Back Propagation

Mladen Kolar and Rob McCulloch

1. Back Propagation

1. Back Propagation

Backpropation is the basic algorithm for computing the gradient vector for a neural net model.

For a given (x, y) we need the partial derivatives of the ultimate loss with respect to all the weights and biases.

To evaluate the model we start at x and go forward through the layers, ending up at the ouput layer.

To evaluate the gradient we go backward, starting at the output layer and iterating back to the coefficients connecting x to the first hidden layer.

We will need a general notation for the neural net model.
Let's start by letting ℓ index the layers.
ℓ goes from 1 to L where $\ell=1$ is the input layer (x) and L is the final output layer.

To keep things simple, we will have just one outcome with associated activation function g^{L}. For a single numeric outcome, g^{L} would typically be the identity function $I(x)=x$.

We will use the same activation function g at all the interior units (neurons).

Let p_{ℓ} be the number of neurons at layer ℓ.
Note that $p_{1}=p$ where p is the dimension of x since that is the input layer.

Lots of Notation !!!!!:
$Z_{k}^{(\ell)}:$ the Z value at the $k^{\text {th }}$ unit of layer $(\ell), k=1,2, \ldots, p_{\ell}$.
We have $Z_{\text {unit }}^{(\text {layer })}$. Similary, we have $a_{k}^{(\ell)}$ with,
$a_{k}^{(\ell)}=g\left(Z_{k}^{(\ell)}\right)$.
$w_{k j}^{(\ell)}=$ weight from $a_{j}^{(\ell)}$ (at layer $\left.\ell\right)$ to $Z_{k}^{(\ell+1)}$ (at layer $(\ell+1)$).
Think of w as $w_{k j}^{(\ell)}=w_{k \leftarrow j}^{(\ell)}$.
$b_{k}^{(\ell)}=$ intercept for $Z_{k}^{(\ell+1)}$ (at layer $\left.(\ell+1)\right)$.

$$
Z_{k}^{(\ell)}=b_{k}^{(\ell-1)}+\sum_{j=1}^{p_{(\ell-1)}} w_{k j}^{(\ell-1)} a_{j}^{(\ell-1)}, k=1,2, \ldots, p_{\ell}
$$

$$
Z_{k}^{(\ell)}=b_{k}^{(\ell-1)}+\sum_{j=1}^{p_{(\ell-1)}} w_{k j}^{(\ell-1)} a_{j}^{(\ell-1)}, k=1,2, \ldots, p_{\ell}
$$

Matrix/Vector version:

$$
\begin{aligned}
Z^{(\ell)}= & \left(Z_{1}^{(\ell)}, Z_{2}^{(\ell)}, \ldots, Z_{p_{\ell}}^{(\ell)}\right)^{\prime} \\
& a^{(\ell)}=g\left(Z^{(\ell)}\right) \\
b^{(\ell)}= & \left(b_{1}^{(\ell)}, b_{2}^{(\ell)}, \ldots, b_{p_{(\ell+1)}^{(\ell)}}^{(}\right)^{\prime} \\
W^{(\ell)}= & {\left[w_{k j}^{(\ell)}\right], \quad p_{(\ell+1)} \times p_{\ell} }
\end{aligned}
$$

Then,

$$
Z^{(\ell)}=b^{(\ell-1)}+W^{(\ell-1)} a^{(\ell-1)}
$$

Begin:

$$
a^{(1)}=x, \in R^{p}
$$

Iterate through the layers:

$$
Z^{(\ell)}=b^{(\ell-1)}+W^{(\ell-1)} a^{(\ell-1)}, \quad a^{(\ell)}=g\left(Z^{(\ell)}\right)
$$

Final output layer and Loss:

$$
f(x, W, b)=g^{L}\left(Z^{L}\right), \text { Loss: } L(y, f(x, W, b))
$$

Here is the general model:

Simplest interesting case, just the model.

Note:

Backpropagation will work by computing:

$$
\delta_{i}^{(\ell)}=\frac{\partial L}{\partial Z_{i}^{(\ell)}}
$$

The differential effect of a change in $Z_{i}^{(\ell)}$ on the ultimate loss L.

Simplest interesting case, everything.
One x, one hidden layer with 2 neurons, one output.

Simplest interesting case, just $\frac{\partial L}{\partial w_{11}^{(2)}}$.

Same thing, just using δ :

$$
\begin{aligned}
& Z_{1}^{(3)}=b_{1}^{(2)}+w_{11}^{(2)} a_{1}^{(2)}+w_{12}^{(2)} a_{2}^{(2)} \\
& \frac{\partial L}{\partial w_{11}^{(2)}}=\frac{\partial L}{\partial Z_{1}^{(3)}} \frac{\partial Z_{1}^{(3)}}{\partial w_{11}^{(2)}}=\delta_{1}^{(3)} a_{1}^{(2)}
\end{aligned}
$$

Similarly,

$$
\frac{\partial L}{\partial w_{12}^{(2)}}=\delta_{1}^{(3)} a_{2}^{(2)}, \frac{\partial L}{\partial b_{1}^{(2)}}=\delta_{1}^{(3)}
$$

Simplest interesting case, just $\frac{\partial L}{\partial w_{11}^{(1)}}$.

$$
\begin{gathered}
(*) z_{1}^{(3)}=b_{1}^{(2)}+w_{11}^{(2)} g\left(z_{1}^{(2)}\right)+w_{12}^{(2)} g(\\
\frac{\partial L}{\partial w_{11}^{(1)}}=\frac{\partial L}{\partial z_{1}^{(1)}} \frac{\partial z_{1}^{(2)}}{\partial w_{11}^{(1)}} \equiv \delta_{1}^{(2)} a_{1}^{(1)} \\
\delta_{1}^{(2)}=\frac{\partial L}{\partial z_{1}^{(2)}}=\frac{\partial L}{\partial z_{1}^{(3)}} \frac{\partial z_{1}^{(3)}}{\partial z_{1}^{(2)}}=\delta_{1}^{(3)} w_{11}^{(2)} g^{\prime}\left(z_{1}^{(2)}\right)
\end{gathered}
$$

$$
Z_{2}^{(2)}=b_{2}^{(1)}+w_{21}^{(1)} a_{1}^{(1)}
$$

Similarly,

$$
\begin{aligned}
\delta_{2}^{(2)}=\frac{\partial L}{\partial Z_{2}^{(2)}} & =\frac{\partial L}{\partial Z_{1}^{(3)}} \frac{\partial Z_{1}^{(3)}}{\partial Z_{2}^{(2)}}=\delta_{1}^{(3)} w_{12}^{(2)} g^{\prime}\left(Z_{2}^{(2)}\right) \\
\frac{\partial L}{\partial w_{21}^{(1)}} & =\frac{\partial L}{\partial Z_{2}^{(2)}} \frac{\partial Z_{2}^{(2)}}{\partial w_{21}^{(1)}}=\delta_{2}^{(2)} a_{1}^{(1)}
\end{aligned}
$$

And,

$$
\frac{\partial L}{\partial b_{1}^{(1)}}=\delta_{1}^{(2)}, \frac{\partial L}{\partial b_{2}^{(1)}}=\delta_{2}^{(2)}
$$

How it Works

Key Quantities:
$\delta_{i}^{(e)}$: effect on loss of a change
Iterate
(1) initialize by computing $\delta_{i}^{(L)}$
(2) iterate $(e+1) \rightarrow(e)$ getting

$$
\delta_{j}^{(e)} \text { from } \delta_{i}^{(e+1)} \text { "backprop" }
$$

(3) Get partials for layer e parameters $b^{(\Omega)}, W^{(2)}$ from $\delta_{i}^{(Q+1)}$

Here are the partial derivatives associated with the parameters at layer $L-1$.
This will also initialize the back-progagation algorithm for computing the partials for parameters associated with the other layers.

$$
0 \text { (1) } a_{\left.-b_{1}\right)}^{\left(w_{1}\right)}
$$

$$
\begin{aligned}
z_{1}^{(L)} & =b_{1}^{(L-1)}+\sum_{j=1}^{C_{1}^{(1)} w_{1 j}^{(L-1)} a_{1}^{(L-1)}} \\
f & =g^{2}\left(z_{1}^{(L)}\right) \quad \delta_{1}^{(L)} \equiv \\
L & =(y-f)^{2} \\
\frac{\partial L}{\partial w_{1, j}^{(L)}} & =-2(y-f)\left(g^{L}\right)^{\prime}\left(z_{1}^{(L)}\right) a_{j}^{(L-1)} \\
& \equiv \delta_{1}^{(L)} a_{j}^{(L-1)} \\
\frac{\partial L}{\partial b_{1}^{(L-1)}} & =\delta_{1}^{(L)}=\frac{\partial L}{\partial z_{1}^{(L)}}
\end{aligned}
$$

$$
\frac{\partial L}{\partial w^{(L-1)}}=\delta_{1}^{(L)} \odot a^{(L-1)} ; \frac{\partial L}{\partial b_{1}^{(L)}}=\delta_{1}^{(L)}
$$

Latex for previous hand written slide.

$$
\begin{gathered}
Z_{1}^{(L)}=b_{1}^{(L-1)}+\sum_{j=1}^{p_{L-1}} w_{1 j}^{(L-1)} a_{j}^{(L-1)} . \\
f(x, b, w)=g^{L}\left(Z_{1}^{(L)}\right), L(y, f)=(y-f)^{2} \\
\delta_{1}^{(L)}=\frac{\partial L}{\partial Z_{1}^{(L)}}=\frac{\partial L}{\partial f} \frac{\partial f}{\partial Z_{1}^{(L)}}=[-2(y-f)]\left[\left(g^{L}\right)^{\prime}\left(Z_{1}^{(L)}\right)\right] . \\
\frac{\partial L}{\partial w_{1 j}^{(L-1)}}=\frac{\partial L}{Z_{1}^{(L)}} \frac{\partial Z_{1}^{(L)}}{w_{1 j}^{(L-1)}}=\delta_{1}^{(L)} a_{j}^{(L-1)} . \\
\frac{\partial L}{\partial b_{1}^{(L-1)}}=\delta_{1}^{(L)}
\end{gathered}
$$

Multivariate version of chain rule.

$$
\begin{aligned}
& f(x)=\left[\begin{array}{l}
f_{1}(x) \\
f_{2}(x) \\
\vdots
\end{array} \quad f: \| R \rightarrow R^{P}\right. \\
& f_{p}(x) \\
& d: \mathbb{R}^{P} \rightarrow \mathbb{R} \\
& h(x)=g\left(f_{1}(x), f_{2}(x) \cdots f_{p}(x)\right. \\
& x \in \mathbb{R} \rightarrow\left\{\begin{array}{l}
f_{1}(x)=y_{1} \\
\vdots \\
f_{p}(x)=y_{p}
\end{array} \quad \in \mathbb{R} P \rightarrow z \in \mathbb{R},\right. \\
& h=g \circ f \\
& h^{\prime}=\nabla g \cdot f^{\prime}=\geq \frac{\partial g}{\partial y_{i}} \frac{\partial y_{i}}{\partial x_{i}}
\end{aligned}
$$

Here is the iteration for computing the key $\delta_{j}^{(\ell)}$ quantities.

$$
\begin{aligned}
& Z_{k}^{(\ell+1)}=b_{k}^{\ell}+\sum_{i=1}^{p_{\ell}} w_{k i}^{(\ell)} a_{i}^{(\ell)} \\
&=b_{k}^{\ell}+\sum_{i=1}^{p_{\ell}} w_{k i}^{(\ell)} g\left(Z_{i}^{(\ell)}\right) \\
& \begin{aligned}
\delta_{i}^{(\ell)}=\frac{\partial L}{\partial Z_{i}^{(\ell)}} & =\sum_{k=1}^{p_{\ell+1}} \frac{\partial L}{\partial Z_{k}^{(\ell+1)}} \frac{\partial Z_{k}^{(\ell+1)}}{\partial Z_{i}^{(\ell)}} \\
& =\sum_{k=1}^{p_{\ell+1}}\left[\delta_{k}^{(\ell+1)}\right]\left[w_{k i}^{(\ell)} g^{\prime}\left(Z_{i}^{(\ell)}\right)\right] \\
& =g^{\prime}\left(Z_{i}^{(\ell)}\right) \sum_{k=1}^{p_{\ell+1}}\left[\delta_{k}^{(\ell+1)}\right]\left[w_{k i}^{(\ell)}\right]
\end{aligned}
\end{aligned}
$$

$$
\delta^{(\ell)}=g^{\prime}\left(Z^{(\ell)}\right) \odot\left[\left[W^{(\ell)}\right]^{\prime} \delta^{(\ell+1)}\right]
$$

where

$$
a \odot b=\left(a_{i} b_{i}\right)
$$

is elementwise multiplication, and
$g^{\prime}\left(Z^{(\ell)}\right)$ means apply $g^{\prime}: R \rightarrow R$ to each element of $Z^{(\ell)}$.

Note:
$Z^{(\ell)} \in R^{p_{\ell}} . g^{\prime}\left(Z^{(\ell)}\right) \in R^{p_{\ell}} . \delta^{(\ell)} \in R^{p_{\ell}}$.
$\delta^{(\ell+1)} \in R^{\left(p_{\ell}+1\right)}$.
$W^{(\ell)}$ is $p_{(\ell+1)} \times p_{\ell}$.

Here are the partial derivatives in terms of the $\delta_{j}^{(\ell)}$.

$$
\begin{gathered}
Z_{k}^{(\ell+1)}=b_{k}^{\ell}+\sum_{i=1}^{p_{\ell}} w_{k i}^{(\ell)} a_{i}^{(\ell)} \\
\frac{\partial L}{\partial w_{k i}^{(\ell)}}=\frac{\partial L}{\partial Z_{k}^{(\ell+1)}} \frac{\partial Z_{k}^{(\ell+1)}}{\partial w_{k i}^{(\ell)}} \\
=\delta_{k}^{(\ell+1)} a_{i}^{(\ell)} \\
\frac{\partial L}{\partial b_{k}^{(\ell)}}=\delta_{k}^{(\ell+1)}
\end{gathered}
$$

$$
\begin{gathered}
\frac{\partial L}{\partial W^{(l)}}=\left[\frac{\partial L}{\partial w_{k i}^{(())}}\right]=\left[\delta^{(l+1)}\right]\left[a^{(\ell)}\right]^{\prime} \\
\frac{\partial L}{\partial b^{(\ell)}}=\left[\frac{\partial L}{\partial b_{k}^{(l)}}\right]=\delta^{(\ell+1)}
\end{gathered}
$$

Neural Nets in a Nutshell

Model and Loss

$$
\begin{aligned}
& a^{(1)}=x ; z^{(l)}=b^{(l-1)}+w^{(l-1)} a^{(l-1)} ; \quad a^{(e)}=g^{(l)}\left(z^{(l)}\right) \\
& f(x, b, w)=a^{(L)} ; \min _{b, \omega} \frac{L}{n} \sum_{i=1}^{n} L\left(y_{i}, f\left(x_{i}, b, w\right)\right)
\end{aligned}
$$

Gradient Computation (Back prop)

$$
\begin{aligned}
& -\delta_{1}^{(L)}=\frac{\partial L}{\partial f}\left(g^{L}\right)^{\prime}\left(z_{1}^{(L)}\right) \\
& -\delta^{(l)}=\left(g^{(l)}\right)^{\prime}\left(z^{(l)}\right) \odot\left[\omega^{(\Omega)}\right]^{\top} \delta^{(l+1)} \\
& -\frac{\partial L}{\partial \omega^{(l)}}=\left[\delta^{(l+1)}\right]\left[a^{(\rho)}\right]^{\top} \quad \frac{\partial L}{\partial b^{(l)}}=\delta^{(l+1)}
\end{aligned}
$$

SGD: Stochastic Gradient Descent
Epochs: $k=1,2, k$ (pass through data) $\quad \Theta=(b, \omega)$
En schedule

- Nesterou Momentum

L', LL regularization Dropout

Minibat chen: $\left.2 x_{i}, y_{i}^{b}\right\} \begin{aligned} & i=1,2, \cdots m \\ & b=1,2, \cdots\end{aligned} \quad \begin{aligned} & \text { for } k=1,2,-k \\ & b=1,2,-B\end{aligned}$

$$
\Theta \rightarrow \varepsilon_{k} \frac{1}{m} \sum_{i=1}^{m} \nabla L\left(x_{i}^{b}, y_{i}^{k}, \theta\right)^{*}
$$

ε_{x} : earing rate

