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The Bernoulli Model

We often like to think of observables y as having a model indexed
by a parameter θ.

The density
p(y | θ)

describes what kind of y we get given a value of the “latent”
parameter θ.



If we put a prior p(θ) on θ and then observe y we have

Bayes Theorem:

p(θ | y) ∝ f (y | θ) p(θ).



Note:

Given we observe y , f (y | θ) is a function of θ.

This is the likelihood function.

Given y ,

L(θ) ≡ f (y | θ).



Bayes theorem is often written:

p(θ | y) ∝ L(θ) p(θ).

Let’s see how these ideas play out in the simple case where
“θ = p”, that is, we are inferring about the unknown probability p
that something happens.



The Bernoulli Likelihood

Suppose on each independent trial, the probability of a “success”
is p.

Let y denote the number of successes given n trials.

p(y | p) =

(
n
y

)
py (1− p)n−y .

Thus,
L(p) ∝ py (1− p)n−y .



Using a Discrete Prior

How do we choose the form of our prior?

We want two things:

I The ability to flexibly express beliefs about p.

I The ability to “compute” the posterior.

Since p(p) looks bad, let’s call our prior g(p).



A very simple approach is to use a discrete distribution for p.

That is, we say that p must be one of the values

p ∈ {p1, p2, . . . , pm}.

And we let,
P(p = pi ) = g(pi ).



Then
p(p = pi | y) ∝ L(pi ) g(pi ).

p(p = pi | y) =
L(pi ) g(pi )∑m
j=1 L(pj) g(pj)

.



Using a Beta Prior

Certainly, the most commonly used prior is the Beta prior.

Recall the Gamma function:

Γ(α) =

∫ ∞
0

yα−1 e−y dy .

Γ(α) = (α− 1) Γ(α− 1).

Γ(n) = (n − 1)!.

Γ(1) = 1. Γ(.5) =
√
π.



The Beta distribution

X ∼ Beta(α, β)

then,

p(x) =
Γ(α + β)

Γ(α) Γ(β)
xα−1 (1− x)β−1, x ∈ (0, 1).

E (X ) =
Γ(α + β)

Γ(α) Γ(β)

∫ ∞
0

xα (1− x)β−1 dx

=
Γ(α + β)

Γ(α) Γ(β)

Γ(α + 1) Γ(β)

Γ(α + β + 1)

=
α

α + β
.



We use a Beta prior for p, p ∼ Beta(α, β).

Then,

g(p | y) ∝ L(p)g(p) = py (1− p)n−y pα−1 (1− p)β−1.

∝ pα+y−1 (1− p)β+n−y−1.

So,
p | y ∼ Beta(α + y , β + n − y).



Conjugate Priors:

We started with a Beta prior.

We stared and the likelihood × prior and saw that it was also of
the Beta form.

When the prior and likelihood are in the same parametric family we
say the prior is conjugate.

Models of the exponential family form have conjugate priors.



Discrete Approximation

If our prior is discrete computation of the posterior is
straightforward given calculation of the L(p) is so easy.

If we use the conjugate Beta prior, which is continuous, then
computation of the posterior is also straightforward.

Suppose we use an arbitrary continuous prior with density g(p).
How do we “compute” the posterior?



Perhaps the most obvious thing is to do the required integrals
numerically:

g(p | y) =
L(p) g(p)∫
L(p) g(p) dp

.

P(p ∈ A | y) =

∫
A L(p) g(p)∫
L(p) g(p) dp

.



A nice simple way that works generally is to discretize the prior.

We approximate the continuous prior by a discrete one, and then
do all the computations as in the discrete case.

We again choose a grid of points:

{p1, p2, . . . , pm}.

And then our approximate prior is

P(p = pi ) =
g(pi )∑m
i=1 g(pi )

,

where g is the continuous density.

We choose the grid {pi} to be evenly spaced and cover the support
of the posterior and compute as in the discrete case.



Prediction

Suppose we are trying to predict the outcome of the next trial?

Let ỹ be 1 if the next trial is a success and 0 if it is a failure.

ỹ ∼ Bern(p).

P(ỹ = 1 | y) =

∫
P(ỹ = 1 | p, y) g(p | y) dp

=

∫
P(ỹ = 1 | p) g(p | y) dp

=

∫
p g(p | y) dp

= E (p | y).



For the Beta prior we have

E (p | y) =
α + y

α + β + n
.

Note that if α and β are “large” then the prior dominates and the
posterior mean is close to the prior mean of α

α+β .

If n is “large” then the posterior is mean is y
n which is the sample

fraction of successes.



For the discrete methods we can just sum:

E (p | y) =
m∑

i=1

pi P(p = pi | y).



Change of Variable

Suppose we want inference for the odds:

o = p/(1− p).

More generally, we may want inference for some function of the
parameter θ = f (p).



In the discrete case it is easy to figure out the distribution of θ.

Let’s assume that f (p) has the inverse function h(θ).

θ = f (p), p = h(θ).

If our grid for p is {pi} then possible values for θ are {θi = f (pi )}.

P(θ = θi ) = P(p = h(θi )) = g(h(θi )).

where g is the probability mass function of p.

We can think of the function f as just “relabeling” the possible
outcomes.



In the continous case we can do a change of variable using the
Jabobian..

Let g(p) be the density of p and θ = f (p).
Let h(θ) = p be the inverse of f .

p(θ) = g(h(θ)) |dh(θ)

dθ
|.

or,

p(θ) = g(p(θ)) |dp

dθ
|



Example:

Let Z be a random variable.

y = f (z) = µ+ σ z .

Then

z = h(y) =
y − µ
σ

,
dz

dy
=

1

σ
.

So,

pY (y) = pZ (
y − µ
σ

)
1

σ
.



To get back to our Bernoulli p problem, if we use the Beta prior
then our posterior is Beta.

To get the marginal posterior of o = f (p) = p/(1− p), we have

h(o) = p =
o

1 + o
,

dp

do
=

1

(1 + o)2
.

We can now easily compute the prior and posterior densities of o.

p(o) = g(p(o))
1

(1 + o)2
.

where g is the prior or posterior of p and hence a Beta density.



Monte Carlo

Suppose we want P(o > 1)?

Suppose we want E (o2)?

Well, we could figure these out, but it is very easy to do everything
by Monte Carlo.

I Get iid draws pj , j = 1, 2, . . . ,N. from the distribution of p.

I Then oj = f (pj) are iid draws from the distribution of o.

For distributions like the Beta, a lot of work has gone into coming
up with nice algorithms for getting iid draws from the computer.



For N large, P(o > 1) is just the fraction of oj > 1.

E (o2) is the average of the o2
j values.

The density of o is like the histogram of the oj values.



We will be studying Markov Chain Monte Carlo which is a very
general Monte Carlo technique which works great in Bayesian
problems.
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