best out-of-sample AUC was found to be an impressive 0.7804. Seen below, the lift and ROC curves are good, as 
expected. 
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         Figure 3. The out-of-sample lift and ROC curves for boosting.  
 
 

4. Random Forest 
 
We used the randomForest package in R and looped over the parameter ntree (500,1000). Due to computational 
cost, we chose to use the default value of mtry as sqrt(p) = 16, where p is the number of variables. After much 
reading, we found that changing mtry does not often make a significant difference and used this observation to our 
advantage. Here, mtry is the number of trees randomly drawn from the forest. A strong out-of-sample AUC of 
0.7910 was obtained along with good lift and ROC curves seen below.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   Figure 4. The out-of-sample lift and ROC curves for random forests. 
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Variable Importance 
 
Here we display graphs of the variable importance obtained for neural nets, boosting, and random forests. These 
graphs list the top most influential variable in the whole data set. Level of influence is determined in different ways 
for each method and package. For example, randomForest uses mean reduction in GINI to measure importance 
while boosting uses relative importance. The plot for boosting is crowded since it shows all variables on the 
histogram but only labels a few of them. Consequently we explicitly list the most important variables for boosting 
below. We notice that all the methods give different lists for most important variables. Indeed, even within a single 
method (e.g. neural nets), different runs of the same method yielded slightly different results for the variable 
importance list. This is not surprising since these methods make random subset draws from the data when training 
the model. We note that the variable importance graph for boosting shows a very strong dependence on the first 
dozen variables so that after that relative influence has dropped dramatically. For boosting, the top seven variables 
are: x.MDDD, x.T.S..Cl., x.SEigZ, x.BIC2, x.IVDE, x.PW2, x.Xindex 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

5. Summary Table 
 
 
 
 
 
 
 
  Figure 5. Variable importance plots for deep neural net, boosting, and random  
  forest respectively. Results for each method differ with respect to what variables  
  were chosen as most important. However, there is some overlap as well.  

 
 
 

Boosting Variable Importance 
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Summary of AUC Performance 
 
Here we present a table of the results comparing out-of-sample AUC of all the methods employed in this work. As 
noted earlier, all of the methods yielded reasonable results, meaning their AUC values are competitive and lift and 
ROC curves are good, but the tree-based methods were the strongest performers, with random forests leading the 
way. This gain in performance comes at the price of long computational times. We note that our results are very 
similar to those of McCulloch et al.   
 
 
                                           Method  AUC 

Random Forest 0.7910 
Boosting 0.7804 
Neural Net 0.7559 
Logit 0.7301 

 
 

Future Directions 
 
In this work, we employed most of the major machine learning methods which excel at classification to study the 
drug discovery problem. While we would not necessarily reach for yet another method, being able to run larger 
random forests, deeper and broader neural nets across a larger parameter space would be an interesting direction. 
The need for a more powerful computing platform would first have to be addressed. With more time and resources, 
one could probe the dataset with greater depth, seeking optimal tuning parameter values to see how and if the values 
obtained would hold up to such an investigation. 
 

Conclusion 
 
The purpose of this study was to identify appropriate methods which can predict with reasonable accuracy new 
active compounds in the drug discovery dataset. Employing several well-known machine learning methods, namely 
logit, deep neural nets, boosting, and random forests, we have been able to identify several sets of influential 
molecular structures which appear to have a greatly increased chance of producing an active compound when 
combined. The AUC and variable importance data are critical in making such a determination and our results are 
promising. An important lesson learned during this process is the influence that proper and thorough data pre-
processing has on the success of the project. This was an essential aspect of the work, without which progress would 
not have been possible. 
 
 
 
 

Please see following pages for the R script used in this work. 
(NOTE: We have not included the additional functions provided by Dr. McCulloch) 
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R Script for Project 
 
# Import data 
temp = read.csv("drug-discovery.csv") 
thedata = temp 
numobs = dim(thedata)[1]  # get number of observations 
 
# Combine y variable "somewhat active = 1" and "highly active = 2" into "active = 1" 
for(i in 1:numobs){ 
  if(thedata[i,1] == 2){ 
    thedata[i,1] = 1 
  } 
} 
 
# To create train/test split first extract all rows with y = 0 and place them  
# in new data frame and do the same with all rows with y = 1. Then split these two  
# data frames in half and recombine half the y = 0 rows and half the y = 1 rows to  
# get two new data frames which will be the train and test splits. The recombination 
# can also be done randomly to obtain multiple train/test splits as needed. 
 
#------------------------------------------------------ 
# Create data frame containing all rows with y = 0 
yzeros = thedata[FALSE,]  # Create empty data frame with all the correct columns 
for(i in 1:numobs){  # Fill the empty data frame only with rows containing y = 0 
  if(thedata[i,1] == 0){ 
    yzeros[i,] = thedata[i,] 
  } 
} 
 
yzeros_clean = yzeros[complete.cases(yzeros),]  # Remove NA rows 
rownames(yzeros_clean) <- NULL  # reset row names to numerical order 
 
# Output data files to disk 
# write.csv(yzeros, "yzeros.csv") 
# write.csv(yzeros_clean, "yzeros_clean.csv") 
 
 
#------------------------------------------------------- 
# Create data frame containing all rows with y = 1 
yones = thedata[FALSE,]  # Create empty data frame with all the correct columns 
for(i in 1:numobs){  # Fill the empty data frame only with rows containing y = 1 
  if(thedata[i,1] == 1){ 
    yones[i,] = thedata[i,] 
  } 
} 
 
yones_clean = yones[complete.cases(yones),]  # Remove NA rows 
rownames(yones_clean) <- NULL  # reset row names to numerical order 
 
# Output data files to disk 
#write.csv(yones, "yones.csv") 
#write.csv(yones_clean, "yones_clean.csv") 
 
 
#------------------------------------------------------- 
 
 
# train = sample(1:nrow(testitxm),floor(nrow(testitxm)/2)) #indices of train set 
# Create randomly chosen numbers (without replacement) to randomly draw 
# from both the y=1 and y=0 sets to create train and test splits 
set.seed(14) 
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onesindeces = sample(1:nrow(yones_clean),nrow(yones_clean)) 
zerosindeces = sample(1:nrow(yzeros_clean),nrow(yzeros_clean)) 
# Take about 14K random samples of the first 271 of the 542 y=1 indeces created above  
trainonesindeces = sample(onesindeces[1:nrow(yones_clean)/2],nrow(yzeros_clean)/2, 
replace=TRUE) 
 
# Now can just use half of the index values each for train and test  
# pulling from both ones and zeros lists 
 
# set.seed(24) 
# testindeces = sample(1:nrow(yones_clean),10) 
 
# rownames(train_disc) <- NULL  # reset the row names of train_disc set  
# rownames(test_disc) <- NULL  # reset the row names of test_disc set 
 
#------------------------------------------------------- 
# Create data frame containing the training data randomly chosen from the data 
emptyhalfframe = thedata[-c((nrow(thedata)/2+1):nrow(thedata)),]  # Create data frame 
with all the correct columns 
trainset = emptyhalfframe[FALSE,]  # Create empty data frame for train, ready to fill 
testset = emptyhalfframe[FALSE,]  # Create empty data frame for test, ready to fill 
 
############################  IMPORTANT:  ######################################### 
################################################################################### 
# Since our original data set is highly imbalanced (many more y = 0 classifiers than 
# y = 1), then to avoid severe bias in our model for y = 0, we shall use upsampling 
# to create a training set which contains an equal proportion of y=0 and y=1 classes. 
# This will be done by randomly sampling (with replacement) half the set of y=1 
#classes until an equal number of y=1 and y=0 are obtained. The other half of the y=1 
#class will be reserved for the test set. The test set will maintain the imbalanced 
#proportion of y=0 and y=1 classes. 
 
# Fill the train set with same number of y = 1 rows equal to y = 0 rows. 
for(i in 1:nrow(yzeros_clean)/2){ 
  trainset[i,] = yones_clean[trainonesindeces[i],] 
} 
 
 
# Fill the test set with half of randomly drawn rows with y = 1 
for(i in 1:nrow(yones_clean)/2){ 
  testset[i,] = yones_clean[onesindeces[i+nrow(yones_clean)/2],] 
} 
 
 
# Fill the train set with randomly drawn rows with y = 0 
for(i in 1:14416){   
  trainset[i+nrow(yzeros_clean)/2,] = yzeros_clean[zerosindeces[i],] 
} 
 
 
# Fill the test set with randomly drawn rows with y = 0 
for(i in 1:nrow(yzeros_clean)/2){   
  testset[i+nrow(yones_clean)/2,] = 
yzeros_clean[zerosindeces[i+nrow(yzeros_clean)/2],] 
} 
 
 
######################################################### 
####################  IMPORTANT:  ####################### 
######################################################### 
# It might be a good idea to randomize the rows after  
# combining (concatenating) the y=1 and y=0 rows into one 
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# test set or one training set. This way, there are not 
# large clusterings of y=1 and y=0 in the data. This 
# might be an important step in case the code (e.g. h2o) 
# is taking random draws from the train set to create 
# the model. The way to do this is simply with the short 
# R code below: 
# temp3 = temp2[sample(nrow(temp2)),] 
######################################################### 
######################################################### 
 
# Randomize twice 
 
testset2 = testset[sample(nrow(testset)),] 
trainset2 = trainset[sample(nrow(trainset)),] 
 
testset2 = testset2[sample(nrow(testset2)),] 
trainset2 = trainset2[sample(nrow(trainset2)),] 
 
# Read number of 1 and 0 entries 
 
table(trainset2$y) 
table(testset2$y) 
 
######################################################### 
######################################################### 
 
# yones_clean = yones[complete.cases(yones),]  # Remove NA rows from yones and yzeros 
rownames(trainset2) <- NULL  # reset row names to numerical order 
rownames(testset2) <- NULL  # reset row names to numerical order 
 
 
# =============================================================================== 
# =============================================================================== 
 
#------------------------------------------------------------------ 
#-----------------  Neural Nets for Discovery Data ---------------- 
#------------------------------------------------------------------ 
 
 
source("lift.R") 
library(h2o) 
 
# trainDf = read.csv("Tabloid_train.csv") 
# testDf = read.csv("Tabloid_test.csv") 
 
trainDf = trainset2 
testDf = testset2 
 
print(names(trainDf)) 
 
# p=ncol(trainDf)-1 
# p = 3 
# par(mfrow=c(p,2)) 
# for(i in 1:p) { 
#   plot(trainDf[[i]]) 
#   plot(log(trainDf[[i]]+1)) 
# } 
 
trainDf$y = as.factor(trainDf$y) 
testDf$y = as.factor(testDf$y) 
 
### setup storage for results 
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phatL = list() #store the test phat for the different methods here 
 
## get setup to run nn in h2o 
h2oServer <- h2o.init(ip="localhost", port=54321, nthreads=4) 
train_h2o = as.h2o(trainDf, destination_frame = "project_train") 
test_h2o = as.h2o(testDf, destination_frame = "project_test") 
 
### Fit neural net with one hidden layer 
##if(file.exists(file.path("./", "model1"))) { 
##  model1 = h2o.loadModel(path = file.path("./", "model1")) 
##} else { 
# model1 = h2o.deeplearning( 
#   x=2:262, y=1, 
#   training_frame=train_h2o, 
#   hidden=5, 
#   epochs=50, 
#   export_weights_and_biases=T, 
#   l1 = 1e-2, 
#   model_id = "model1" 
# ) 
# h2o.saveModel(model1, path="./") 
##} 
 
## Fit deep neural net with two hidden layers 
 
deep.model = h2o.deeplearning( 
  x=2:262, y=1, 
  training_frame=train_h2o, 
  hidden=c(20,20), 
  epochs=50, 
  # activation="RectifierWithDropout", 
  activation="Tanh", 
  l1=1e-3, 
  export_weights_and_biases=TRUE, 
  model_id = "deep.model" 
) 
h2o.saveModel(deep.model, path="./")   
 
 
## Get phat 
# phat = predict(model1, test_h2o) 
phat = predict(deep.model, test_h2o) 
phatL$h1n10 = as.matrix( phat[,3] ) 
 
#plot, compare to logit 
# par(mfrow=c(1,2)) 
# plot(phatL$h1n10) 
# abline(0,1,col="blue") 
lift.many.plot(phatL, testDf$y) 
# legend("topleft",legend=names(phatL),col=1:2,lty=rep(1,2),bty="n") 
plot(h2o.performance(deep.model)) # Plot ROC curve 
 
# Run deep.model on the test set 
testperf = h2o.performance(deep.model,test_h2o) 
 
# Plot ROC curve of deep.model 
plot(testperf) 
 
# Obtain confusion matrix from test results 
h2o.confusionMatrix(testperf) 
 
# Obtain AUC of ROC curve 
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h2o.auc(testperf) 
 
# plot variable importance 
h2o.varimp_plot(deep.model, num_of_features = 15) 
 
 
#------------------------------------------------------------ 
#-----------------  Logit for Discovery Data ---------------- 
#------------------------------------------------------------ 
 
library(caret) 
 
 
phatL2 = list() #store the test phat for the different methods here 
 
# Removing bad or constant columns identified before by h2o 
 
testDfclean = testDf 
trainDfclean = trainDf 
trainDfclean$x.T.P..I. <- NULL 
trainDfclean$x.T.Br..I. <- NULL 
 
 
###fit logit 
lgfit = glm(y~.,trainDfclean,family=binomial) 
print(summary(lgfit)) 
#predict using logit 
phat2 = predict(lgfit,testDf,type="response") 
phatL2$logit = matrix(phat2,ncol=1) #logit phat 
 
 
source("mlfuns.R") 
 
library(pROC) 
par(mfrow=c(1,1)) 
temp=liftf(testDf$y,phatL2$logit[,1]) 
rocCurve = roc(response = testDf$y,predictor=phatL2$logit[,1]) 
plot(rocCurve) 
cat("auc, logit: ", auc(rocCurve),"\n") 
 
# NOTE: Caret package seems not able to generate confusionMatrix due to mixture of 
# numeric and other variables in dataset 
 
 
#------------------------------------------------------------ 
#---------------  Boosting for Discovery Data --------------- 
#------------------------------------------------------------ 
 
phatL3 = list() 
 
##settings for boosting 
idv = c(2,4); ntv = c(500,1000); shv = c(.1,.01) 
setboost = expand.grid(idv,ntv,shv) 
colnames(setboost) = c("tdepth","ntree","shrink") 
phatL3$boost = matrix(0.0,nrow(testDf),nrow(setboost)) 
trainDfB = trainDfclean; trainDfB$y = as.numeric(trainDfB$y)-1 
testDfB = testDf; testDfB$y = as.numeric(testDfB$y)-1 
 
##fit boosting 
 
library(doParallel) 
cl <- makeCluster(4) 
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registerDoParallel(cl) 
#how many workers? 
cat("number of workers is: ",getDoParWorkers(),"\n") 
 
library(gbm) 
tm1 = system.time({ #get the time, will use this later 
  for(i in 1:nrow(setboost)) { 
    cat("on boosting fit ",i,"\n") 
    print(setboost[i,]) 
    ##fit and predict 
    fboost = gbm(y~.,data=trainDfB,distribution="bernoulli", 
                 n.trees=setboost[i,2],interaction.depth=setboost[i,1], 
                 shrinkage=setboost[i,3]) 
    phat3 = predict(fboost,newdata=testDfB,n.trees=setboost[i,2],type="response") 
    phatL3$boost[,i] = phat3 
  } 
}) 
 
stopCluster(cl) 
 
 
#have to store all the phats in a list. 
boostL = list() 
for(i in 1:ncol(phatL3$boost)) boostL[[i]]= phatL3$boost[,i] 
#get the lift 
par(mfrow=c(1,1)) 
#plot(1:8,1:8) 
#for(i in 1:8) abline(v=i,col=i,lwd=2) 
temp = liftf(testDf$y,phatL3$boost[,1]) 
 
rocCurve = roc(response = testDf$y,predictor=phatL3$boost[,1]) 
plot(rocCurve) 
cat("auc, boost: ", auc(rocCurve),"\n") 
 
# NOTE: Caret package seems not able to generate confusionMatrix due to size 
 
# plot variable importance in boosting 
varImpPlot(fboost) 
 
 
 
#--------------------------------------------------------------------------- 
#------------------  Random Forests for Discovery Data  -------------------- 
#--------------------------------------------------------------------------- 
 
phatL4 = list() 
 
##settings for randomForest 
p=ncol(trainDf)-1 
#mtryv = c(p,sqrt(p))  # for discovery dataset, p = 261 is too large for mtry 
mtryv = sqrt(p)  # this is default value for mtry 
ntreev = c(500,1000) 
setrf = expand.grid(mtryv,ntreev) 
colnames(setrf)=c("mtry","ntree") 
phatL4$rf = matrix(0.0,nrow(testDf),nrow(setrf)) 
 
###fit rf 
library(randomForest) 
for(i in 1:nrow(setrf)) { 
  cat("on randomForest fit ",i,"\n") 
  print(setrf[i,]) 
  #fit and predict 
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  frf = randomForest(y~.,data=trainDf,mtry=setrf[i,1],ntree=setrf[i,2]) 
  phat4 = predict(frf,newdata=testDf,type="prob")[,2] 
  phatL4$rf[,i]=phat4 
} 
 
 
# plot lift and ROC Curves 
library(pROC) 
par(mfrow=c(1,1)) 
temp=liftf(testDf$y,phatL4$rf[,1]) 
rocCurve = roc(response = testDf$y,predictor=phatL4$rf[,1]) 
plot(rocCurve) 
 
# get AUC of ROC curve 
cat("auc, RandomForest: ", auc(rocCurve),"\n") 
 
# plot variable importance in randomForest 
varImpPlot(frf) 

 
 


