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1. Probability and Machine Learning

In Machine Learning we often divide our tasks into directed or
undirected problems:

In directed problems we have variables x and y and we want to
predict y from x .

We can do this using ideas from probability:

I specify p(y | x), the conditional distribution of y given x .
(e.g. logistic regression, linear regression with normal errors).

I classification with Bayes theorem:
p(y), p(x | y) ⇒ p(x , y) ⇒ p(y | x).
(e.g Naive Bayes, LDA: linear discriminant analysis).

Using probability seems natural since just knowing x typically does
leave us sure about y , that is we do not have a deterministic model
y = f (x). 1



Note:

When y is a discrete variable (e.g binary) we have a classification
problem.

E.g. y =(is a text message spam or not) given x = (the text of the
message).

Note:

You don’t have to use probability models to do Machine Learning.

You can just cook up an algorithm and see how well it works (e.g
K nearest neighbors).
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Note:

In classification problems,

the p(y | x) approach is often called discriminative model, while
the Bayes theorem approach with p(x , y) is often called a
generative model.

But, the terminology is a little confusing in the literature.
Sometimes a “generative model” just means you have a probability
model.
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In undirected problems we just have x but we look for simplifying
structure in x .

I clustering, look for groups of similar observations.

I estimate p(x) (mixture of normals).

I LDA: latent dirichlet allocation (very popular model for text
data).
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In these notes we will briefly review very basic discrete probability
concepts and then learn the Naive Bayes algorithm, which uses the
Bayes theorem approach.

Don’t confuse Bayes Theorem with Bayesian statistics, that is a
different thing.
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2. Discrete Random Variables

A random variable is a number we’re not sure about.

Its distribution describes what we think it might turn out to be.

For a discrete random variable, we specify the distribution by:

I Listing all the possible numbers it can turn out to be.

I Assigning a probability to each possible outcome.

I Each probability is between 0 and 1.

I The probabilities add up to 1.

Note: “discrete” refers to the situation where can make the list
(we have a countable set of possible outcomes).
Later we will look at continuous random variable where such a list
is not practical.
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Example:

Suppose we are about to toss two coins.

Let X denote the number of heads.

Then the distribution of X might be given by

x P(X = x)

0 .25
1 .5
2 .25

Notation: P(X = x) is “the probability X turns out to be x”.
You will see other notations !!
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Example:

Let S denote sales next period (thousands of units).

Then the distribution of S might be given by

s P(S = s)

1 .095
2 .23
3 .44
4 .235

What is P(S > 2)?
What is P(S ≥ 2)?
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The Bernoulli Distribution

A very common situation is that we are wondering whether
something will happen or not.

Heads or tails, respond or don’t respond, .....

It turns out to be very convenient to code up one possibility as a 0,
and the other possibility as a 1.

The gives us the Bernoulli distribution.

X ∼ Bernoulli(p) means:

x P(X = x)

0 1-p
1 p
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Example:

You are about to toss a coin.

Let X be 1 if it comes up Heads and 0 if tails.

X ∼ Bernoulli(.5).

Example:

You are about to target a customer.

Let R be 1 if the respond (buy) and 0 otherwise.

For a particular customer we might have:

R ∼ Bernoulli(.05)
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3. Conditional, Joint, and Marginal Distributions

In general we want to use probability to address problems involving
more than one variable at the time.

For example we may need want to:

I describe our uncertainty about several quantities together
(the joint distribution)

I understand how learning values about some variables affects
our beliefs about others

(the conditional distribution).
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Suppose you are thinking about sales next quarter.
In order to think about sales, it may be helpful to think about sales
and what will happen to the economy.

Let E denote the performance of the economy next quarter... for
simplicity, say E = 1 if the economy is expanding and E = 0 if the
economy is contracting (what kind of random variable is this?)

Let’s assume p(E = 1) = 0.7

Let S denote my sales next quarter... and let’s suppose the
following probability statements:

s p(S = s|E = 1) s p(S = s|E = 0)

1 0.05 1 0.20
2 0.20 2 0.30
3 0.50 3 0.30
4 0.25 4 0.20

These are called Conditional Distributions 12



s p(S = s|E = 1) s p(S = s|E = 0)

1 0.05 1 0.20
2 0.20 2 0.30
3 0.50 3 0.30
4 0.25 4 0.20

I In blue is the conditional distribution of S given E = 1

I In red is the conditional distribution of S given E = 0

I We read: the probability of Sales of 4 (S = 4) given (or
conditional on) the economy is growing (E = 1) is 0.25.

The way S is related to E is captured by the difference between
the conditional distributions !!!
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The conditional distributions tell us about about what can happen
to S for a given value of E ... but what about S and E jointly?

p(S = 4 and E = 1) = p(E = 1)× p(S = 4|E = 1)

= 0.70× 0.25 = 0.175

In English, 70% of the times the economy grows and 1/4 of those
times sales equals 4... 25% of 70% is 17.5.

Notation:

P(S = 4,E = 1) is the same as p(S = 4 and E = 1).
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We can specify the distribution of the pair of random variables
(S ,E ) by listing all possible pairs and the corresponding probability.

(s, e) p(S = s,E = e)

(1,1) .035
(2,1) .14
(3,1) .35
(4,1) .175
(1,0) .06
(2,0) .09
(3,0) .09
(4,0) .06

Question: What is Pr(S = 1) ?
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We call the probabilities of E and S together the joint distribution
of E and S .

In general the notation is...

I p(Y = y ,X = x) is the joint probability the random variable
Y equals y AND the random variable X equals x .

I p(Y = y |X = x) is the conditional probability the random
variable Y takes the value y GIVEN that X equals x .

I p(Y = y) or p(X = x) are the marginal probabilities of
Y = y or X = x
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Important relationships

Relationship between the joint and conditional...

Pr(Y = y ,X = x) = Pr(X = x)× Pr(Y = y |X = x)

= Pr(Y = y)× Pr(X = x |Y = y)

Relationship between joint and marginal...

Pr(X = x) =
∑
y

Pr(X = x ,Y = y)

Pr(Y = y) =
∑
x

Pr(X = x ,Y = y)
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A Note on Notation

We have used the notations

P(Y = y), P(Y = y ,X = x), P(Y = y | X = x)

You will see all kinds of similar, but not exactly the same notations
for these fundamental concepts.

For example, we will sometimes use p(x , y) in place of
P(X = x ,Y = y) when it is clear from the context what we mean.

For example in the (S ,E ) example I could write P(S = s,E = e)
or just p(s, e).
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The Two-Way Table Display of the Joint Distribution

This is a nice way to display a joint distribution.
Same information as when we just listed the (s, e) pairs and their
probabilities but this way we can see some things more easily.
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Conditionals from Joints

We derived the joint distribution of (E , S) from the marginal for E
and the conditional S | E .

You can also calculate the conditional from the joint by doing it
the other way

Pr(Y = y ,X = x) = Pr(X = x)Pr(Y = y | X = x)

⇒

Pr(Y = y | X = x) =
Pr(Y = y ,X = x)

Pr(X = x)
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Example... Given E = 1 what is the probability of S = 4?
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Example... Given S = 4 what is the probability of E = 1?
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4. Bayes Theorem

So, in general, you can compute the joint from marginals and
conditionals and the other way around.

How you think about stuff depends on what’s easiest or what you
know, or what you care about.

Suppose you toss two coins: X is the first, Y is the second.
In each case 1 means a head and 0 a tail.
What is P(X = 1,Y = 1) = P(two heads) ?

(1) Directly figure out the joint distribution.
There are 4 possible outcomes for the two coins and each is
equally likely so it is 1/4.

(2) Figure out some marginals and conditionals.
P(X = 1,Y = 1) = P(X = 1) ∗ P(Y = 1 | X = 1) =
(1/2) ∗ (1/2) = 1/4.
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Bayes Theorem refers to the situation where we build a model for
(Y ,X ) by thinking about

Pr(X = x | Y = y), Pr(Y = y).

and then, having observed X = x compute

Pr(Y = y | X = x)
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Example: Disease Testing

Disease testing example...

Let D = 1 indicate you have a disease.
Let T = 1 indicate that you test positive for it
We know the marginal of D and the conditional of T given D.
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If you take the test and the result is positive, you are really
interested in the question: Given that you tested positive, what is
the chance you have the disease?
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p(D = 1|T = 1) =
0.019

(0.019 + 0.0098)
= 0.66
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The computation of p(y |x) from p(y) and p(x |y) is called Bayes
theorem...

p(y |x) =
p(x , y)

p(x)
=

p(x , y)∑
y p(x , y)

=
p(y)p(x |y)∑
y p(y)p(x |y)

In the disease testing example:

p(D = 1|T = 1) = p(T=1|D=1)p(D=1)
p(T=1|D=1)p(D=1)+p(T=1|D=0)p(D=0)

p(D = 1|T = 1) = 0.019
(0.019+0.0098) = 0.66
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Note:

A nice way to think about Bayes theorem is with the odds ratio:

p(y | x) =
p(x , y)

p(x)
∝ p(x , y) = p(y) p(x | y)

In the y binary case we have

p(Y = 1 | x)

p(Y = 0 | x)
=

p(Y = 1)

p(Y = 0)

p(x | Y = 1)

p(x | Y = 0)

The posterior odds ratio =
the prior odds ratio × the likelihood ratio.

p(Y=1)
p(Y=0) : the prior odds ratio.

p(x |Y=1)
p(x |Y=0) : the likelihood ratio.

p(Y=1|x)
p(Y=0|x) : the posterior odds ratio.
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Disease Testing:

p(Y = 1|x)

p(Y = 0|x)
=

p(Y = 1)

p(Y = 0)

p(x |Y = 1)

p(x |Y = 0)

p(Y=1)
p(Y=0) : the prior odds ratio.

p(x |Y=1)
p(x |Y=0) : the likelihood ratio.

p(Y=1|x)
p(Y=0|x) : the posterior odds ratio.

Disease testing:
posterior odds: .66/(1-.66) = 1.941176
prior odds: .02/.98 = 0.02040816
likelihood ratio: .95/.01 = 95

prior odds x likelihood ratio: .0204*95 = 1.938
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Probability from odds:

p(Y = 1|x) =
p(Y = 1) p(x |Y = 1)

p(Y = 0) p(x |Y = 0) + p(Y = 1) p(x |Y = 1)

Divide top and bottom by p(Y = 0) p(x |Y = 0):

p(Y = 1|x) =
odds

1 + odds

Disease testing:
1.938/(1 + 1.938) = 0.6596324
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5. Several Variables

Of course, we often want to think about more than two variables
at a time.

We can extend the ideas we used with two variables to many
variables.

Suppose we have the three random variables,

(Y1,Y2,Y3)

Then,

Pr(Y1 = y1,Y2 = y2,Y3 = y3) =

Pr(Y1 = y1)Pr(Y2 = y2 | Y1 = y1)Pr(Y3 = y3 | Y1 = y1,Y2 = y2)

33



Or, using more succinct notation:

p(y1, y2, y3) = p(y1) p(y2 | y1) p(y3 | y1, y2)

You can keep going for any number of variables !!
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Example

Suppose we have 10 voters.
4 are republican and 6 are democratic.

We randomly choose 3.

Let Yi be 1 if the i th voter is a democrat and 0 otherwise,
i = 1, 2, 3.

What is

Pr(Y1 = 1,Y2 = 1,Y3 = 1)

What is the probability of getting three democrats in a row ??
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Pr(Y1 = 1,Y2 = 1,Y3 = 1) =

Pr(Y1 = 1) p(Y2 = 1 | Y1 = 1)Pr(Y3 = 1 | Y1 = 1,Y2 = 1)

= (6/10)(5/9)(4/8)

= (1/6) = .167.
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When we randomly pick a person from a population of people, and
then randomly pick a second from the ones left, and so on, we call
it sampling without replacement.

If we put the person back each time and randomly choose from the
whole group each time, then we call it sampling with replacement.
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Suppose we sample from our 10 voters with replacement.

Now what is

Pr(Y1 = 1,Y2 = 1,Y3 = 1)
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Pr(Y1 = 1,Y2 = 1,Y3 = 1) =

Pr(Y1 = 1) p(Y2 = 1 | Y1 = 1)Pr(Y3 = 1 | Y1 = 1,Y2 = 1)

= (6/10)(6/10)(6/10)

= .63 = .216
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Notice that when we sample with replacement

p(Y2 = 1 | Y1 = y1) and Pr(Y3 = 1 | Y1 = y1,Y2 = y2)

do not depend on y1 and y2.

What happens for Y1 does not affect what we think will happen
for Y2 and what happens for Y1 and Y2 does not affect what will
happen for Y3.

In this case we say the random variables are independent.
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6. Independence

Given a bunch of random variables, we say they are independent of
each other if the conditional distribution of any one of them does
not depend on anything you might observe for any of the others.

Example

Suppose I am about to toss 100 coins.

Let Yi be 1 if the i th coin is a head and 0 otherwise.

What is Pr(Y3 = 1)?

What is Pr(Y3 = 1 | Y1 = 1,Y2 = 0) ?
What is Pr(Y3 = 1 | Y1 = 0,Y2 = 1) ?
What is Pr(Y3 = 1 | Y1 = 0,Y2 = 0) ?
What is Pr(Y3 = 1 | Y1 = 1,Y2 = 1) ?
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What is

Pr(Y100 = 1 | Y1 = 1,Y2 = 1, . . . ,Y99 = 1) first 99 are heads?

What is

Pr(Y1 = 1,Y2 = 1,Y3 = 1, . . . ,Y100 = 1) 100 heads in a row!!?
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Independence, Conditional Equals Marginal

If random variables are independent then the conditional is the
marginal.

For two random variables X and Y if X and Y are independent
then,

Pr(Y = y | X = x)

does not depend on x .

We also have:

Pr(Y = y | X = x) = Pr(Y = y)

What you believe about Y knowing X = x , is the same as what
you believe if you know nothing about X .
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Example

X is 1 if first coin is head.
Y is 1 if second coin is head.

What is

P(Y = 1 | X = 1)?

What is

P(Y = 1 | X = 0)?

What is

P(Y = 1)?
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Independence, Joints, and Marginals

If X and Y are independent then the joint is the product of the
marginals:

p(x , y) = p(x) p(y | x)

= p(x) p(y)

This also works “the other way”, that is, if the joint is the product
of the marginals then they are independent.
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Example

You are about to manufacture two parts.

X = 1 if part one fails, 0 else.
Y = 1 if part two fails, 0 else.

The table below gives the joint distribution of X and Y .

X
0 1

0 .72 .08
Y

1 .18 .02
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X
0 1

0 .72 .08
Y

1 .18 .02

Pr(Y = 1 | X = 0) = .18/.9 = .2
Pr(Y = 1 | X = 1) = .02/.1 = .2
Pr(Y = 1) = 18 + .02 = .2

Pr(Y = 1,X = 1) = .02
Pr(Y = 1)Pr(X = 1) = .2 ∗ .1 = .02.

X and Y are independent.
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For random variables Yi , if they are independent we have

p(y1, y2, . . . , yn) =

p(y1) p(y2 | y1) p(y3 | y1, y2) . . . p(yn | y1, y2, . . . , yn−1)

= p(y1) p(y2) p(y3) . . . p(yn)

Example

If Yi is 1 if the i th coin is a head, 0 else, i = 1, 2, . . . , 10, what is

p(1, 1, . . . , 1)

10 heads in a row?

p(1, 1, . . . , 1) =

= p(1) p(1) p(1) . . . p(1)

= .510 = 0.0009765625.
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7. IID

Suppose we are about to toss 100 coins.

Let Yi be 1 if heads, 0 else,

We usually think the Y ’s are independent.

In addition, we usually think they are identically distributed, that
is, each one has the same marginal distribution.

What is Pr(Y20 = 1)?
What is Pr(Y98 = 1)?
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When random variables are independent and identically distributed
we say they are IID.

I: independent

ID: identically distributed.
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In our coins example, each Yi ∼ Bernoulli(.5).

We can succinctly describe coin tossing by

Yi ∼ Bernoulli(.5), IID
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Example

Suppose we have 10 voters. 4 are republican and 6 are democratic.

We randomly choose 3, sampling with replacement.

Let Yi be 1 if the i th voter is a democrat and 0 otherwise,
i = 1, 2, 3.

How can we describe the joint distribution of (Y1,Y2,Y3), are they
IID?
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Example

Suppose we have 10 voters. 4 are republican and 6 are democratic.

We randomly choose 3, sampling without replacement.

Let Yi be 1 if the i th voter is a democrat and 0 otherwise,
i = 1, 2, 3.

How can we describe the joint distribution of (Y1,Y2,Y3), are they
IID?
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Example

Suppose we have 1,000,000 voters. 400,000 are republican and
600,000 are democratic.

We randomly choose 3, sampling without replacement.

Let Yi be 1 if the i th voter is a democrat and 0 otherwise,
i = 1, 2, 3.

How can we describe the joint distribution of (Y1,Y2,Y3), are they
IID?
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Example

Suppose I am about to toss a die 100 times.

Let Di be the outcome for the i th toss
(a number in {1, 2, 3, 4, 5, 6}).

Are the Di IID?
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Example

Suppose an experienced NBA player is about to take repeated
free-throws.

Let Yi be 1 if he makes the i th attempt and 0 otherwise.

Are these Yi iid Bernoulli?
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This is known at the “hot hand” question.

Most people who play sports believe that the can get get “hot” so
that if they made the last few, they are more likely to make the
next one.

However, if you look at the data, it looks IID Bernoulli!!

How do you look at the data to see if it looks IID Bernoulli.
That is covered in the notes “Modeling with IID Bernoulli Draws”.
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Example

Suppose the first penalty in an NHL game is on team A.

For subsequent penalties Pi = 1 if the penalty is on a different
team than the previous one and 0 otherwise.

Are the P’s independent?

Are they IID?
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These are not IID.

If the last two (or three!) penalties were on the same team, it
becomes quite a bit more likely that the next penalty will be on the
other team.

See
Reversal of fortune: a statistical analysis of penalty calls in the
national hockey league”, (2014), Journal of Quantitative Analysis
in Sports 10 (2), 207-224 (Jason Abrevaya and Robert McCulloch)
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Example

Suppose you are monitoring a stock and for every 10 minute
interval, you record whether the price went up or down.

Let Ui be 1 if it goes up in the i th interval, 0 otherwise.

Are the Ui IID?
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Of course, this is a much studied question.

We leave this to your finance courses but just note that it is very
interesting how little dependence there is!!!!
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8. Bayes Rule Classification

Consider the directed data mining problem with a categorical Y .

Many methods can be viewed as an attempt to estimate:

p(y |x)

the conditional distribution of Y given X = x .

For example in logistic regression we have:

p(y = 1|x) ∼ Bernoulli(p(x)), p(x) =
ex

′β

1 + ex ′β
.

where x = (x1, x2, . . . , xp)′ and β = (β1, β2, . . . , βp)′.
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An alternative approach is to estimate the full joint distribution of
(X ,Y ) by estimating the marginal for Y (p(y)) and the
conditional for X (p(x |y)).

We then have the joint via:

p(x , y) = p(y) p(x |y).

And classification is then obtained from Bayes Theorem:

p(y |x) =
p(y)p(x |y)

p(x)

∝ p(y)p(x |y)

As usual we can predict the most probable y or make a decision
based on the probabilities.
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In general, it seems more straighforward to estimate p(y |x) directly
but some well known approaches take the Bayes-rule path.

For example, for x numeric, classic discriminant analysis assumes

p(x |y) ∼ N(µy ,Σ).

Remember, Y is discrete and we have to estimate p(x |y) for each
possible y .
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9. Naive Bayes Classification

Naive Bayes classification uses the Bayes Theorem approach to
classification.

The tricky part is that we would like this to work for large x!!!

x = (x1, x2, . . . , xp)

where p may be large !!!!

In our application we will have p = 1, 136 !!

How do we get p(x |y) from the data when p is large???
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Naive Bayes classification simplifies the problem by assumming
that the elements of X = (X1,X2, . . . ,Xp) are conditionally
independent given Y :

p(x , y) = p(y) p(x | y) = p(y)
∏
i

p(xi |y)

Each coordinate xi of x gets to multiply in it’s own contribution of
evidence about y depending on how likely xi would be if Y = y .
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For example, suppose we just have x = (x1, x2) and each x is
binary (0 or 1).

p(Y = 1|X1 = 1,X2 = 0) =

=
p(Y = 1)p(X1 = 1,X2 = 0|Y = 1)

p(Y = 1)p(X1 = 1,X2 = 0|Y = 1) + p(Y = 0)p(X1 = 1,X2 = 0|Y = 0)

=
p(Y = 1)p(X1 = 1|Y = 1)p(X2 = 0|Y = 1)

p(Y = 1)p(X1 = 1|Y = 1)p(X2 = 0|Y = 1) + p(Y = 0)p(X1 = 1|Y = 0)p(X2 = 0|Y = 0)

Same idea works with p x variables instead of 2 !!!
You just have to estimate p(Xi = 1|y) for each i !!!
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To draw (X ,Y ), draw Y and then each Xi | Y independently.

Note, this graphical representation of the structure of the joint
distribution is a simple but important example of a graphical
model, more specifically, a directed acyclic graph (DAG). Hopefully
we’ll get some time to talk more about this towards the end of the
course.

68



NB has some key advantages:

I We only have to estimate the low dimension p(xi |y) instead of
the high dimensional p(x |y) !!!!

I Many small bits of information from each xi can be combined.

I It is simple.

The main disadvantage is that the conditional independence
assumption often seems inappropriate. However, this does not
seem to keep from working very well in practice !!!

According to Mladen Kolar,
NB is the single most used classifier out there. NB often
performs well, even when the assumption is violated.
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10. Sentiment Analysis: Spam or Ham

Sentiment analysis tries to understand text documents.

A popular approach is to combine “bag of words” with NB.

Each word in the document provides an additional independent
piece of evidence about the kind of document it is.

A simple example is trying to classify the document as spam or
not: “spam or ham”.
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Bag of words means just that, we ignore the order of the words.

The document:
When the lecture is over, remember to wake up the person
sitting next to you in the lecture room.

is the same as the document,
in is lecture lecture next over person remember room
sitting the the the to to up wake when you
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SMS Spam Data:

Note: this follows Chapter 4 of “Machine Learning with R”, by
Brett Lanz.

Note: sms: short message service.

Have 5,559 sms text message documents.

Each one is labelled as spam or ham.

Here is the first (ham) and fourth (spam) observation:

> smsRaw[1,]

type text

1 ham Hope you are having a good week. Just checking in

> smsRaw[4,]

type

4 spam

text

4 complimentary 4 STAR Ibiza Holiday or £10,000 cash needs your URGENT collection.

09066364349 NOW from Landline not to lose out! Box434SK38WP150PPM18+
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Work flow:

I clean: tolower, kill numbers, punctuation, stopwords

I stem: (help,helped,helping,helps) becomes
(help,help,help,help)

I tokenization: split a document up into single words (or
“tokens” or “terms”).

I document term matrix (DTM): rows indicate documents
columns are counts for terms.

I train/test split.

I throw away low count terms.

I convert DTM to indicators: Yes if the word (term) is in the
document, 0 else.

I do Naive Bayes!!
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Note:

Most of the work is processing the data !!!!!

This is typically the case in real world applications.

Getting the data into a form that allows you to analysize it is time
consuming and very important.

Garbage in, garbage out !!!

In class we will typically focus on getting a basic understanding of
the methods and don’t emphasize the “data wrangling”.
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Clean and Stem

Here are the first two documents:

> smsRaw$text[1]

[1] "Hope you are having a good week. Just checking in"

> smsRaw$text[2]

[1] "K..give back my thanks."

Here are the first 2 docs after cleaning.
smsCC is the cleaned data in the Corpus data structure from the
tm R package. smsCC is for sms data as a Cleaned Corpus.

> smsCC[[1]][1]

$content

[1] "hope good week just check"

> smsCC[[2]][1]

$content

[1] "kgive back thank"

did not work too well!!
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Tokenize and get DTM

Tokenization gives us 6518 words (or terms) from all the 5,559 sms
documents.

The i th row of the DTM gives us the count for each term in
document i .

> print(dim(smsDtm))

[1] 5559 6518

> library(slam) #for col_sums

> summary(col_sums(smsDtm)) #summarize total time a term is used.

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.000 1.000 1.000 6.776 4.000 658.000

> terms = smsDtm$dimnames$Terms

> nterm = length(terms)

> set.seed(14)

> ii = sample(1:nterm,20)

> terms[ii]

[1] "effect" "pinku" "wikipediacom" "mundh" "wwwsmsconet"

[6] "marsm" "voic" "itz" "logo" "hip"

[11] "transfr" "colin" "leo" "technolog" "text"

[16] "scratch" "graze" "prolli" "tech" "ofsi"

76



Word frequencies for ham:

Word frequencies for spam:
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Train/Test

We split our data into train/test:
train: we estimate/learn/train our model using the training data.
test: see how well we predict on the test data.

#train and test

# creating training and test datasets

smsTrain = smsDtm[1:4169, ]

smsTest = smsDtm[4170:5559, ]

# also save the labels

smsTrainy = smsRaw[1:4169, ]$type

smsTesty = smsRaw[4170:5559, ]$type

> prop.table(table(smsTrainy))

smsTrainy

ham spam

0.8647158 0.1352842

> prop.table(table(smsTesty))

smsTesty

ham spam

0.8683453 0.1316547
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Throw Away Terms with Low Frequency

# save frequently-appearing terms to a character vector

smsFreqWords = findFreqTerms(smsTrain, 5)

> str(smsFreqWords)

chr [1:1136] "abiola" "abl" "abt" "accept" "access" "account" ...

> length(smsFreqWords)

[1] 1136

# create DTMs with only the frequent terms

smsFreqTrain = smsTrain[ , smsFreqWords]

smsFreqTest = smsTest[ , smsFreqWords]

> dim(smsFreqTrain)

[1] 4169 1136

> dim(smsTest)

[1] 1390 1136
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Convert Counts to Indicators

Convert number of times a term is in a document to just whether
or not it is in the document.

#convert counts to if(count>0) (yes,no)

convertCounts <- function(x) {

x <- ifelse(x > 0, "Yes", "No")

}

# apply() convert_counts() to columns of train/test data

# these are just matrices

smsTrain = apply(smsFreqTrain, MARGIN = 2, convertCounts)

smsTest <- apply(smsFreqTest, MARGIN = 2, convertCounts)

> dim(smsTrain)

[1] 4169 1136

> smsTrain[1:3,1:5]

Terms

Docs abiola abl abt accept access

1 "No" "No" "No" "No" "No"

2 "No" "No" "No" "No" "No"

3 "No" "No" "No" "No" "No"
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We are ready for NB!!!

library(e1071)

smsNB = naiveBayes(smsTrain, smsTrainy)

> smsNB$tables[1:3]

$abiola

abiola

smsTrainy No Yes

ham 0.998058252 0.001941748

spam 1.000000000 0.000000000

$abl

abl

smsTrainy No Yes

ham 0.994729542 0.005270458

spam 1.000000000 0.000000000

$abt

abt

smsTrainy No Yes

ham 0.995839112 0.004160888

spam 1.000000000 0.000000000

The tables are our p(xi |y) terms !!
y is ham or spam and xi are the words(terms): abiola, abl, abt, .....

That is p(abiola = Yes | y = ham) = 0.001941748.
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$age

age

smsTrainy No Yes

ham 0.998613037 0.001386963

spam 0.978723404 0.021276596

What is p(y = spam|age = Yes)?
(The prob the sms is spam given the word age is in it).

Let’s use p(y = spam) = .14, the training data proportion.

p(y = spam|age = Yes) =

p(y=spam)p(age=Yes|y=spam)
p(y=spam)p(age=Yes|y=spam)+p(y=ham)p(age=Yes|y=ham)

> .14*0.021276596/(.14*0.021276596 + .86*0.001386963)

[1] 0.7140633
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In [1]: priodds = .14/.86

In [2]: likerat = 0.021276596/0.001386963

In [3]: priodds

Out[3]: 0.16279069767441862

In [4]: likerat

Out[4]: 15.340420761044093

In [5]: postodds = priodds*likerat

In [6]: postodds

Out[6]: 2.497277798309504

In [7]: pspam = postodds/(1+postodds)

In [8]: pspam

Out[8]: 0.7140633207681201

age was 15 times more likely to be in the message if it was spam!!
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$age

age

smsTrainy No Yes

ham 0.998613037 0.001386963

spam 0.978723404 0.021276596

$adult

adult

smsTrainy No Yes

ham 0.999445215 0.000554785

spam 0.994680851 0.005319149

What is p(y = spam|age = Yes, adult = Yes)?
(The prob the sms is spam given the word age is in it and the word
adult is in it).

p(y = spam|age = Yes, adult = Yes) =

p(spam)p(age=Y |spam)p(adult=Y |spam)
p(spam)p(age=Y |spam)p(adult=Y |spam)+p(ham)p(age=Y |ham)p(age=Y |ham)

> .14*0.021276596*0.005319149/(.14*0.021276596*0.005319149 + .86*0.001386963*0.000554785)

[1] 0.9599091
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Ok, let’s try it with all the terms (words) !!!

Out of Sample Confusion Matrix
yhat = predict(smsNB,smsTest)

library(gmodels)

CrossTable(yhat, smsTesty,

prop.chisq = FALSE, prop.t = FALSE, prop.r = FALSE,

dnn = c(’predicted’, ’actual’))

| actual

predicted | ham | spam | Row Total |

-------------|-----------|-----------|-----------|

ham | 1201 | 30 | 1231 |

| 0.995 | 0.164 | |

-------------|-----------|-----------|-----------|

spam | 6 | 153 | 159 |

| 0.005 | 0.836 | |

-------------|-----------|-----------|-----------|

Column Total | 1207 | 183 | 1390 |

| 0.868 | 0.132 | |

-------------|-----------|-----------|-----------|

Missclassification rate:
36/1390 = 0.02589928

% spam detected: .836.

> 153/(153+30)

[1] 0.8360656
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Try it again with laplace=1, add 1 to each count when estimating
th 2x2 tables.

> smsNB2 = naiveBayes(smsTrain, smsTrainy,laplace=1)

> smsNB2$tables[1:3]

$abiola

abiola

smsTrainy No Yes

ham 0.997782090 0.002217910

spam 0.998233216 0.001766784

$abl

abl

smsTrainy No Yes

ham 0.994455226 0.005544774

spam 0.998233216 0.001766784

$abt

abt

smsTrainy No Yes

ham 0.995564181 0.004435819

spam 0.998233216 0.001766784

Got rid of the 0/1 conditional probabilities, which are extreme.
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> yhat2 = predict(smsNB2,smsTest)

> CrossTable(yhat2, smsTesty,

+ prop.chisq = FALSE, prop.t = FALSE, prop.r = FALSE,

+ dnn = c(’predicted’, ’actual’))

| actual

predicted | ham | spam | Row Total |

-------------|-----------|-----------|-----------|

ham | 1202 | 28 | 1230 |

| 0.996 | 0.153 | |

-------------|-----------|-----------|-----------|

spam | 5 | 155 | 160 |

| 0.004 | 0.847 | |

-------------|-----------|-----------|-----------|

Column Total | 1207 | 183 | 1390 |

| 0.868 | 0.132 | |

-------------|-----------|-----------|-----------|

Not too different.
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