LDA: Latent Dirichlet Allocation

Xin Lei and Rob McCulloch

- 1. Introduction
- 2. Topics
- 3. Topic Weights
- 4. Dirichlet Priors
- 5. The Full Model
- 6. Example: Newsgroup Postings

(中) (문) (문) (문) (문)

1. Introduction

LDA is an unsupervised technique for looking at a corpus (set) of documents.

Each document is treated as a bag of words.

We process all the words in all the documents and come up with a list of *terms* which exhaustively lists all the possible values for each word in each document.

Let V be the number of terms and D be the number of documents. Then our data consists of the values w_{dl} :

$$w_{dl} \in \{1, 2, \dots, V\}, \ d = 1, 2, \dots, D, \ l = 1, 2, \dots, N_d.$$

giving the word id, for the I^{th} work in the d^{th} document. N_d is the number of words in document d.

A set of *K* latent topics is considered.

A topic, is a distribution over the set of possible terms.

Each document is characterized by a distribution over topics.

Then, each word, w_{dl} , in a given document is generated by first drawing the topic from the document's topic distribution and then drawing the term from the drawn topic distribution.

That is a mouthful!!

We will take it apart piece by piece.

2. Topics

A *topic* will be a distribution over the set of possible terms indexed by $\{1, 2, \ldots, V\}$.

For the k^{th} topic and random word w, let

$$\beta_{vk} = P(w = v)$$

for terms $v \in \{1, 2, \dots, V\}$.

 β_{vk} is the probability a word turns out to be term v.

Let

$$\beta_k = (\beta_{1k}, \beta_{2k}, \ldots, \beta_{Vk})'.$$

Then,

$$0 \leq \beta_{\nu k} \leq 1, \quad \sum_{\nu} \beta_{\nu k} = 1.$$

The idea is that a "topic" makes certain terms more likely.

Let β be the matrix whose columns are the topics

$$\beta = [\beta_1, \beta_2, \dots, \beta_K]$$

So, β is $V \times K$, where V is the number of terms and K is the number of topics.

3. Topic Weights

Our model idea is that each document will favor some of the topics.

To capture this, let z_{dl} be the topic of w_{dl} .

That is, each word gets to come from a specific topic.

$$P(w_{dl} = v | z_{dl} = k, \beta) = \beta_{vk}.$$

Then each document has probabilities for the topics:

$$P(z_{dl}=k)=\theta_{dk}.$$

If we let

$$\theta_d = (\theta_{d1}, \theta_{d2}, \dots, \theta_{dK})$$

then θ_d gives the topic distributions (weights) for document d.

So, each word in each document gets to have it's own topic, but, all the words in the same document have its topic drawn from the same distribution θ_d .

So each θ_d and each β_k is a probability vector.

We will put *prior distributions* on these probability vectors using the Dirichlet distribution.

In general, let $p = (p_1, p_2, \dots, p_m)$ be a probability vector:

$$0\leq p_i\leq 1, \quad \sum p_i=1.$$

Then the Dirichlet distribution has density

$$p(p|\alpha) = \frac{\Gamma(\sum \alpha_i)}{\prod \Gamma(\alpha_i)} \prod p_i^{\alpha_i - 1}$$

where Γ is the gamma function.

Note:

$$E(p_i) = \frac{\alpha_i}{\sum \alpha_i}.$$

The bigger the α_i are the tighter the distribution. We say $p \sim Dirichlet(\alpha)$ where $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_m)$.

Draws from the Dirichlet for different α .

Let
$$\vec{1} = (1, 1, \dots, 1)$$
.

So, finally, our model is completed by letting

$$\theta_d \sim Dirichlet(\alpha \vec{1}_K), \text{ iid.}$$

where here α is a scalar.

$$\beta_k \sim Dirichlet(\gamma \vec{1}_V), \text{ iid}$$

where here γ is a scalar.

Typically very small values for α and γ are using so that we start with a prior that weakly suggest the probabilities are spread out.

5. The Full Model

We are using a Bayesian approach where we put a joint distribution on all quantities of interest and then compute the posterior given observed data.

Our full joint is

$$p(\beta, \theta, w, z) = \prod p(\beta_k | \gamma) \prod p(\theta_d | \alpha) \prod (p(z_{dl} | \theta_d) p(w_{dl} | z_{dl}, \beta))$$

Then we compute the *posterior*

$$p(\beta, \theta, z|w)$$

We can estimate unknowns with their posterior means.

Here is the picture (DAG) of the model:

6. Example: Newsgroup Postings

The 20 Newsgroups data set is a collection of approximately 20,000 newsgroup documents, partitioned (nearly) evenly across 20 different newsgroups.

It was originally collected by Ken Lang, probably for his Newsweeder: Learning to filter netnews paper.

The articles are typical postings and thus have headers including subject lines, signature files, and quoted portions of other articles.

Here is an example document:

> print(data\$text[1])
[1] "From: cubble@garnet.berkeley.edu ()
Subject: Re: Cubs behind Marlins? How? Article-I.D.: agate.1pt592\$f9a Organization:
University of California, Berkeley Lines: 12 NNTP-Posting-Host: garnet.berkeley.edu
gajarsky@pilot.njin.net writes: morgan and guzman will have era's 1 run higher than last year,
and the cubs will be idiots and not pitch harkey as much as hibbard.
castillo won't be good (i think he's a stud pitcher)
This season so far, Morgan and Guzman helped to lead the Cubs at top in ERA,
even better than THE rotation at Atlanta. Cubs ERA at 0.056 while Braves at 0.059.
We know it is early in the season, we Cubs fans have learned how to enjoy the
short triumph while it is still there. "

We have 11,314 documents from 20 different newsgroups.

Class	Target	# docs
alt.atheism	0	480
comp.graphics	1	584
comp.os.ms-windows.misc	2	591
comp.sys.ibm.pc.hardware	3	590
comp.sys.mac.hardware	4	578
comp.windows.x	5	593
misc.forsale	6	585
rec.autos	7	594
rec.motorcycles	8	598
rec.sport.baseball	9	597
rec.sport.hockey	10	600
sci.crypt	11	595
sci.electronics	12	591
sci.med	13	594
sci.space	14	593
soc.religion.christian	15	599
talk.politics.guns	16	546
talk.politics.mideast	17	564
talk.politics.misc	18	465
talk.religion.misc	19	377

We then attempt to clean the data:

#In computing, stop words are words which are filtered out
#before or after processing of natural language data (text). ...
#Other search engines remove some of the most common words including
#lexical words, such as "want" from a query in order to improve performance.

```
stopword=read.table("stopwords.txt")
nn=as.character(stopword$V1)
#clean the data
for(i in seq(doc)){ #for each document in doc, drop these symbols
  doc[[i]]<-gsub("/"," ",doc[[i]])</pre>
  doc[[i]]<-gsub("@"," ",doc[[i]])</pre>
  doc[[i]]<-gsub("-"," ",doc[[i]])</pre>
  doc[[i]]<-gsub("[[:punct:]]"," ",doc[[i]])</pre>
  doc[[i]]<-gsub("0-9"," ",doc[[i]])</pre>
7
# try: print(doc[[1]])
doc <- tm_map(doc, PlainTextDocument)</pre>
doc<-tm_map(doc,content_transformer(removeNumbers))</pre>
doc<-tm_map(doc,content_transformer(removePunctuation))</pre>
doc<-tm_map(doc,content_transformer(tolower))</pre>
doc<-tm_map(doc,content_transformer(stemDocument))</pre>
doc<-tm_map(doc,content_transformer(removeWords),c(stopwords("english"),nn))</pre>
```

After cleaning this is what the first document looks like.

```
> print(doc[[1]][1])
$content
[1] " cubbie garnet berkeley
subject cubs marlins
article d agate pt fa organization university california berkeley lines
nntp posting host garnet berkeley gajarsky pilot njin net writes morgan
guzman era s run higher year cubs idiots pitch harkey hibbard
castillo won t good s stud pitcher
season
        morgan guzman helped
lead cubs
             top era better rotation atlanta
cubs era braves
                        early
                                     season
                                             cubs fans learned
enjoy short triumph
                              ....
```

Next we come up with a list "terms", the possible values for each word.

```
dtm_20_1<-DocumentTermMatrix(doc) #package tm (text mining)
print(dim(dtm_20_1))
summary(col_sums(dtm_20_1)) #summarize total time a term is used.</pre>
```

```
[1] 11314 93636
> summary(col_sums(dtm_20_1)) #summarize total time a term is used.
    Min. 1st Qu. Median Mean 3rd Qu. Max.
    1.0    1.0    2.0    16.6    6.0 12260.0
```

Finally, we get rid of all the terms such that tf-idf is less than the median.

```
summary(term_tfidf)
dtm_20_1 <- dtm_20_1[,term_tfidf >= 0.06586]
summary(col_sums(dtm_20_1))
print(dim(dtm_20_1))
[1] 11314 46817
> set.seed(27)
> junk = colnames(dtm_20_1) # terms
> ii = sample(1:length(junk),20)
> print(junk[ii])
 [1] "wjbc"
                    "billingham"
                                   "tempers"
                                                   "froumentin"
                                                                  "demarrais"
 [6] "hsi"
                    "bdown"
                                   "abou"
                                                   "chanting"
                                                                  "crone"
[11] "ofnwygwbvoa" "suicidal"
                                   "lifespan"
                                                   "reso"
                                                                  "teskev"
[16] "sentient"
                    "xls"
                                   "bls"
                                                   "neurological" "arrognace"
```

```
Create a train and test.
```

```
set.seed(99)
id_20=sample(1:11314,size=9000,replace=FALSE)
train=dtm_20_1[id_20,]
test=dtm_20_1[-id_20,]
save(train,test,file="lda-train-test.rda")
```

> dim(train)
[1] 9000 46817
> dim(test)
[1] 2314 46817

Next we fit a bunch of LDA models with varying number of topics to try to get a feeling for what the right number of topics is.

We look at the *perplexity* on the test data.

$$perplexity(Data_{test}) = exp\{-\frac{\sum_{d=1}^{D}\log p(w_d)}{\sum_{d=1}^{D} N_d}\}$$

Really just our old friend the deviance.

perplexity on the test data.

x axis is the number of topics.

Seems like 15-25 topics will do.

We use 20 topics. Each topic is labeled the 3 highest probability terms from the estimated β_k .


```
> top_terms<-terms(model_20_1, k=3, threshold=0.002)</pre>
> str(top_terms)
chr [1:3, 1:20] "caltech" "cwru" "keith" "jim" "mit" ...
- attr(*, "dimnames")=List of 2
  ..$ : NULL
  ..$ : chr [1:20] "Topic 1" "Topic 2" "Topic 3" "Topic 4" ...
> top_terms
    Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7
[1,] "caltech" "jim" "colorado" "baseball" "fbi" "bhj" "gov"
[2,] "cwru" "mit" "cramer" "game" "gun" "giz" "nasa"
[3,] "keith" "objective" "virginia" "games" "guns" "max" "space"
    Topic 8 Topic 9 Topic 10 Topic 11 Topic 12 Topic 13
[1,] "bible" "chip" "mit" "bike" "armenian" "graphics"
[2,] "god" "encryption" "server" "motorcycle" "armenians" "image"
[3,] "jesus" "key" "window" "ride" "car" "windows"
    Topic 14 Topic 15 Topic 16 Topic 17 Topic 18 Topic 19 Topic 20
[1,] "greek" "food" "banks" "card" "israel" "buf" "game"
[2,] "turkish" "msg" "gordon" "drive" "israeli" "file" "hockey"
[3,] "uiuc" "stephanopoulos" "pitt" "scsi" "jews" "output" "team"
```

> top_terms_5<-terms(model_20_1, k=5, threshold=0.002)</pre>

> top_terms_5

```
Topic 1
                         Topic 3
                                                       Topic 6 Topic 7
              Topic 2
                                   Topic 4
                                             Topic 5
[1.] "caltech"
              "berkeley" "colorado" "baseball" "fbi"
                                                       "bhi"
                                                              "access"
[2,] "cleveland" "jim"
                         "cramer" "game"
                                            "firearms" "bxn"
                                                              "gov"
[3,] "cwru"
                         "optilink" "games"
                                             "gun"
                                                       "giz"
                                                              "launch"
               "mit"
[4,] "keith"
              "objective" "sex" "players" "guns"
                                                      "max"
                                                              "nasa"
              "sun"
[5,] "scx"
                         "virginia" "team" "stratus" "oil"
                                                              "space"
    Topic 8
                 Topic 9 Topic 10 Topic 11
                                                Topic 12
                                                           Topic 13
                            "file" "bike"
[1,] "bible"
                "chip"
                                                "armenia"
                                                           "file"
[2,] "christianity" "clipper"
                                                "armenian" "files"
                             "mit" "bmw"
[3,] "faith"
                "encryption" "motif" "motorcycle" "armenians" "graphics"
                          "server" "ride"
[4,] "god"
                 "key"
                                                "car"
                                                           "image"
[5,] "jesus"
                 "privacy" "window" "riding" "turkish"
                                                           "windows"
    Topic 14 Topic 15
                            Topic 16 Topic 17 Topic 18 Topic 19 Topic 20
[1,] "cso"
             "clinton"
                            "banks"
                                    "card"
                                            "arab"
                                                     "buf"
                                                              "game"
[2,] "greek"
            "food"
                            "geb" "disk"
                                            "israel" "col"
                                                              "hockey"
[3,] "key"
             "msg"
                            "gordon" "drive" "israeli" "entries" "nhl"
[4,] "turkish" "stephanopoulos" "pitt" "mac"
                                            "jewish"
                                                    "file"
                                                              "season"
[5,] "uiuc"
             "tax"
                            "radar" "scsi"
                                            "iews"
                                                     "output" "team"
```

And here are some θ_d estimates.

Figure 8: Topic weights to 10 samples in testing data

