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1. Linear Regression

Part of the exciting part of modern ‘machine learning” is a set of
relatively new methods with the ability to fit complex relationships
(nonlinearity, interaction).

However,

the time honored linear model is still a major player:

Yi = β0 + β1 xi1 + β2 xi2 + . . .+ βp xip + ϵ

Why?
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In high dimensions (big p), it may be very hard to look for complex
relationships.

The linear model may have acceptable bias and low variance.

We can also make the linear model more flexible by throwing in a
lot of transformations of the original x ’s.

Y = β0 + β1x1 + β2x2 + ϵ

“Throw in” squares and cross product: ⇒

Y = β0 + β1x1 + β2x2 + β3x
2
1 + β4x

2
2 + β5 x1x2 + ϵ
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Example:

Start with p = 10. Throw in all squares and cross products.
Now have 10 + 10 + (10*9/2) = 65 variables.
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Also, a linear model, without too many transformations thrown in,
may be more interpretable.

It may also be useful to have a simple mathematical representation
of f (x), because you may want to use it as one input to a more
complex decision, in which case being able to manipulate it or
easily optimize it may be important.
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So, basically, we will make regression interesting by having lots of
x ’s !!

However, if we just throw in a lot of x ’s we could have a high
variance overfit situation.

We will explore ways to constrain the fit so that we do not overfit.

Complex Model: Lot’s of x ’s, not very constrained.

Simpler Model: Lot’s of x ’s, constrained.

What does constrained mean??
Set some βj to 0 and/or shrink some βj towards 0.

This kind of shrinkage is known as regularization.
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2. Linear Regression Review

In this section we present the linear Regression model in matrix
form and review some its basic properties.

The linear model has a lot of nice simple properties.
These properties will also figure in some more complex models
(e.g. iteratively reweighted least squares).

Note that sometimes we will include an intercept in which case I
may use p to mean the number of x ’s+1 or sometimes I may use p
for just the number of x ’s.
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Matrix notation for the linear model
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Cut from R Hello world:
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We also write X = [X1,X2, . . . ,Xp] so that Xj is a column of n
values for the j th x .

X1 may or may not be a column of 1’s.

p can mean either the number of x variables or the number of
columns.

So if an intercept is included, p could be number of x ’s or number
of x ’s +1.

You can tell from the context and I don’t want to write (p + 1)
half the time.
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Given training data, how do we estimate β?

Minimize the in-sample mean-square-error (MSE) which we will
denote by L for “loss”.

To minimize we will set the gradient to 0.
Note that the gradient is a row vector.
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Quick Review: The Chain Rule
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Let’s compute the gradient:

where the inner product is

< x , y >=
∑

xiyi
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Let’s unpack that last step from the previous slide.
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Recall that two vectors are “orthogonal” (perpendicular) if their
inner product is 0.

We call y − X β the “residuals”.

∇L = 0 means the resids are orthogonal to each column of X !!!!!
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Now we set the gradient equal 0 and solve.
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Note

Geometrically we talk about x and y being orthogonal:

< x , y >= x ′y = y ′x =
∑

xiyi = 0.

If we demean the variables so that we use xi − x̄ and yi − ȳ , then
we have ∑

(xi − x̄)(yi − ȳ)

and the sample covariance is∑
(xi − x̄)(yi − ȳ)

n − 1

So, after you demean, saying they are orthogonal is the same as
saying they are uncorrelated.
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3. Maximum Likelihood Estimation

For some things that we do it will be helpful to view the least
squares estimator as a maximum likelihood estimate.

Recall that if we have parametric model for observable y with
parameter θ

p(y | θ)

then, we obtain the maximum likelihood estimate (MLE) of θ by
solving:

max
θ

p(y | θ).

This is very intuitive, find the parameter value which makes what
you have seen (the y) most likely.
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To compute an MLE for regression we again need an assumption
about the errors.

Again, let’s use normal errors:

Yi = x ′iβ + ϵi , ϵi ∼ N(0, σ2), ϵi iid.

or,

Yi ∼ N(x ′iβ, σ
2), independent
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Our parameter is (β, σ) and the likelihood has the form

p(y | β, σ2) =
n∏

i=1

p(yi | β, σ2)

We will maximize this over (β, σ2).
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p(y1, y2, . . . , yn | β, σ) =
∏n

i=1
1√
2π

1
σ exp(− 1

2σ2 (yi − x ′iβ)
2

= (2π)−n/2 σ−n exp(− 1
2σ2 ||Y − Xβ||2).

So for any σ, the likelihood is minimized at the least squares
β̂ = (X ′X )−1X ′y .

Let v = σ2. Let S = ||y − X β̂||2.

log(L(v , β̂)) = −n
2 log(v)−

1
2v S + C .

−2log(L(v , β̂)) = n log(v) + 1
v S + C .

Taking the derivative wrt v and setting it equal to 0, we have:

n
v − S

v2 = 0,⇒ v̂ = S
n .

And, −2log(L(v̂ , β̂)) = n log(v̂) + n + C .
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4. Subset Selection

If we just “throw in a ton of x ’s” our model may be too complex,
we may overfit.

Often, we try to start with a “ton of x ’s” and then see how many
we can throw out and still have good fit.

Yi = β0 + β1 xi1 + β2 xi2 + . . .+ βp xip + ϵ

Throwing out an x is equivalent to setting its coefficient to 0.
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Which coefficients do we set to 0?

The key idea is the bias variance trade-off !!!

If we set too many coefficients to 0, we may be throwing out some
variables that do important work in explaining Y , ⇒ bias.

If we keep too many variables, it may be difficult to get good
estimates of all the corresponding coefficients ⇒ variability.
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Our basic problem is that there are a lot of possible ways to pick a
subset of variables to keep!!

Let k denote the number of variables kept.

How many ways can you choose k from p:

(
p
k

)
= p!

k! (p−k)! .

And, summing over possible k = 0, 1, 2, . . . , p, there are 2p

possible regression models.

Example, p=20,k=10:

220 = 1,048,576
choose(20,10)= 184,756
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What we need is a simple way to move from simpler models to
more complex models (recall k in kNN).

In subset selection, we will let k denote the number of variables
used, so that k goes from 0 to p.

Big k : complex model, Small k : simple model !!

For each k we will choose a single regression model from the(
p
k

)
possible models.
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Two possible ways of choosing a subset (a model) given k are:

small p:

All subsets:

For p less than about 40, it is possible to run all the possible
regressions.

Given the number of variables k , we will pick the subset of
variables of size k with the highest R2.

big p:

Forward Stepwise Selection:

▶ Start with k=0, no variables selected.

▶ Given a current k and corresponding subset, add in the new
variable which gives you the biggest increase in R2.

▶ Stop at k = p.

This is a greedy forward search!!
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We can now choose k , the number of variables, the same way we
chose k in kNN.

A simple validation set approach simply splits the data into train
and validate, and sees which value of k gives the best prediction.

Or, we could use cross validation.
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Hitters Example

Let’s look at the “Hitters” example used in the Lab in the ISLR
book.

Each observation corresponds to a baseball player.

Y : Salary:
1987 annual salary on opening day in thousands of dollars.

x1: AtBat:
Number of times at bat in 1986

...

x19: NewLeague:
A factor with levels ‘A’ and ‘N’ indicating player’s league at the
beginning of 1987.
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For k = 1, 2, 3, 4, 5,
here are the variables that give you the highest R2:

(Intercept) AtBat Hits HmRun Runs RBI Walks Years CAtBat CHits CHmRun

1 TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

2 TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

3 TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

4 TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

5 TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

CRuns CRBI CWalks LeagueN DivisionW PutOuts Assists Errors NewLeagueN

1 FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

2 FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

3 FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE

4 FALSE TRUE FALSE FALSE TRUE TRUE FALSE FALSE FALSE

5 FALSE TRUE FALSE FALSE TRUE TRUE FALSE FALSE FALSE

So, if k = 3, you use Hits, CRBI, and PutOuts.

‘Hits’: Number of hits in 1986
‘CRBI’: Number of runs batted in during his career
‘PutOuts’: Number of put outs in 1986
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Here is a plot of k vs. the R2 for the model having the highest R2

out of all models of size k .

5 10 15

0.
35

0.
40

0.
45

0.
50

0.
55

num var (k)

R
−

sq
ua

re
d

Of course, we may not want the model with the highest in-sample
R2 !!!
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Split the data 50/50 into train/validate. Get the best subset for
each k using the train, and then predict on the validate.

I repeated the train/validate split 100 times and then averaged the
results. Maybe better to do 10-fold cross validation.
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I’ll choose k = 6.
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Given the choice k = 6, we then get the best subset of size 6,
using all the data. Here is the regression.

Call:

lm(formula = Salary ~ ., data = ddfsub)

Residuals:

Min 1Q Median 3Q Max

-873.11 -181.72 -25.91 141.77 2040.47

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 91.51180 65.00006 1.408 0.160382

AtBat -1.86859 0.52742 -3.543 0.000470 ***

Hits 7.60440 1.66254 4.574 7.46e-06 ***

Walks 3.69765 1.21036 3.055 0.002488 **

CRBI 0.64302 0.06443 9.979 < 2e-16 ***

DivisionW -122.95153 39.82029 -3.088 0.002239 **

PutOuts 0.26431 0.07477 3.535 0.000484 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 319.9 on 256 degrees of freedom

Multiple R-squared: 0.5087,Adjusted R-squared: 0.4972

F-statistic: 44.18 on 6 and 256 DF, p-value: < 2.2e-16
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5. AIC and BIC in Linear Regression

Suppose we have a parametric model f (y | θ).

For example, in our regression model (supressing x) we have
θ = (β0, β1, . . . , βp, σ).

Now suppose we have two parametric models for the same y with
two corresponding parameters:

p(y | θ1) and p(y | θ2).

For example, in our regression model we could have
θ1 = (β0, β1, . . . , βp, σ) and θ2 = (β0, β1, σ)
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Given observed data y how can we decide which model is better?

Well, we could compare the maximized likelihoods:

L1 = L(θ̂1) and L2 = L(θ̂2)

where the parameter estimates are the MLEs.

But, if we just choose the model with the largest maximized
likelihood, we could overfit.
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Rather than use a train/test strategy to choose the models, AIC
and BIC compare the maxmimized log Likelihoods but subtract off
a “penalty term” which depends on the number of parameters in
the model.

Let m be the number of parameters in the model.

AIC: −2 log(L̂) + 2m
BIC: −2 log(L̂) + log(n)m.

The idea is that you choose the model which has the smallest AIC
or BIC.

So, AIC charges you 2 per parameter and BIC charges you log(n).

BIC selects a simpler model since in charges more per parameter.
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AIC: −2 log(L̂) + 2m
BIC: −2 log(L̂) + log(n)m.

For example the model θ1 = (β0, β1, . . . , βp, σ) has p + 2
parameters and the model θ2 = (β0, β1, σ) has 3 parameters.

This is not quaranteed to work as a lot of approximations and
assumptions go into their derivations.

What does “work” mean?

Choose a model that gives good out-of-sample predictions!!!
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AIC and BIC for Regression:

Let L̂ denote the maximized likelihood
(the likelihood evaluated at the MLE’s).

Suppose we include the intercept and use k x variables:

AIC:

n log(σ̂2
MLE ,k) + 2 k + C (n)

BIC:

n log(σ̂2
MLE ,k) + log(n) k + C (n)

You are supposed to prefer the model which has the smallest AIC
or BIC.

C (n) is a constant that only depends on n, since this is fixed, we
can ignore it. 38



Here is a plot of k vs. BIC .
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This suggests k of about 6 which is what we got using our
of-of-sample expermiment.
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The Deviance

The basic idea behind AIC and BIC is the L(θ̂) can be used as
measure of fit on the training data.

The is often expressed in terms of the deviance:

D = −2 log(L(θ̂))

So, a small deviance means a good fit.

AIC: D + 2k , BIC: D + log(n) k

We choose the model with the smallest AIC or BIC.

Warning: D or D + c where c is an constant that does not depend
on the model, so when you see a deviance computed it may be ±c .
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6. Regularized Linear Regression - L2, Ridge Regression

Our variable selection approach set some of the coefficients in a
multiple regression to 0.

This helped keep our model simple so that we do not overfit.

Another way to keep our model “simple” is to push or shrink the
coefficient towards 0.

This way a coefficient will only be large if the data demands it!
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Ridge Regression:

Recall that least squares works by picking the coefficients to
minimize

RSS =
n∑

i=1

(yi − β0 −
p∑

j=1

βj xij)
2.

Ridge regression works by mimimizing:

n∑
i=1

(yi − β0 −
p∑

j=1

βj xij)
2 + λ

p∑
j=1

β2
j .

For large λ you pay a price to make a coefficient large !!
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Minimize:

n∑
i=1

(yi − β0 −
p∑

j=1

βj xij)
2 + λ

p∑
j=1

β2
j .

λ will be our “walk the bias-variance trade-off” parameter.

small λ: can have big coefficient ⇒ complex model.

big λ: can’t have many big coefficients ⇒ simple model.
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So, for every λ, you will get a different optimizing β:

λ ⇒ β̂R
λ .

For example β̂R
0 is just the least squares estimator.

How do you choose λ ?

cross-validation, or another out-of-sample criterion!!.
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Note:

We are minimizing

fit:
∑n

i=1 (yi − β0 −
∑p

j=1 βj xij)
2

+

penalty: λ
∑p

j=1 β
2
j .

Since the penalty treats all the βj the same you have to be
thinking about all the x ’s the same. What are the units of βj?

Usually people standardize the x ’s before the do this kind of
shrinkage.

45



Let’s try Ridge regression with the Hitters data.
I standardized all the x ’s.

Here we plot log(1/λ) vs. β̂R
λ .
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A complex model is one where the coefficients are allowed to be
big.
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Here is the cross-validation estimate of the out of sample loss.
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Here we plot the coefficients from linear regression against those
we get using ridge regression with the optimal λ.
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They are not too different in this case.
You can see some of the bigger coefficients are shrunk a bit.
A lot of the coeficients are close to 0, (we standardized the x ’s).
The x ’s with absolute values bigger than 100 are ”AtBat” ”Hits”
”Walks” ”CAtBat” ”CHits” ”CRuns” ”CRBI” ”CWalks”
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Here we compare the in-sample fits from regression and ridge.
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What is the ridge regression β̂R
λ ?

Let’s assume that we have subracted the mean from y and each x .

We don’t shrink the intercept so we can go ahead and just use ȳ
to estimate it.

So, now our problem is just:
minimize:

n∑
i=1

(yi −
p∑

j=1

βj xij)
2 + λ

p∑
j=1

β2
j .

or

n∑
i=1

(yi − x ′iβ)
2 + λ

∑
β2
i = ||y − Xβ||2 + λ||β||22
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What is the ridge regression β̂R
λ ?
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What happens if the x ’s are orthogonal (uncorrelated) so that
X ′X = is diagonal?

If X ′X = diag(x ′j xj)
then

β̂j =
< y , xj >

< xj , xj > +λ

which is an extremely simple and intuitive version of shrinkage.

If λ = 0 we have the usual OLS solution, but at as λ increases, our
solution is pushed towards 0.
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Regularization and Constrained Optimization

If we let f (β) = ||y − Xβ||2 and p(β) = ||β||2 then we are
minimizing

f (β) + λp(β)

More generally if f is our “fit“ and p is our “penalty” we have a
very general approach to walking the bias-variance trade-off as we
vary λ .

As long as p does not like big β, then large λ will give us “simple”
models.

This approach is often called regularization.
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It is also useful to view the problem as a constrained fit.

Minimizing the unconstrained

f (β) + λp(β)

is related to solving the constrained optimization

min f (β) subject to p(β) ≤ k

min fit + penalty, or min fit subject to penalty not big.
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Clearly if β∗ minimizes f (β) + λ p(β) then it must also solve

min f (β) subject to p(β) = p(β∗)
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For our Ridge regression problem we have f (β) = ||y − Xβ||2 and
g(β) = ||β||2 − k where k is a positive constant.

In this case the contours f (β) = c are ellipses and the contours
g(β) = c are circles.

We have a very nice picture which makes the lagrangian FOC
inutitive.
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Here is the key picture for the case where the constraint is binding.

Remember, ∇f is the direction in which f goes up the fastest!!
∇f points perpendicularly to the contour of f .

It is intuitive that ∇f + α∇g = 0 with α > 0.
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To solve our Ridge regularization as a constrained problem we
have:

−∇f ′ = 2X ′(Y − Xβ).

∇g ′ = 2β.

2αβ = 2X ′(Y − Xβ).

β∗
α = (X ′X + αI )−1X ′Y .

We would then solve (the easy problem) of finding the α such that
||β∗

α||2 = k.
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Regularization in Machine Learning

We can think of ridge regression as a basic example of a general
setup we see in Machine Learning.

We have a “model” the defines our action given the information in
the observed vector of features x .

Our action is characterized by a vector of parameters θ.

Let’s denote our action by f (x , θ).

Given our action and the then observed y we incur a loss
L(y , f (x , θ)).

In our linear regression example, θ is β and

f (x , β) = x ′ β, L(y , f (x , β)) = (y − x ′ β)2.
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We have “complexity measure” C (θ).

In ridge regression, C (β) = ||β||22.

Given training observation observation (xi , yi ) and parameter θ we
“learn” θ by

minimize
θ

n∑
i=1

L(yi , f (xi , θ)) + λC (θ)

The parameter λ walks you from simple to complex models.
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7. Shrinkage: The Lasso

The Lasso (least absolute shrinkage and selection operator)
changes the form of the penalty.

Now, we minimize:

n∑
i=1

(yi − β0 −
p∑

j=1

βj xij)
2 + λ

p∑
j=1

|βj |.

This may not seem like a big deal, but it turns out the solution to
this problem can set a βj exactly to 0, so that you get variable
selection.
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Here are the lasso solutions as λ varies.
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The point is, that for big λ, coefficients get set to 0.

62



In the Lasso, there is shrinkage as well as selection and the
shrinkage takes on a different form than in L2 regularization.

Also, with the Lasso, variables can to out as λ decreases, whereas
with forward, once you are in, you are always in.
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As usual, we can choose λ using cross-validation.
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For big enough λ, all the coefficients are set to 0.
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Here are the β̂L
λ for the best CV lambda.

(Intercept) AtBat Hits HmRun Runs RBI

535.925882 -289.109678 314.374161 13.916703 -34.239618 0.000000

Walks Years CAtBat CHits CHmRun CRuns

124.971379 -33.041086 -191.538897 0.000000 10.072782 407.092162

CRBI CWalks LeagueN DivisionW PutOuts Assists

201.114077 -199.619610 25.169164 -58.149563 79.100366 44.502170

Errors NewLeagueN

-19.688952 -6.704629

We see that a couple are 0.
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Plot Ridge and Lasso coefficients vs the least squares coefficients.

A couple of the
Lasso coefficients
are 0.

A big coefficent is
shrunk less under
Lasso than Ridge.
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Fits are not actually too different.
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Why do people like the Lasso?

▶ Simple way to walk the bias variance trade-off.

▶ Zero coefficients give variable selection, can get more
interpretable models.

▶ Computationally fast.
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Stewise compared to Lasso

Lasso is a quadratic (and hence convex and differentiable) loss
function optimized under a convex constraint.
Hence, the Lasso problem has a guaranted global optimum and we
have very efficient algorithms for finding that optimum.

The step wise algorithms are greedy searches so there is no
guarantee the global optimum has been found.

But, since they do not shrink, the step wise methods can find more
parisimonious solutions (use fewer x ’s) faster!!

In our Hitters example, the allsubsets method ended up using just
6 x ’s but the lasso only set two coefficients to 0!!
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8. Understanding the Lasso Solution

Why does the Lasso give solutions with coeficients at 0?

How is Ridge different from Lasso?

To get a good simple intuition, it is helpful to consider the
constrained optimization view of Lasso and Ridge.
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Ridge:

minimize
β0,β

n∑
i=1

(yi − β0 −
p∑

j=1

βj xij)
2

subject to

p∑
j=1

β2
j ≤ t2

Lasso:

minimize
β0,β

n∑
i=1

(yi − β0 −
p∑

j=1

βj xij)
2

subject to

p∑
j=1

|βj | ≤ t
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At left we have the Lasso problem, where the constraint set looks
like a diamond.

At right we have the Ridge problem, where the constraint set looks
like a circle.

The diamond constraint can give solutions at an axis.

This is a very famous picture !!!!!
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“Sparcity” is another term you often hear.

The Lasso give sparcity because some the coefficients are set to 0.

sparcity, regularization, shrinkage ......
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With L2 and L1 you have a convex optimization problem.

You are minimizing a convex function on a convex constraint set.

If you go Lp, p < 1, you get even more variable selection, but you
lose the convexity.

||x ||p = (
∑

|xi |p)1/p
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The Simplest Version

Let’s consider the simplest possible version of our problems back in
the “Lagrangian” formulation:

Ridge:
minimize

β
(y − β)2 + λ β2

Lasso:
minimize

β

1
2 (y − β)2 + λ |β|

Adding the 1/2 for the Lasso changes nothing and makes the
expressions look nicer.
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minimize
β

(y − β)2 + λ β2

For the Ridge version we are minimizing a quadatric so we can
easily find the global miniumum by setting the derivative equal to
0:

2(y − β)(−1) + 2λβ = 0 ⇒ β̂R =
y

1 + λ
.

Of course the unconstrained solution is β̂ = y so we can very
nicely see how a choice of λ shrinks the estimate towards 0.
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For the Lasso problem, we suddenly have a basic technical problem.

The function
g(β) = |β|

is not differentiable at 0!!

Our function is convex, so there is a global minimum, but can we
find it in a simple way?

We can, and the solution will shed light on the Lasso and on how
to solve the general regression problem.
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minimize
β

1
2 (y − β)2 + λ |β|

To derive the Lasso solution, suppose the optimal β is greater than
0.

Then, locally, our differential first order conditions apply and our
criterion is differentiable since we know |β| = β.

(y − β)(−1) + λ = 0 ⇒ β̂L = y − λ.

Similarly, if the optimal is less than 0, then |β| = −β so,

(y − β)(−1)− λ = 0 ⇒ β̂L = y + λ.

Shrink towards 0 by an amount λ !!
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Now we only have three posibilities for the optimal β and you can
just check that the minimum is obtained with

β̂L =


y − λ y > λ

0 |y | ≤ λ

y + λ y < −λ

For example, suppose 0 < y < λ.
Which is better, β = 0 or β = y − λ?.
At y − λ we have

(y − (y − λ))2 + λ|y − λ| = λ2 + λ|y − λ|
≥ (y − 0)2 + λ|0|.

Intuitively, if 0 < y < λ, there is no way I want negative estimate
y − λ.
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Here is a plot of the Lasso and Ridge shrinkage.
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We can express these solutions succintly using the soft
threshholding function Sλ.

β̂R =
y

1 + λ
.

β̂L = Sλ(y)

where

Sλ(y) = sign(y)(|y | − λ)+

with x+ = x if x is positive and 0 otherwise.
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Let’s see how it works out in practice.

Let’s say y = 1.
We plot y with the solid
magenta line.

λ decreases as we go
down the plots.

At left we have the Ridge
criterion plotted with the
minimizing β indicated
by the solid blue line.

At right we have the
Lasso criterion plotted
with the minimizing β
indicated by the solid red
line.

Each estimate moves
from 0 to 1, but the
Lasso estimate sticks at
0 for a while and then
moves faster to 1.
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Standardization:

Ok, now let’s try Lasso with some x ’s !!

But first, we emphasize again that for this to make sense you have
to put the x ’s on the same scale by standarizing them.

The Lasso literature strongly favors standardization using the
sample mean and variance.

Since we are not trying to regularize (shrink) the intercept, it is
usual to start by demeaning y and x :

yi → yi − ȳ ; xij → xij − x̄j .

Recall that if you run a regression using the demeaned variables,
you get the same slope estimates.
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We then scale the x ’s:

xij →
xij
sj

where

s2j =

∑
x2ij
n

Note that after you do this standardization
∑

i x
2
ij = n for each

j = 1, 2, . . . , p.
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Lasso with one x

Let’s now see what happens when we just have one x variable.

After standardizing we miminize:

1

2n

n∑
i=1

(yi − β xi )
2 + λ |β|.

Dividing by 2n does not change the problem, but makes the
formulas turn out nicer.
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Again if the solution were positive, we must have

1

n

∑
(yi − βxi )(−xi ) + λ = 0 → β̂L =

1

n
< x , y > −λ.

And if negative,

1

n

∑
(yi − βxi )(−xi )− λ = 0 → β̂L =

1

n
< x , y > +λ.

So that,

β̂L = Sλ(
1

n
< x , y >).
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Note that with our standardization, we are basically
soft-thresholding the least-squares β̂.

β̂ =
< x , y >

< x , x >
=

< x , y >

n

so

β̂L = Sλ(β̂).

87



How about this way??

Then by the result we got in our simplest problem
β̂L = Sλ(β̂).
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The General Problem, p Variables:

minimize
β

1

2n

n∑
i=1

(yi −
∑
j

βj xij)
2 + λ

∑
j

|βj |.

or,

minimize
β

1

2n
||y − Xβ||2 + λ ||β||1
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Cyclic Coordinate Descent:

Given a choice of λ, suppose we knew all of the coefficients except
βj .

We can write our objective as:

minimize
βj

1

2n

n∑
i=1

(yi −
∑
k ̸=j

βk xik − βjxij)
2 + λ|βj |+ λ

∑
k ̸=j

|βk |.

Which is the same problem as

minimize
βj

1

2n

n∑
i=1

(r
(j)
i − βjxij)

2 + λ|βj |

with
r
(j)
i = yi −

∑
k ̸=j

βk xik

The r
(j)
i are the partial residuals.

90



minimize
βj

1

2n

n∑
i=1

(r
(j)
i − βjxij)

2 + λ|βj |

But we know how to solve this problem:

β̂j = Sλ(
1

n
< xj , r

(j) >).
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This gives us a very simple cyclic coordinate descent algorithm

▶ Pick a fixed order for the coefficients (variables), e.g
1, 2, . . . , p.

▶ Cycle through the coefficient updating each with the soft
thresholding formula: β̂j = Sλ(

1
n < xj , r

(j) >).

▶ Repeat until covergence.

Simple !!!
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Note:

We often want to do this for a set of λ values.

If we start with all the βj at 0, then our initial r (j) = y .

Thus we know that if we set

λmax = maxj |
1

n
< xj , y > |

then for that λ, and all larger, no matter what coefficient we
attempted to update, we would get 0. So, there is no need to
consider λ > λmax .
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So, we can,

▶ Start at λ = λmax .

▶ Slowly decrease, λ.

▶ At each λ, find a solution using cyclic coordinate descent.

▶ warm start, each cyclic descent by starting at the solution
from the previous λ.
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Note:

Suppose our x ’s are orthogonal:

< xi , xj > = x ′j xi = 0, i ̸= j .

Since we have demeaned, this is equivalent to the x ’s being
uncorrelated.

Then,
< xj , r

(j) > = < xj , y >

So our cyclic alorgithm converges immediately to

β̂j = Sλ(
1

n
< xj , y >).

Just as in least squares regression, we can fit the model one x at a
time if the x ’s are uncorrelated.
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9. The Elastic Net

Once you have the idea of penalized regression, you can imagine
cooking up lots of different penalty specifications.

There are lots of variations in the literature, let’s look at the
Elastic Net which simply combines L1 and L2 penalties.

The motivation for the Elastic Net comes from the observation that
if x ’s are highly corrrelated then the Lasso may behave erratically.
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To see this, consider a regression where

y = β1x1 + ϵ

Suppose β̂1 ≈ 1 works pretty well.

Suppose x2 ≈ x1 and we run the regression

y = β1x1 + β2x2 + ϵ

what will happen?
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In this case any regression where β1 + β2 = 1 will fit pretty well.

Thus, we almost have a lack of identification.

The contours of the of the likelihood will be ellipses along the line
β2 = 1− β1 which will align with the Lasso constraint.

Thus, small changes in the data, or introduction of other x
variables could swing the solution from β = (1, 0) to β = (0, 1)
erratically.

What will the L2 penalty do?
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“Elastic Net at Dawn”, McCulloch 2017.
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The L2 penalty would divy up the fit 50/50 preferring a solution
with β = (.5, .5).

This motivates the Elastic net which just mixes in the L1 with the
L2:

minimize
β0,β

1

2

n∑
i=1

(yi − β0 −
∑
j

βj xij)
2 + λ [12(1− α)||β||22 + α||β||1]


For an individual coefficient, the penalty is then

λ [12 (1− α)β2
j + α |βj |].

With the elastic net, we can still get solutions with zero
coefficients, but the solution for highly correlated x variables is
stabilized.
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Cornell computer science:
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Hitters Data, Elastic net (α = .5) solution path.
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CV for elastic net.
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Elastic net coefficients vs linear (blue).
Lasso net coefficients vs linear (red).

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−400 −200 0 200 400

−
30

0
−

20
0

−
10

0
0

10
0

20
0

30
0

40
0

linear coefficients

en
et

 c
oe

ffi
ci

en
ts

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

105



10. The Diabetes Data

Let’s look at all this stuff with the Diabetes data.

http://web.stanford.edu/~hastie/StatLearnSparsity/data.html

Diabetes data

These data consist of observations on 442 patients,

with the response of interest being a quantitative

measure of disease progression one year after baseline.

There are ten baseline variables---

age, sex, body-mass index, average blood pressure,

and six blood serum measurements

---plus quadratic terms, giving a total of 64 features.

> 10+10+10*9/2 #linear + quadratic + interactions

[1] 65

But you don’t square sex because it is a binary dummy so you get
64 variables.
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Here is the response.

y for diabetes
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Here is the Lasso coefficient plot.
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Here is the Lasso cv plot.
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Here are the non-zero coefficents:

sex bmi map hdl ltg glu age.2

-5.3240588 23.8840329 11.9768009 -8.9267013 22.2766341 0.8536991 0.3510477

bmi.2 glu.2 age.sex age.map age.ltg age.glu bmi.map

1.8401302 3.3142418 5.1180918 1.4271455 0.4050495 0.5559682 4.0729018

Wow.

This corresponds to a very simple nonlinear function using the 7
variables sex, bmi, map, hdl, ltg, glu, age.
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Here are the in-sample fits at the λ chosen by cv.
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Can we see the effect of the shrinkage??!!
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Seeing the Lasso Fit:

Here are the map and tc coefficients as functions of λ.
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Compare to Least-squares:

Suppose you do it the old multiple regression output way.

Note that we all know you can’t do variable selection by seeing
which coefficients are significant.

But that is what most people do.
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.710e-08 2.532e+00 0.000 1.0000

age 2.415e+00 3.120e+00 0.774 0.4393

sex -1.273e+01 3.108e+00 -4.096 5.15e-05 ***

bmi 2.194e+01 4.029e+00 5.446 9.32e-08 ***

map 1.633e+01 3.450e+00 4.734 3.13e-06 ***

tc -1.717e+02 2.885e+03 -0.060 0.9526

ldl 1.444e+02 2.535e+03 0.057 0.9546

hdl 5.263e+01 1.078e+03 0.049 0.9611

tch 3.568e+00 1.313e+01 0.272 0.7860

ltg 8.715e+01 9.483e+02 0.092 0.9268

glu 2.988e+00 3.352e+00 0.891 0.3733

age.2 3.223e+00 3.308e+00 0.974 0.3305

bmi.2 2.183e+00 3.966e+00 0.550 0.5823

map.2 -4.028e-01 3.412e+00 -0.118 0.9061

tc.2 3.175e+02 3.361e+02 0.945 0.3455

ldl.2 1.706e+02 2.536e+02 0.673 0.5016

hdl.2 8.246e+01 7.574e+01 1.089 0.2770

tch.2 3.683e+01 2.890e+01 1.274 0.2034

ltg.2 6.913e+01 8.239e+01 0.839 0.4019

glu.2 5.436e+00 4.482e+00 1.213 0.2260

age.sex 7.080e+00 3.496e+00 2.025 0.0435 *

age.bmi -8.596e-01 3.791e+00 -0.227 0.8208

age.map 8.825e-01 3.633e+00 0.243 0.8082

age.tc -7.566e+00 2.939e+01 -0.257 0.7969

age.ldl -3.204e+00 2.355e+01 -0.136 0.8919

age.hdl 9.964e+00 1.336e+01 0.746 0.4563

age.tch 8.808e+00 1.002e+01 0.879 0.3798

age.ltg 5.937e+00 1.066e+01 0.557 0.5778

age.glu 2.980e+00 3.827e+00 0.779 0.4367
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sex.bmi 3.077e+00 3.710e+00 0.829 0.4074

sex.map 4.213e+00 3.559e+00 1.184 0.2373

sex.tc 2.065e+01 2.813e+01 0.734 0.4634

sex.ldl -1.680e+01 2.233e+01 -0.752 0.4523

sex.hdl -5.940e+00 1.304e+01 -0.455 0.6491

sex.tch -6.249e+00 9.510e+00 -0.657 0.5115

sex.ltg -5.666e+00 1.079e+01 -0.525 0.5996

sex.glu 2.179e+00 3.507e+00 0.621 0.5348

bmi.map 7.368e+00 4.111e+00 1.792 0.0739 .

bmi.tc -1.438e+01 3.181e+01 -0.452 0.6514

bmi.ldl 1.150e+01 2.672e+01 0.431 0.6670

bmi.hdl 5.807e+00 1.571e+01 0.370 0.7118

bmi.tch -1.593e+00 1.099e+01 -0.145 0.8849

bmi.ltg 5.461e+00 1.219e+01 0.448 0.6544

bmi.glu 1.113e+00 4.335e+00 0.257 0.7975

map.tc 2.278e+01 3.249e+01 0.701 0.4837

map.ldl -1.556e+01 2.735e+01 -0.569 0.5698

map.hdl -8.919e+00 1.474e+01 -0.605 0.5455

map.tch -2.776e+00 9.457e+00 -0.294 0.7693

map.ltg -7.371e+00 1.295e+01 -0.569 0.5696

map.glu -6.356e+00 4.348e+00 -1.462 0.1447

tc.ldl -4.435e+02 5.605e+02 -0.791 0.4294

tc.hdl -1.872e+02 1.817e+02 -1.030 0.3036

tc.tch -1.050e+02 8.390e+01 -1.252 0.2113

tc.ltg -1.810e+02 6.270e+02 -0.289 0.7730

tc.glu -8.395e+00 2.836e+01 -0.296 0.7673

ldl.hdl 1.258e+02 1.508e+02 0.835 0.4045

ldl.tch 5.747e+01 7.002e+01 0.821 0.4124

ldl.ltg 1.320e+02 5.219e+02 0.253 0.8004

ldl.glu 4.077e+00 2.405e+01 0.170 0.8655

hdl.tch 5.659e+01 4.773e+01 1.186 0.2365

hdl.ltg 6.988e+01 2.195e+02 0.318 0.7504

hdl.glu 1.036e+01 1.413e+01 0.733 0.4640

tch.ltg 1.856e+01 2.975e+01 0.624 0.5330

tch.glu 1.122e+01 1.119e+01 1.003 0.3167

ltg.glu 3.977e+00 1.261e+01 0.316 0.7525

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Only 4 variables are “significant”
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Comparing Lasso, Ridge, and Elastic-Net:

Let’s try Lasso, Ridge, and elastic-net with α = .5 and see which
seems to work best.

To do this we will have to give cv.glmnet a prechosen set of cv
folds.
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Here is a set of folds for 10-fold cv.
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Left to right, Lasso, Ridge, Elastic(.5).
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I took the square root of the loss measures so that we are looking
at RMSE.
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It looks like Lasso and Enet are similar and better than Ridge, but,
as a practical matter they are all about the same.
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Seeing the Ridge Fit:

To check our understanding of the Ridge fit, we let x1 = bmi and
x2.1 be the standardized residuals from regressing map on bmi.

x1 = x[,3]; x2 = x[,4]

x2.1 = x2-(sum(x1*x2)/sum(x1^2))*x1

x2.1 = scale(x2.1)

Then we should have

β̂λ =
β̂

(1 + c λ)

where
β̂ =

< x , y >

< x , x >

and c depends on exactly how the penalty was scaled.
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Below is a plot of
β̂

β̂λ
versus λ.
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Does indeed look like
β̂

β̂λ
= 1 + c λ.
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BIC and Forward Step-Wise:

Let’s try BIC and forward stepwise.

First note that if you run the regression without the
transformations, that is with just the 10 x variables, then

BIC= 3584.648 (with 11 parameters).

With all the transformations

BIC = 3839.201 (with 65 parameters, counting the intercept).

123



If we run forwards step-wise using BIC as our greedy loss and
stopping criterion we get the model:

Call:

lm(formula = y ~ bmi + ltg + map + age.sex + bmi.map + hdl +

sex, data = ddf)

Residuals:

Min 1Q Median 3Q Max

-150.077 -39.269 -1.481 32.423 139.891

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.710e-08 2.523e+00 0.000 1.000000

bmi 2.481e+01 3.039e+00 8.165 3.53e-15 ***

ltg 2.406e+01 3.069e+00 7.840 3.53e-14 ***

map 1.477e+01 2.952e+00 5.004 8.16e-07 ***

age.sex 8.892e+00 2.552e+00 3.484 0.000545 ***

bmi.map 8.385e+00 2.552e+00 3.286 0.001100 **

hdl -1.324e+01 3.063e+00 -4.323 1.91e-05 ***

sex -1.133e+01 2.811e+00 -4.029 6.61e-05 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 53.05 on 434 degrees of freedom

Multiple R-squared: 0.534,Adjusted R-squared: 0.5265

F-statistic: 71.05 on 7 and 434 DF, p-value: < 2.2e-16

which has 7 terms and the variables bmi, ltg, map, age, sex, hdl.
Almost the same as Lasso!
BIC for forward model is 3551.2, with 8 parameters. 124



Here are the in-sample R-squared and RMSE from the
foward-stepwise:
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And the names of the variables as they come in:

[1] "bmi" "ltg" "map" "age.sex" "bmi.map" "hdl" "sex"

[8] "glu.2" "age.2" "map.glu" "tc" "ldl" "ltg.2" "age.ldl"

[15] "age.tc" "sex.map" "glu" "tch" "sex.tch" "sex.bmi" "tc.tch"

[22] "tch.glu" "hdl.glu" "map.tc" "bmi.ltg"
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Here are the BIC’s of the models found by forward stepwise.
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Here are the RMSE’s from 50 runs of 10-fold cv using forwards
step.
Remember, our knob is how many steps to take = number of
variables
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55 again !!!
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So, the methods are giving very similar results,

except for the p-values stuff.
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