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1. The Neural Net Model for Numeric Y

We will look at two examples of fitting neural nets: the zagat data
and the tabloid data.

zagat has numeric y and tabloid has binary y.

zagat is simple enough that it is a good place to get acquainted
with the basic ideas.

Tabloid is more realistic.
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the x ’s must be numeric !!!

Since we will be regularizing we will have to standardize
(as usual).
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Here is the zagat data:

zag = read.table("zagat.txt",header=T)

summary(zag)

food decor service price

Min. :14.00 Min. : 2.00 Min. :10.00 Min. :11.00

1st Qu.:18.00 1st Qu.:14.00 1st Qu.:16.00 1st Qu.:25.00

Median :20.00 Median :16.50 Median :18.00 Median :32.50

Mean :19.61 Mean :16.58 Mean :17.77 Mean :33.32

3rd Qu.:21.00 3rd Qu.:20.00 3rd Qu.:20.00 3rd Qu.:41.00

Max. :27.00 Max. :28.00 Max. :26.00 Max. :65.00

Let’s rescale so that each x is in (0,1).
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> x = zag$food

> xst = (x-min(x))/(max(x)-min(x))

> summary(xst)

Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 

0.0000  0.3077  0.4615  0.4312  0.5385  1.0000 

> plot(x,xst)

Subtract off the min and divide by max-min.

The other obvious way to standardize is to subtract
off the mean and divide by the standard deviation.
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Standardize each of the tree zag x’s:

minv = rep(0,3)

maxv = rep(0,3)

zagsc = zag

for(i in 1:3) {

minv[i] = min(zag[[i]])

maxv[i] = max(zag[[i]])

zagsc[[i]] = (zag[[i]]-minv[i])/(maxv[i]-minv[i])

}

First, I will just use the one x, food, to keep things
simple.
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> library(nnet)

First you have to load the neural net library, nnet:

Here is the command:

> znn = nnet(price~food,zagsc,size=3,decay=.1,linout=T)

As usual, a data structure is returned containing
(in some possibly obscure way!!)
the results.

The first two arguments are familiar.

linout=T is appropriate for a numeric y.
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size and decay, are the two key parameters for controlling the
flexibility of the neural net fit.

After we understand the basic structure of the model we will
discuss these.

These will be the parameters that control the complexity of the
model like k in KNN and λ in the LASSO.
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Let’s have a look at the fits.
Just as with trees and regression,
we use the predict command:

> fznn = predict(znn,zagsc)

> plot(zagsc$food,zagsc$price)

> oo = order(zagsc$food)

> lines(zagsc$food[oo],fznn[oo],col="red",lwd=2)

> abline(lm(price~food,zagsc)$coef)

The red is the nn fit
and the straight
line is linear 
regression.

zzn: nnet fit
zagsc: data frame with
scaled x’s.
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What is the structure of the model ?

> summary(znn)

a 1-3-1 network with 10 weights

options were - linear output units  decay=0.1

b->h1 i1->h1 

4.35  -0.24 

b->h2 i1->h2 

-7.42  21.41 

b->h3 i1->h3 

-9.93  13.28 

b->o h1->o h2->o h3->o 

12.33 12.09 10.70 22.74 

What does this mean ?
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> z = (-100:100)/25

> fz = exp(z)/(1+exp(z))

> plot(z,fz)

Let,
z

z

eF(z)
1 e

=
+

First note:

This F is often
called the
logistic function.
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Let,
z

z

eF(z)
1 e

=
+

food

z1=4.35-.24food z2=-7.42-21.41food z3=-9.93-13.28food 

y=12.33 + 12.09F(z1) +  10.70F(z2) + 22.74F(z3)

1. Form several different linear functions of the x’s.
2. Apply the logistic function to each.
3. Take a linear combination of the results of 2.
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The z’s are called the hidden layer.

Each of the z’s (linear function) is called a unit.

In the call to nnet the parameter "size" is the number
of units in the hidden layer.
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> znn = nnet(price~food,zagsc,size=5,decay=.1,linout=T)

> summary(znn)

a 1-5-1 network with 16 weights

options were - linear output units  decay=0.1

b->h1 i1->h1 

2.70   0.40 

b->h2 i1->h2 

-9.69  13.02 

b->h3 i1->h3 

0.71  -5.99 

b->h4 i1->h4 

-6.63  19.76 

b->h5 i1->h5 

2.70   0.39 

b->o h1->o h2->o h3->o h4->o h5->o 

7.41  7.00 23.30  7.62 13.56  6.99 

Here is the
fit of a neural
net with
5 units
in the hidden
layer.

the coefficients for the
5 linear functions of x,
the 5 z’s.

the coefficients for
the five f(z)
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All three x’s
> znn = nnet(price~.,zagsc,size=5,decay=.1,linout=T)

> fznn = predict(znn,zagsc)

> 

> zlm = lm(price~.,zagsc)

> fzlm = predict(zlm,zagsc)

> 

> temp = data.frame(y=zagsc$price,fnn=fznn,flm=fzlm)

> pairs(temp)

> 

> print(cor(temp$y,temp$fnn))

[1] 0.867858

> print(cor(temp$y,temp$flm))

[1] 0.829138

> print(cor(temp$fnn,temp$flm))

[1] 0.9705388

Using R2, nnet fit is a little better in sample, but quite similar
to the linear regression fit.

neural net
fit 

linear reg
fit 
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> summary(znn)

a 3-5-1 network with 26 weights

options were - linear output units  decay=0.1

b->h1 i1->h1 i2->h1 i3->h1 

-5.64  -2.64  11.48   8.31 

b->h2 i1->h2 i2->h2 i3->h2 

-18.09  20.98  19.53  -0.64 

b->h3 i1->h3 i2->h3 i3->h3 

1.45  -4.79   1.95   1.00 

b->h4 i1->h4 i2->h4 i3->h4 

1.44  -0.94  -7.64   3.35 

b->h5 i1->h5 i2->h5 i3->h5 

-20.40   9.93  14.09   4.48 

b->o  h1->o  h2->o  h3->o  h4->o  h5->o 

5.15  13.15  13.33   6.75  12.51  24.42 

The fitted
model with
3 x’s and
5 units
in the hidden
layer.

a 3-5-1
network.
3 x’s,
5 units,
1 y.

# of weights = 4*5 + 6.
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The General Model

x

1 10 11 1 1k kz x x= β + β + + β 2 20 21 1 2k kz x x= β + β + + β m m0 m1 1 mk kz x x= β + β + + β........

0 1 1 m mŷ F(z ) F(z )= β + β + + β

k x’s
m hidden units.

Why on earth, would this work ?

A k-m-1 network.
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If you find this a bit hard to grasp, you are not alone.

A basic knock on neural nets is that it is hard to
interpret the model !!
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Another way to draw the model has a node and a connect for each
x and the intercept.

A 2-2-1 net:

I1

I2

x1

x2

H1

H2

O1 y

B1 B2

In neural-net world the intercepts are called the biases and the
coefficients are called the weights.
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2. Size and Decay

The size of the neural net is the number of units in the hidden
layer.

Clearly, the more units the richer the model.

The more we are able to fit the data.

The more we are able to overfit the data.
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The decay parameter is the L2 regularlization parameter.

Fit minimizes:

error + decay ∗
∑

coefficient2

where, for example,

error =
∑

(yi − ŷi )
2.
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Whether a coefficient is large or small depends on the 
units of the x’s.

This is the fundamental reason we rescale the x’s.  

Only if the x’s are on the same scale does the decay 
parameter work properly.

People have found that in practice the decay parameter 
is useful for walking the fit/overfit line.
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Let’s do a little experiment with size and decay to
see how they affect the fit with price on food
(so we can see what happens).

Four different fits with size = 3 and 50,
decay = .5 and .00001.

znn1 = nnet(price~food,zagsc,size=3,decay=.5,linout=T)

znn2 = nnet(price~food,zagsc,size=3,decay=.00001,linout=T)

znn3 = nnet(price~food,zagsc,size=50,decay=.5,linout=T)

znn4 = nnet(price~food,zagsc,size=50,decay=.00001,linout=T)

temp = data.frame(price = zagsc$price, food = zagsc$food)

znnf1 = predict(znn1,temp)

znnf2 = predict(znn2,temp)

znnf3 = predict(znn3,temp)

znnf4 = predict(znn4,temp)
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> par(mfrow=c(2,2))

> plot(zagsc$food,zagsc$price)

> lines(zagsc$food[oo],znnf1[oo],lwd=2)

> title("size=3, decay=.5")

> plot(zagsc$food,zagsc$price)

> lines(zagsc$food[oo],znnf2[oo],lwd=2)

> title("size=3, decay=.00001")

> plot(zagsc$food,zagsc$price)

> lines(zagsc$food[oo],znnf3[oo],lwd=2)

> title("size = 50, decay = .5")

> plot(zagsc$food,zagsc$price)

> lines(zagsc$food[oo],znnf4[oo],lwd=2)

> title("size = 50, decay = .00001")

For each model fit we'll plot y vs x and then
the fits on top:
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Left to right we
can see that
lower decay means
a more flexible fit,
the coefficients
are freer.

With low decay
(right two plots)
increasing the
size really frees
up the fit.

With high decay adding
more units does not seem to hurt !!
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We also see that even with 50 hidden units,
a large decay parameter can restrain the fit.

In practice, this has lead to the following strategy
for fitting neural nets.

1. Fix a large number of hidden units.

2. Use the three set approach or cross validation
to choose the decay parameter.

Of course, you could use cv or three sets to 
choose both size and decay.
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“Generally speaking it is better to have too many hidden units than too few.
With too few hidden units, the model might not have enough flexibility
to capture the nonlinearities in the data; with too many hidden units,
the extra weights can be shrunk toward zero if appropriate regularization (decay)
is used.  Typically the number of hidden units is somewhere in the range of
5 to 100, with the number increasing with the number of of inputs and the
number of training cases.  It is most common to put down a reasonably
large number of units and train them with regularization.  Some researchers
have used cross-validation to estimate the optimal number, but this seems
unnecessary if cross-validation is used to estimate the regularization parameter.
Choice of the number of hidden layers is guided by background knowledge
and experimentation.”

“The Elements of Statistical Learning,

Data Mining, Inference, and Prediction”
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3. Iterative Fitting and Random Starting Values

There are some very things about fitting neural nets to data that
don’t come up in a lot of our other models.

Except for some linear algebra, we know how do least squares:
β̂ = (X ′X )−1X ′y .

Computing the logit MLE is an iterative optimization, but, for
moderately size problems, it converges pretty fast.

Numerically fitting neural nets is trickier.
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What does our single layer model with m units, a numeric y and
just one x look like?
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More generally,

ŷ = f (x , b) = b0 +
m∑
j=1

bj F (bj0 + (bj)′x)

b = (b0, b1, . . . , bm, b
1
0, b

2
0, . . . b

m
0 , b

1, b2, . . . , bm).

So,

to fit we solve

min
b

n∑
i=1

(yi − f (xi , b))2 + d ||b||2

where d is the decay and we are summing over observations in our
training data.
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Given the size and the decay, it is no joke to fit a neural net.

It is an iterative optimization.

The nnet package uses the BFGS option of the the R optim

command (BroydenFletcherGoldfarbShanno algorithm).

BFGS is a version of Newton’s methods (more later?).
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We say the iterative fitting has converged if
there is little difference between subsequent fits.

Sometimes it can iterate a long time and
not converge !!
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> znn3 = nnet(price~food,zagsc,size=50,decay=.5,linout=T)

# weights:  151

initial  value 149902.637210 

iter 10 value 9483.187518

iter 20 value 9233.424055

iter 30 value 9065.532626

iter 40 value 8987.139367

iter 50 value 8960.219511

iter 60 value 8933.476681

iter 70 value 8922.799791

iter 80 value 8919.391429

iter 90 value 8915.018123

iter 100 value 8911.423203

final  value 8911.423203 

stopped after 100 iterations

Up to now, 
I have cut
out the output
about “iter”.

The algorithm
iterated
100 times
and then quit.

It had not 
“converged yet”
in the sense 
that the fit was
still changing
after 100 iterations.
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> znn3 = nnet(price~food,zagsc,size=50,decay=.5,linout=T,maxit=20)

# weights:  151

initial  value 143500.875215 

iter 10 value 9043.417735

iter 20 value 8940.665729

final  value 8940.665729 

stopped after 20 iterations

You can control the maximum number of iterations.

You can also control the convergence criterion
but let’s not get into that.
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> znn3 = nnet(price~food,zagsc,size=50,decay=.5,linout=T,maxit=1000)

# weights:  151

initial  value 143671.085017 

iter 10 value 10210.153040

iter 20 value 9412.824067

iter 30 value 9141.437946

iter 40 value 9050.086653

iter 50 value 8987.998898

iter 60 value 8945.542710

iter 70 value 8923.052784

iter 80 value 8913.481971

iter 90 value 8909.269247

iter 100 value 8906.842213

iter 110 value 8905.212133

iter 120 value 8904.352179

iter 130 value 8903.167414

iter 140 value 8901.816040

iter 150 value 8901.066403

iter 160 value 8900.600340

iter 170 value 8900.283331

iter 180 value 8900.073722

iter 190 value 8899.822352

iter 200 value 8899.591261

iter 210 value 8899.409385

iter 220 value 8899.309109

iter 230 value 8899.211293

iter 240 value 8899.131651

iter 250 value 8899.049650

iter 260 value 8898.994058

iter 270 value 8898.953519

iter 280 value 8898.921090

iter 290 value 8898.903097

iter 300 value 8898.884537

final  value 8898.880799 

converged

For the 
zagat data
with 
size=50
and
decay = .5
it takes
300 iterations
to converge !

Does not look too different
from what we had before
(maybe a bit smoother).
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Starting Values

Where do you start the iterations ?

R (and lots of other software) starts at
randomly chosen coefficient values.

The default is that each coefficient is drawn
from the uniform distribution of [-.7,.7].

This only makes sense if we standardize the x’s.
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So, 

You can fit a neural net.

Do it again,

and get a different answer !!!!!!!!!!!!!!!!!!!!

Unless, you set the seed that is !
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> set.seed(23)

> temp = nnet(price~food,zagsc,size=2,decay=.001)

# weights:  7

initial  value 136686.571683 

iter 10 value 133022.696234

iter 20 value 133014.160947

final  value 133014.130896 

converged

> summary(temp)

a 1-2-1 network with 7 weights

options were - decay=0.001

b->h1 i1->h1 

-0.93   0.55 

b->h2 i1->h2 

1.60  -0.40 

b->o h1->o h2->o 

9.21  4.52  3.68 

> temp = nnet(price~food,zagsc,size=2,decay=.001)

# weights:  7

initial  value 136030.030297 

iter 10 value 133022.799207

iter 20 value 133014.161079

final  value 133014.127113 

converged

> summary(temp)

a 1-2-1 network with 7 weights

options were - decay=0.001

b->h1 i1->h1 

-0.21  -0.10 

b->h2 i1->h2 

1.64   1.45 

b->o h1->o h2->o 

8.49  5.04  2.40 

> set.seed(23)

> temp = nnet(price~food,zagsc,size=2,decay=.001)

# weights:  7

initial  value 136686.571683 

iter 10 value 133022.696234

iter 20 value 133014.160947

final  value 133014.130896 

converged

> summary(temp)

a 1-2-1 network with 7 weights

options were - decay=0.001

b->h1 i1->h1 

-0.93   0.55 

b->h2 i1->h2 

1.60  -0.40 

b->o h1->o h2->o 

9.21  4.52  3.68 

First fit is exactly the same.

second fit
is 
different !
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The optimization problem in neural nets is very difficult.

There are many local minimima and there is no way to know if you
are at a good one.

The solutions you iterate to can be radically different!!

This makes using neural nets quite tricky in practice.
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4. How Does it Work?

How could this possibly work???!!!

Let’s fit a few simple examples and see how the pieces add up to
the overall fit.
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What does our single layer model with a numeric y and just one x
look like?

So,

we are just adding up functions of the form

g(x) = b F (b0 + b1 x)
40
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x = zagsc$food

y = zagsc$price

z1 = 4.35 -0.24 *x

z2 = -7.42 +21.41*x

z3 = -9.93 +13.28*x

f1 = 12.09*exp(z1)/(1+exp(z1))

f2 = 10.7*exp(z2)/(1+exp(z2))

f3 = 22.74*exp(z3)/(1+exp(z3))

plot(x,y-12.33)

lines(x[oo],f1[oo],col=2)

lines(x[oo],f2[oo],col=3)

lines(x[oo],f3[oo],col=4)

lines(x[oo],(f1+f2+f3)[oo],col=5)

8.4  How does it work ?
Let’s calculate the pieces
for a simple example and
see how they can add up to a
decent fit.

The three linear functions of x, the z’s.

coefficent * f(z)

b->h1 i1->h1 

4.35  -0.24 

b->h2 i1->h2 

-7.42  21.41 

b->h3 i1->h3 

-9.93  13.28 

b->o h1->o h2->o h3->o 

12.33 12.09 10.70 22.74 
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cyan:fit

red:first component
blue:second
green:third

Wow,
scary and
cool !
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How would you fit a bump?

set.seed(23)

x = runif(1000)

x = sort(x)

y = exp(-80*(x-.5)*(x-.5)) + .05*rnorm(1000)

plot(x,y)

df = data.frame(y=y,x=x)
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plot(x,y)

sz = 3

for(i in 1:20) {

nnsim = nnet(y~x,df,size=sz,decay = 1/2^i,linout=T,maxit=1000)

simfit = predict(nnsim,df)

lines(x,simfit,col=i,lwd=3)

print(i)

readline()

}

With 3 units
it takes a 
small decay.

decay = 1/2^12
works.

Try various decay values.
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nnsim = nnet(y~x,df,size=3,decay=1/2^12,linout=T,maxit=1000)

thefit = predict(nnsim,df)

plot(x,y)

lines(x,thefit)

Plot with
nn fits.
Pretty good.
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Here is the fitted model:

> summary(nnsim)

a 1-3-1 network with 10 weights

options were - linear output units decay=0.0002441406

b->h1 i1->h1

5.26 -13.74

b->h2 i1->h2

-6.58 13.98

b->h3 i1->h3

-9.67 17.87

b->o h1->o h2->o h3->o

-2.20 2.21 7.61 -5.40

Add up the pieces:

F = function(x) {return(exp(x)/(1+exp(x)))}

z1 = 5.26 - 13.74*x

z2 = -6.58 + 13.98*x

z3 = -9.67 + 17.87

f1 = 2.21*F(z1)

f2 = 7.61*F(z2)

f3 = -5.40*F(z3)
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rx=range(x)

ry = range(c(f1,f2,f3,y))

plot(rx,ry,type="n",xlab="x",ylab="fit",cex.axis=2,cex.lab=2)

points(x,y)

lines(x,f1,col=1,lwd=2)

lines(x,f2,col=2,lwd=2)

lines(x,f3,col=3,lwd=2)

lines(x,f1+f2+f3,col=4,lwd=4)
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Awesome !!!
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With more than one x it is a little harder to see
how this works.

For each z, we get “ridge functions”.

F(x1+x2)
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Elements of Statistical Learning page 394:

Zm = σ(α0m + αT
m X ),m = 1, 2, . . . ,M

Tk = β0k + βTk Z , k = 1, 2, . . . ,K

ŷk(X ) ≡ fk(X ) = gk(T ), k = 1, 2, . . . ,K

e.g. K = 1,g(T ) = T for the single linear output case.

Finally, we note that the name “neural networks” derives from the fact
that they were first developed as models for the human brain. Each unit
represents a neuron, and the connections represent synapses. In early mod-
els, the neurons fired when the total signal passed to that unit exceeded a
certain threshold. In the model above, this corresponds to the use of a step
function for σ(Z) and gm(T ). Later the neural network was recognized as
a useful tool for nonlinear statistical modeling, and for this purpose the step
function is not smooth enough for optimization. Hence the step function
was replaced by a smoother threshold function, the sigmoid.
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5. Neural Nets for Binary Y

We have to adapt our model for the case of binary y.

What does it mean to predict a binary y?

As usual, we want P(Y = 1|x).
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The General Model

x

1 10 11 1 1k kz x x= β + β + + β 2 20 21 1 2k kz x x= β + β + + β m m0 m1 1 mk kz x x= β + β + + β........

0 1 1 m mF(z ) F(z )η = β + β + + β

A k-m-1 network.
(x is numeric and k dimensional)

p F( )= η

Everything is the same, except, at the end we apply the logistic function.
This gives us a number between 0 and 1, which will be our probability.
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Beer Data

> beer = read.table("nbeer.txt",header=T)
> beer$gender = as.factor(beer$gender)

Data is from an mba class.
Ask each student for nbeer(#beers can drink)
weight, height, age, gender.

> summary(beer)
nbeer weight          height           age        gender

Min.   : 0.00   Min.   :100.0   Min.   :60.00   Min.   :21.00  0:41  

1st Qu.: 5.00   1st Qu.:136.3   1st Qu.:66.63   1st Qu.:25.00   1: 9  

Median : 7.75   Median :160.0   Median :70.00   Median :26.66  

Mean   : 7.45   Mean   :155.8   Mean   :69.00   Mean   :27.18  

3rd Qu.:10.00   3rd Qu.:170.0   3rd Qu.:71.00   3rd Qu.:28.00  

Max.   :20.00   Max.   :230.0   Max.   :76.00   Max.   :40.00  
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to fit the nnet, 

no linout=T

As a simple (and somewhat silly) example,
we ask: given the # of beers what is the prob of a 
female ?

> beer$nbeer = (beer$nbeer-min(beer$nbeer))/(max(beer$nbeer)-min(beer$nbeer))

> nnbeer = nnet(gender~nbeer,beer,size=5,decay=.01,maxit=1000)

First, rescale the numeric x and then,
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> summary(nnbeer)

a 1-5-1 network with 16 weights

options were - entropy fitting  decay=0.01

b->h1 i1->h1 

-3.24   7.26 

b->h2 i1->h2 

0.01  -0.06 

b->h3 i1->h3 

0.01  -0.06 

b->h4 i1->h4 

0.01  -0.06 

b->h5 i1->h5 

0.01  -0.06 

b->o h1->o h2->o h3->o h4->o h5->o 

0.19 -6.71  0.13  0.13  0.13  0.13 

The basic structure of the model is the same as
with numeric y.
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Now let's think about fitting/predicting:

> pbeer = predict(nnbeer,beer)

> length(pbeer)

[1] 50

> is.array(pbeer)

[1] TRUE

> dim(pbeer)

[1] 50  1

> mode(pbeer)

[1] "numeric"

The predict command returns a 50 x 1 array.
In general, it would be n x1, where n is the sample size.

The predict command has its usual
format, but we have to be careful about
the format of the results.  

What does it give us !!??
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> pbeer[1:5]

1          2          3          4          5 

0.00982357 0.00982357 0.29811830 0.29811830 0.14363053 

> pbeer[1:5,1]

1          2          3          4          5 

0.00982357 0.00982357 0.29811830 0.29811830 0.14363053 

Since the fits are are n by 1 array we can
just index the row or index the row and the
first column.
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> beer$gender[1:5]
[1] 0 0 0 0 0
Levels: 0 1

> beer$nbeer[1:5]
[1] 0.60 0.60 0.25 0.25 0.35

The fit is the prob of the second level, which in this
case is  "being female".

> pbeer[1:5]
1           2           3           4           5 

0.009810964 0.009810964 0.298126896 0.298126896 0.143612251

The first three observations are guys.

The third guy is only .25 up the number of
beers scale, so he has a .298 choice of
being female
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plot(beer$nbeer,as.numeric(beer$gender)-1,xlab="nbeer",ylab="p female")

oo = order(beer$nbeer)

lines(beer$nbeer[oo],pbeer[oo],col=2,lwd=2)

Red line is the
neural net fit.

For each 
x (# of beers)
gives 
Pr(female | x).

Since, we have only one x, we can plot the fits.
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> nnbeer = nnet(gender~nbeer,beer,size=10,decay=.001,maxit=1000)

Do it again, but change size and decay:

Does not 
make sense
in that we
do not expect
that first part
where
P(female|nbeer)
increases.
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Tabloid Data

read the data in, set purchase to
be a factor

Let's just use 2 = nTab and
3 = moCbook.
As always, we have to rescale them.

> tab = read.table("tabdat9n20.txt",header=T)

> tab$purchase = as.factor(tab$purchase)

> 

> tab = tab[,1:3]

> tab$nTab = tab$nTab/81

> tab$moCbook = tab$moCbook/50

> summary(tab)
purchase       nTab moCbook

0:19509   Min.   :0.00000   Min.   :0.02365  

1:  491   1st Qu.:0.00000   1st Qu.:1.00000  

Median :0.00000   Median :1.00000  

Mean   :0.02263   Mean   :0.95201  

3rd Qu.:0.02469   3rd Qu.:1.00000  

Max.   :1.00000   Max.   :1.00000  
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Let’s do this one more seriously and look at out
of sample performance.

We use sets1 and 2 to fit the model, including choice
of decay.

We use set three to assess out of sample performance.

nob = nrow(tab)

n1 = floor(.5*nob)

n2 = floor(.25*nob)

n3 = nob - n1 - n2

set.seed(19)

perm = sample(1:nob,nob)

set1 = tab[perm[1:n1],]

set2 = tab[perm[(n1+1):(n1+n2)],]

set3 = tab[perm[(n1+n2+1):nob],]

The usual three set stuff
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Let’s try a quick fit and see if we get anything.

set.seed(99)

tempnn = nnet(purchase~.,set1,size=20,decay=.1,maxit=10000)

nnout = predict(tempnn,set2)[,1]

boxplot(nnout~set2$purchase)
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looks promising !!!
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##let’s try a bunch of decay valuse

#This takes a while !!

#Im fitting length(decv)*nstart neural nets

#each with 10,000 observations.

if(file.exists("lossl.RData")) {

cat("******reading in loosl from file lossl.RData\n")

load("lossl.RData")

} else {

cat("******running loop to compute lossl\n")

decv = c(.5,.1,.01,.005,.0025,.001)

nstart = 10

lossl = list()

set.seed(99)

for(i in 1:length(decv)) {

temploss<-rep(0,nstart)

for(j in 1:nstart){

cat("on dev: ",i," and start: ",j,"\n")

tempnn = nnet(purchase~.,set1,size=20,decay=decv[i],maxit=10000)

nnout = predict(tempnn,set2)[,1]

temploss[j] = loss(set2$purchase,nnout,wht=.0001)

}

lossl[[i]] = temploss

}

save(lossl,decv,nstart,file="lossl.RData")

} 68



names(lossl) = as.character(decv)

boxplot(lossl,cex.lab=2,cex.axis=2)
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Ok, let’s use decay = .01 and refit on sets 1 and 2 combined, and
then predict on set 3.

set12 = rbind(set1,set2)

nns12 = nnet(purchase~.,set12,size=20,decay =.01,maxit=10000)

nnfit12 = predict(nns12,set12)[,1]

nnfit3 = predict(nns12,set3)[,1]
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Now let’s plot the lift, in and out of sample.

par(mfrow=c(1,1))

sy12 = liftf(set12$purchase,nnfit12,dopl=FALSE)

ii12 = (1:length(sy12))/length(sy12)

sy3 = liftf(set3$purchase,nnfit3,dopl=FALSE)

ii3 = (1:length(sy3))/length(sy3)

plot(c(0,1),c(0,1),type="n",xlab="% used",ylab="% found",

cex.axis=1.5,cex.lab=1.5)

lines(ii12,sy12,col="red",lty=2,lwd=2)

lines(ii3,sy3,col="blue",lty=3,lwd=2)

abline(0,1,lty=3)

legend("topleft",legend=c("in sample","out of sample"),

col=c("red","blue"),lwd=c(2,2),lty=c(2,3))
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It’s fun when it works !!
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6. How Does it Work Again, XOR

Let’s look again at how a neural net works by playing around with
the famous XOR example.

This is example is famous because it is a simple example where
linear classification:

y = 1 if a + b1x1 + b2x2 > 0

cannot work.
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Basically, y is 1 if the sign(x1) 6= sign(x2) but I added noise so a
few points cross the boundaries.

Here is a plot of the (simulated) data.
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Here is the decision boundary (ŷ = 1 if p̂ > .5) for a linear logit fit.

logit fit to xor data
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Here is a plot of p̂(x1, x2) from the logit fit.
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phatlg

Really all the p̂ are close to .5 !! 76



> print(summary(lgfit))

Call:

glm(formula = y ~ ., family = binomial, data = dfd)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.25921 -1.17512 0.02788 1.17894 1.23320

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.01013 0.20113 0.050 0.960

x1 0.10058 0.17129 0.587 0.557

x2 0.03688 0.18028 0.205 0.838

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 138.63 on 99 degrees of freedom

Residual deviance: 138.27 on 97 degrees of freedom

AIC: 144.27

Number of Fisher Scoring iterations: 3

> summary(phatl)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.4217 0.4676 0.4964 0.4964 0.5253 0.5713
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Let’s try a nn fit.

#uses random starting values for iterative optimization

set.seed(99) #misses

xnn = nnet(y~.,dfd,size=2,decay=.1)

phat1 = predict(xnn,gd)[,1]

set.seed(14) #works

xnn = nnet(y~.,dfd,size=2,decay=.1)

phat = predict(xnn,gd)[,1]

#plot fits, far out!!

plot(phat1,phat)
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Far out.
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Here is the nn decision boundary (from the one that worked).

neural network −− 1 hidden layer with 2 neurons
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Beautiful !!! 80



Here is a plot of p̂(x1, x2) from the nn fit.

px1

px
2

phatg

Obvious !!!!????
(see plot3d in xor.R). 81



> summary(xnn)

a 2-2-1 network with 9 weights

options were - entropy fitting decay=0.1

b->h1 i1->h1 i2->h1

3.35 2.38 -2.66

b->h2 i1->h2 i2->h2

-2.73 2.28 -2.90

b->o h1->o h2->o

2.54 -5.84 6.30

Basically uses x1 − x2 !!!!.
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A plot of xnn:

I1

I2

x1

x2

H1

H2

O1 y

B1 B2
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