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1. Introduction

When we did Naive Bayes we had to estimate

p(Xi = xi | Y = y) (or p(xi | y) ).

How did we do it?

We simply used the observed frequency:

To estimate p(Xi = xi | Y = y):
in the training data, out of the times Y = y ,

what fraction of observations have Xi = xi .
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If Xi ∼ Bern(p), we estimate p with the observed fraction of times
xi = 1.

We call p the parameter of the statistical model X ∼ Bern(p).

We consider a variety of statistical models and need to estimated
the associated parameters.

For example, if we assume Yi ∼ N(µ, σ2) then we have to estimate
(µ, σ2).

While the observed conditional frequency seems very reasonable for
esitmating probabilities, we want a general approach to estimating
the parameters of a statisical model.
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Maximimum likelihood is a very general appproach which we will
review.

Along the way, we will also review some very basic ideas from
optimization.
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2. Finding a Minimum, one variable

Let f be a function of a single variable, so that f (x) is an number
for x ∈ C ⊂ R.

x0 is a local minimum if f (x) ≥ f (x0) for all x close to x0.

x0 is a global minimum if f (x) ≥ f (x0) for all x ∈ C .
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Recall:

The derivative gives you a linear approximation to the function:

f (x)− f (a) ≈ (x − a)f ′(a).

For x close to a, f (x) ≈ f L(x).
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Neccessary Condition:

If x0 is a local min (or max) then f ′(x0) = 0.

Sufficient Condition:

If f ′(x0) = 0 and f ′′(x0) >, then x0 is a local minimum.

At a local minimum, the derivative is increasing. 6



Global Sufficient Condition

f is convex if

f (αx1 + (1− α)x2) ≤ αf (x1) + (1− α)f (x2), α ∈ [0, 1].

If f is convex and f ′(x0) = 0, then x0 is a global minimum.
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We us optimization a lot in Machine Learning.

In particular, learning on the training data is often done by some
kind of optimization.

For example, in the model yi ≈ β′xi we learn (estimate) β by
solving

minimize
β

n∑
i=1

(yi − β′xi )2

We will spend a chunk of time on versions of this problem.
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3. Maximum Likelihood, the Bernoulli

Suppose we have a statistical model

Y ∼ f (y | θ)

where θ is the parameter (possibly a vector).

Given data Y = y how can we estimate θ?

Maximum Likelihood:

Choose the θ that makes what you have seen most likely:

θ̂ = argmax
θ

f (y | θ)
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In the iid case, we have Y = (Y1,Y2, . . . ,Yn) with

Yi ∼ f (y | θ) iid ,

so

f (y | θ) =
n∏

i=1

f (yi | θ),

and the MLE is

θ̂ = argmax
θ

n∏
i=1

f (yi | θ).
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Note:

f (y | θ) viewed as a function of θ for a fixed y is called the
likelihood function.

In practice we often maximize the log of the likelihood or minimize
the negative of the log likelihood.
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FOC: “first order condition”, f ′ = 0.
So, the observed sample frequency is the MLE!

12



4. Projecting onto a vector

Let x and y ∈ Rn.

So, for example, x = (x1, x2, . . . , xn)′ .

We will find the solution to the following problem very useful:

min
β∈R
||y − βx ||2

where ||x ||2 =
∑

x2i .
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Recall:

x , y ∈ Rn,

The inner product is

< x , y >= x ′y = y ′x =
∑

xiyi .

The L2 or Euclidean norm (squared) is

||x ||2 =< x , x >= x ′x =
∑

x2i

x and y are orthogonal if

< x , y >= 0
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Note:

If x and y are orthogonal:

||x + y ||2 = < x + y , x + y >

= < x , x > +2 < x , y > + < y , y >

= ||x ||2 + ||y ||2
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ŷ is the orthogonal projection of y onto x .
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To solve our problem we have

So that obviously the min is obtained at β∗ = β̂.

17



5. Finding a Minimum, Several Variables

Now suppose x = (x1, x2, . . . , xp)′

and f (x) = f (x1, x2, . . . , xp) ∈ R.

How do we solve:

min
x

f (x)
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The Gradient:

∇f (x) =

[
∂f (x)

∂x1
,
∂f (x)

∂x2
, . . . ,

∂f (x)

∂xp

]
where

∂f (x)

∂xi

is what you get by holding all the xj , j 6= i fixed, and then
differentiating with respect to xi .
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The gradient is a multivariate derivative in that (skipping some
technical details):

f (x) ≈ f (a) +∇f (a)(x − a)

Note that ∇f (x) is a row vector so that the product above makes
sense with x a column vector.

An alternative notation is:

f (x) ≈ f (a)+ < ∇f (a), (x − a) >
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In R2, this looks like:
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Stolen off the web, changed a to x0:
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We can visualize the gradient using the contours of f .
A contour is the set {x : f (x) = c}.
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I If you want to increase f as fast as possible, go in the direction of the gradient
∇f .

I If you want to decrease f as fast as possible, go in the direction of the negative
gradient −∇f .

I If you want to move without changing f go in a direction orthogonal to the
gradient. The gradient is orthogonal (perpendicular) to the contour.
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Neccessary Condition for a local min/max:

If x∗ is a local min (or max) then we must have

∇f (x∗) = 0
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Again f is convex if,

f (αx1 + (1− α)x2) ≤ αf (x1) + (1− α)f (x2), α ∈ [0, 1].

exactly as before except that now x denotes a vector ∈ Rp.

As before, if f is convex, then a local minimum is a global
minimum.
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Convex function with linear approximation, 2 dimensional:

Convex function with linear approximation, 1 dimensional:
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6. Maximum Likelihood, the normal

Suppose

Yi ∼ N(µ, σ2), iid

what is the MLE of θ = (µ, σ2) ?
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We want to simplify
∑

(yi − µ)2.
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Here is another way.
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S =
∑

(yi − ȳ)2.
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7. The Multinoulli MLE

The fundamental Bernoulli random variable considers the case
where something is about to happen or not and we code one
possibility up as a 1 and the other as a 0.

The Multinoulli distribution consider the more general case where
there is a a set of k possible outcomes.

For example, if we survey a customer and ask them to rate our
product on a 1-5 scale then there are 5 possible outcomes.
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Let {1, 2, . . . , k} denote the possible outcomes for Y .

Let
p = (p1, p2, . . . , pk)

with
P(Y = j | p) = pj

Then
Y ∼ Multinoulli(p)

Given Yi ∼ Multinoulli(p) we want to compute the MLE of p.
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How do we maximize this likelihood?

With just two possible outcomes we had one variable,
p = P(Y = 1).

Now we have pj , j = 1, 2, . . . , k with the constraint
∑

pj = 1.

We also have 0 ≤ pj ≤ 1, but we won’t have to worry about this.

We could let pk = 1−
∑k−1

j=1 pj and then optimize over
(p1, p2, . . . , pk−1).

But, it is easier to use lagrange multipliers.
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8. Lagrange Multiplier

Let x ∈ Rp.

We want to solve:

min
x

f (x), subject to g(x) = 0

Let
L(x , λ) = f (x) + λg(x)

and then minimize L unconstrained over (x , λ).

Differentiating L with respect to λ gives:

g(x) = 0

at the min/max.
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Differentiating L with respect to x give:

∇f (x) + λ∇g(x) = 0

at a local min (or max).
Because of the constraint g(x) = 0 you can only move orthogonal
to ∇g .

But, ∇f ∝ ∇g , tells you that “small” moves orthogonal to ∇g
will not change f so it is a local minimum or maximum.
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9. The Multinoulli MLE again

To obtain the Multinoulli MLE we will have

L(p) =
∏

p
mj

j

and we maximize this subject to∑
pj = 1.

We will max the log likelihood:

L(p, λ) =
∑
j

mj log(pj) + λ(
∑
j

pj − 1)
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The MLE is the observed sample frequency.
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10. KKT

We will have occasion to consider constraint sets of the form

g(x) ≤ 0

rather than just
g(x) = 0

The general Karush-Kuhn-Tucker (KKT) conditions covers the
situation where you have could have several inequality constraints
and several equality constraints.

But we just need one inequality constraint, so let’s get the
intuition for that case.
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KKT:

To minimize f (x) subject to g(x) ≤ 0, form

L(x , α) = f (x) + αg(x)

and then solve

minxmaxα,α≥0 L(x , α).

With α ≥ 0 we must have g(x) ≤ 0, since otherwise we could get
a max of infinity.

This looks hard to understand, but it just boils down to there are
two cases depending on whether the constraint is “binding” or not.
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Here is the case where the constraint is not binding.

The global min is in the interior of the set g(x) ≤ 0.

The neccessary condition is just ∇f = 0.
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Here is the key picture for the case where the constraint is binding.

Remember, ∇f is the direction in which f goes up the fastest!!
∇f points perpendicularly to the contour of f .

It is intuitive that ∇f + α∇g = 0 with α > 0.
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Example:

What happens when we do

min
x :||x ||≤c

a′x

What happens when we do

max
x :||x ||≤c

a′x
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With c = 1.
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