
More Probability, Continous Random
Variables

Rob McCulloch



1. Continuous Random Variables
2. Expection, Mean, Variance, Covariance



1. Continuous Random Variables

Sometimes it is inconvenient to list out all the possible values a
random variable can take on.

For example, we don’t want to list all the possible times a patient
could live for.

In this case we let our random variables take on on value in R, or
any value in a subset of R.

For example we might think of the time our patient live to be any
value in the subset of R given by {x ; x > 0}.
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In this case our random variable (or vector) is a continuous random
variable.

For continuous random variable we don’t talk about the probability
of a particular value, we can only talk about about the probability
of a set.

We use the probability density function (pdf) fx to specify the
probability of a set A by

p(X ∈ A) =

∫
A
fx(x) dx
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Example, the Uniform

The probability of any interval, is the area under the pdf over that
interval !!!

We write X ∼ U(a, b).
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Example, the Normal

We write X ∼ N(µ, σ2).
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For more than one random variable we have the joint density:

P(Y1 ∈ [a1, b1],Y2 ∈ [a2, b2]) =

∫ b1

a1

∫ b2

a2

f (y1, y2) dy1dy2
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Basic Properties

The basic properities we had in the discrete case extend to the
continous case:

f (y1, y2, y3, . . . , yn) =

f (y1) f (y2 | y1) f (y3 | y1, y2) . . . f (yn | y1, y2, . . . , yn−1)

If the Yi are independent then

f (y1, y2, . . . , yn) =
n∏

i=1

f (yi )
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Margining out:

f (y1) =

∫
f (y1, y2) dy2

Conditional:

f (y1 | y2) =
f (y1, y2)

f (y2)
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Bayes theorem:

f (y2 | y1) ∝ f (y2) f (y1 | y2)
= f (y1, y2)
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2. Expection, Mean, Variance, Covariance

Let Y be a random variable (or vector).

Sometimes we want to summarize the possible values of some
function of Y .

We use a probability weighted average:

Discrete:
E (h(Y )) =

∑
h(y)p(y)

Continuous:

E (h(Y )) =

∫
h(y) f (y) dy
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The key examples are the mean and variance of a univariate
random variable.

The Mean:

h(y) = y

E (Y ) =
∑

y p(y) (discrete)

=

∫
y f (y) dy (continuous)

We often write µ or µy for E (Y ).
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The Variance:

h(y) = (y − µ)2.

Var(Y ) =
∑

(y − µ)2 p(y) (discrete)

=

∫
(y − µ)2 f (y) dy (continuous)

We often write σ2 or σ2y for Var(Y ).

The Standard Deviation:

σ =
√

(σ2)

is the standard deviation.

Note that σ has the same units as Y .

The variance and standard deviation summarize how close a
random variable tends to be to its mean.
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Example, the Bernoulli:
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Example, the Normal:

You can show that for X ∼ N(µ, σ2),

E (X ) = µ, Var(X ) = σ2, σX = σ.

A small σ means the distribution is “tight” around µ !! 14



Covariance and Correlation:

The covariance and correlation are used to measure how much one
random variable looks like a linear function of another.

Let E (Y1) = µ1 and E (Y2) = µ2.

h(y1, y2) = (y1 − µ1)(y2 − µ2).

Cov(Y1,Y2) = E ((Y1 − µ1)(Y2 − µ2)).

We might write σX ,Y for Cov(X ,Y ), or σ12 for Cov(Y1,Y2).
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The Correlation

Let σi be the standard deviation of Yi .

Cor(Y1,Y2) =
σ12

(σ1 σ2)
.

The covariance divided by the product of the the standard
deviations.

We might write ρXY for Cor(X ,Y ) for ρ12 for Cor(Y1,Y2).
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Key Property of Correlation:

−1 ≤ ρX ,Y ≤ 1

The correlation is always between 1 and -1.

The closer the correlation is to 1, the more Y ≈ a+ bX
with b > 0.

The closer the correlation is to -1, the more Y ≈ a+ bX
with b < 0.
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Suppose X and Y are independent.

Then,

σXY = E ((X − µX )(Y − µy ))
= E (X − µ)E (Y − µ)
= 0× 0 = 0

Independent ⇒ ρXY = 0, but not the other way around.
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