Clustering

Rob McCulloch

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

1. Undirected Learning/Data Mining

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- 2. The Cereal Data
- 3. Distance
- 4. Hierarchical Clustering
- 5. K-means Clustering

1. Undirected Learning/Data Mining

Up until now we have emphasized directed data mining.

This is the x and y game.

Given x, what's y ?????

Now we will look at tools in undirected data mining.

We will start with the most fundamental one, clustering.

What is undirected data mining ?

We still have observations on several variables, and we are still looking for some kind of pattern.

But now, there is no "y".

We just have "x" and want to see if there is structure.

For example, suppose we have two numeric variables x_1 and x_2 .

If I compute the correlation between x_1 and x_2 I could say I am doing "undirected data mining/learning".

If I regress, x_2 on x_1 , with the goal of predicting x_2 given future x_1 values, I am doing directed data/learning mining.

The basic technique in undirected DM is clustering.

We take our observations and try to divide them into groups of customers or brands or whatever.

It can be simpler to understand a large set (eg of customers) by saying we have a group like that, and a group like that, and so on.

Maybe our models will work better if you do one group at a time.

"... most of the data mining projects going on in the real world are directed". Berry and Linoff

Directed data mining is also called supervised data mining or supervised learning.

And undirected data mining is also called, unsupervised learing. "With supervised learning there is a clear measure

of success.... This can be estimated in a variety of ways including cross-validation. In the context of unsupervised learning, there is no such direct measure of success. It is difficult to ascertain the validity of inferences drawn from the output of most unsupervised learning algorithms. One must resort to heuristic arguments not only for motivating the algorithms, as is often the case in supervised learning as well, but also for judgments as to the quality of the results. This uncomfortable situation has led to heavy proliferation of proposed methods, since effectiveness is a matter of opinion and cannot be verified directly".

Hastie, Tibshirani, and Friedman, page 439

6

7

We have data on different brands of cereal.

For each brand we have different measures of product characteristics.

```
> dim(cereal)
[1] 43 8
```

We have 43 brands. For each brand we have measurements on 8 characteristics. > row.names(cereal)

[1] "ACCheerios" "Cheerios" [3] "CocoaPuffs" "Count Chocula" [5] "GoldenGrahams" [7] "Kix" [9] "MultiGrainCheerios" [11] "RaisinNutBran" [13] "TotalRaisinBran" [15] "Trix" [17] "WheatiesHoneyGold" [19] "AppleJacks" [21] "CornPops" [23] "Crispix" [25] "FrostedFlakes" [27] "FruitfulBran" [29] "MueslixCrispyBlend" [31] "NutriGrainAlmondRaisin" [33] "Product19" "RaisinBran" [35] "RiceKrispies" "Smacks" [37] "SpecialK" "CapNCrunch" [39] "HoneyGrahamOhs" "Life" [41] "PuffedRice" "PuffedWheat"

[43] "QuakerOatmeal"

- "HoneyNutCheerios"
- "LuckyCharms"
- "OatmealRaisinCrisp"
- "TotalCornFlakes"
 - "TotalWholeGrain"
- "Cheaties"
- "AllBran"
- "CornFlakes"
 - "CracklinOatBran"
- "FrootLoops"
- "FrostedMiniWheats"
 - "JustRightCrunchyNuggets"
- "NutNHonevCrunch"
- "NutriGrainWheat"

The Brands.

9

```
The variables:
```

```
> names(cereal)
[1] "calories" "protein" "fat" "sodium" "fiber"
"carbo" "sugar"
[8] "potass"
```

Thus, each variable is a characteristic of the brand.

This is a common type of application.

Another common kind of data has consumer responses to various questions about the brands as the variables.

Other than calories, everything is in grams or milligrams.

> summary(cereal)

calo	ries	prot	ein	fa	it	soc	lium
Min.	: 50.0	Min.	:1.000	Min.	:0.0000	Min.	: 0.0
1st Qu.	:100.0	1st Qu.	:2.000	1st Qu.	:0.0000	1st Qu.	:145.0
Median	:110.0	Median	:2.000	Median	:1.0000	Median	:190.0
Mean	:107.9	Mean	:2.465	Mean	:0.9767	Mean	:180.5
3rd Qu.	:110.0	3rd Qu.	:3.000	3rd Qu.	:1.5000	3rd Qu.	:220.0
Max.	:160.0	Max.	:6.000	Max.	:3.0000	Max.	:320.0
fib	er	car	bo	sug	Jar	pot	ass
fib Min.	er :0.000	car Min.	rbo : 0.00	sug Min.	gar : 0.000	pot Min.	ass : 15.00
fib Min. 1st Qu.	er :0.000 :0.500	car Min. 1st Qu.	rbo : 0.00 :12.00	sug Min. 1st Qu.	gar : 0.000 : 3.000	pot Min. 1st Qu.	ass: : 15.00 .: 37.50
fib Min. 1st Qu. Median	er :0.000 :0.500 :1.000	car Min. 1st Qu. Median	: 0.00 : 12.00 :14.00	sug Min. 1st Qu. Median	gar : 0.000 : 3.000 : 8.000	pot Min. 1st Qu. Median	: 15.00 : 37.50 : 60.00
fib Min. 1st Qu. Median Mean	er :0.000 :0.500 :1.000 :1.714	car Min. 1st Qu. Median Mean	tbo : 0.00 :12.00 :14.00 :14.01	sug Min. 1st Qu. Median Mean	<pre>gar : 0.000 : 3.000 : 8.000 : 7.605</pre>	pot Min. 1st Qu. Median Mean	: 15.00 : 37.50 : 60.00 : 84.42
fib Min. 1st Qu. Median Mean 3rd Qu.	er :0.000 :0.500 :1.000 :1.714 :2.850	car Min. 1st Qu. Median Mean 3rd Qu.	bo : 0.00 :12.00 :14.00 :14.01 :17.00	sug Min. 1st Qu. Median Mean 3rd Qu.	<pre>jar : 0.000 : 3.000 : 8.000 : 7.605 :12.000</pre>	pot Min. 1st Qu. Median Mean 3rd Qu.	: 15.00 : 37.50 : 60.00 : 84.42

11

I want to see how the different brands are "positioned" with regard to these characteristics.

If I just think about two of the characteristics at a time this is easy.

How do I see how they are positioned using all 8 ?

12

Maybe I could drop potass or fiber.

We think of each brand of cereal as an object.

We wish to group together objects which are similar, or equivalently, place objects which are different in different groups.

To do this, we have to have a measure of how different objects are.

In R the difference between two objects is called the distance.

Suppose x denotes the set of measurements for one object and y those of another, (just to make a point, y does not mean what it has in directed mining!!!!).

For example, with the cereal data and the first two brands:

```
> x = cereal[1,]
> y = cereal[2,] (ACCheerios is Apple-Cinnamon Cheerios)
> x
calories protein fat sodium fiber carbo sugar potass
ACCheerios 110 2 2 180 1.5 10.5 10 70
> y
calories protein fat sodium fiber carbo sugar potass
Cheerios 110 6 2 290 2 17 1 105
```

So, object x is ACCheerios and object y is Cheerios.

How different are objects x and y ?

The first thing you might think of to use is Euclidean distance:

$$d(x,y) = \sqrt{\sum_{i=1}^{p} (x_i - y_i)^2}$$

> sqrt(sum((x-y)^2)) [1] 116.0366 R has a function to compute distances, since it plays a basic role in clustering (and mds).

```
> library(mva)
> ?dist
Usage:
    dist(x, method = "euclidean", diag = FALSE, upper = FALSE)
    print.dist(x, diag = NULL, upper = NULL, ...)
    as.matrix.dist(x)
.....
```

Here, x would be a data frame, and the function will compute the distances for all pairs of objects, for all rows of the frame. If we try dist on the first two brands we see that it returns the Euclidean distance:

```
> cer2 = cereal[1:2,]
> cer2
     calories protein fat sodium fiber carbo sugar potass
ACCheerios
                 110
                                     180
                                           1.5 10.5
                            2
                                2
                                                          10
                                                                 70
Cheerios
                 110
                            6
                                2
                                     290
                                            2.0 17.0
                                                           1
                                                                105
> dist(cer2)
[1] 116.0366
```

The first four objects (brands):

> dist(cereal[1:4,])

	ACCheerios	Cheerios	CocoaPuffs
Cheerios	116.036632		
CocoaPuffs	15.508062	121.6511	
CountChocula	6.363961	117.8940	10

So, between each pair of objects we have a distance.

With all 43 brands we have a distance matrix.

Is Euclidean distance a sensible thing to use for our cereal example ?

Some quantities are measured in grams and others in milligrams.

The dist function in R has 5 options for the form of the distance:

euclidean:

Usual square distance between the two vectors (2 norm).

maximum

Maximum distance between two components of x and y (supremum norm)

manhattan:

Absolute distance between the two vectors (1 norm).

canberra

 $sum(|x_i - y_i| / |x_i + y_i|)$. Terms with zero numerator and denominator are omitted from the sum and treated as if the values were missing.

binary:

(aka *asymmetric binary*): The vectors are regarded as binary bits, so non-zero elements are `on' and zero elements are `off'. The distance is the *proportion* of bits in which only one is on amongst those in which at least one is on.

- > tempdf = data.frame(x=c(1,4),y=c(2,6))
- > row.names(tempdf) = c("o1","o2")

> tempdf

ху

o1 1 2

o2 4 6

> dist(tempdf,method="euclidean")

[1] 5

> dist(tempdf,method="maximum")

[1] 4

> dist(tempdf,method="manhattan")
[1] 7

> dist(tempdf,method="canberra")

[1] 1.1

> (3/5) + (4/8)

[1] 1.1

A simple example with 4 different distances applied.

Note that canberra does not depend on the units of the variable.

How about the binary distance?

This is appropriate when each of the variables in binary (factor with two levels).

For example, we might ask consumers a series of yes/no questions about the brands.

Of course, you can always take any variable and "bin" it to make it binary.

The distance is:

times only one var =1 / times at least one is 1

```
> o1 = c(0,0,0,0,1,1,1,1) At least one of the variables is 1
> o2 = c(0,0,1,1,0,1,1,1) 7 times.
> temp = rbind(o1,o2)
> dist(temp,method="binary")
[1] 0.4285714 3 of those times only 1 of the
two is 1.
[1] 0.4285714
dist is 3/7.
```

For example, if they matched perfectly, the distance would be 0.

There are only three possibilities:

both 0, both 1, mismatch.

dist = # mismatch / (# both 1 + # mismatch)

It is not clear that this is the best thing to do !!

Why should these two simple examples give different distances ? > o1 = c(0,0,0,0,1) > o2 = c(0,0,0,0,0) > temp = rbind(o1,o2) > dist(temp,method="binary") [1] 1 > > o1 = c(1,1,1,1,0) > o2 = c(1,1,1,1,1) > temp = rbind(o1,o2) > dist(temp,method="binary") [1] 0.1666667 > 1/6 [1] 0.1666667

People have looked at just about every possible way you can combine # both 0, # both 1, # mismatch to get a distance measure.

In general you should define your own distance measure. This will give a p by p matrix of distances for any pair.

R has functions for turning matrices into distance data structures and vice versa:

as.matrix.dist(x) as.dist(m, diag = FALSE, upper = FALSE)

You can also just use as.matrix (as I did, seems to give the same thing).

```
> temp = dist(cereal[1:4,])
```

```
> temp
```

ACCheer	ios	Cheeri	os	CocoaP	uffs
---------	-----	--------	----	--------	------

- Cheerios 116.036632
- CocoaPuffs 15.508062 121.6511
- CountChocula 6.363961 117.8940 10
- > junk = as.matrix.dist(temp)
- > junk

	ACCheerios	Cheerios	CocoaPuffs	CountChocula			
ACCheerios	0.00000	116.0366	15.50806	6.363961			
Cheerios	116.036632	0.0000	121.65114	117.894020			
CocoaPuffs	15.508062	121.6511	0.00000	10.000000			
CountChocula	6.363961	117.8940	10.00000	0.00000			
<pre>> stuff = as.dist(junk)</pre>							
> stuff							
	ACCheerios	Cheerios	CocoaPuffs				
Cheerios	116.036632						
CocoaPuffs	15.508062	121.6511					
CountChocula	6.363961	117.8940	10				

29

Choosing a good distance could be quite difficult to do sensibly in practice.

You could have several different numeric variables with completely different units.

What is the relative size of the distances?

$$d(x,y) = \sqrt{\sum_{i=1}^{p} w_i (x_i - y_i)^2}$$

Choosing the weight is equivalent to choosing a scaling for the variable.

How about different factor variables with different numbers of levels combined with numerics having different units ? How about our cereal example ?

Hey this should be easy, we just have grams and milligrams.

Should we convert the grams into milligrams ?

Note:

The R documentation calls the distances "dissimilarities".

4. Hierarchical Clustering

Lets look at a simple example.

oo is a data frame holding 8 objects. Each object is represented by two numeric measurements called \times and y.

```
> oo
x y
o1 10 0
o2 9 0
o3 7 0
o4 0 10
o5 0 9
o6 0 7
o7 10 3
o8 2 10
```

There are two obvious groups.

The function in					
R for hierchical	> temp = hclust(dist(oo))				
clustering is	> names(temp)				
"hclust".	[1] "merge" "height" "order"				
	[4] "labels" "method" "call"				
You have to	[7] "dist.method"				
	> temp\$merge				
give it a distance	[,1] [,2]				
structure.	[1,] -1 -2				
	[2,] -4 -5				
Here the results	[3,] -8 2				
are in temp.	[4,] -3 1				
The merge	[5,] -6 3				
component	[6,] -7 4				
	[7,] 5 6				
tells now the clustering					
is done.					

Each row refers to a step in the clustering procedure. We will go through it line by line, step by step. Hierarchical clustering starts by thinking of each object as a cluster all by itself.

Then it picks two "clusters" to merge together.

The first row of the temp\$merge says the first two objects joined together are o1 and o2.

The numbers with a minus sign refers to the actual objects. So -1 refers to the first object.

> temp\$merge	
[,1] [,2]	Take objects 1 and 2 and merge
[1,] -1 -2	them together.

[,1] [,2] [1,] -1 -2

The next	> tomp¢morgo		
step is to	[11 [2]		
put objects	[1,] -1 -2		
4 and 5 together.	[2,] -4 -5		

The next step is to put object 8 and the cluster formed at step 2 together.

> So, this two refers to the cluster formed at step 2 which was objects 4 and 5 combined.

[1,] -1 -2 [2,] -4 -5 [3,] -8 2 [4,] -3 1

[1,] -1 -2 [2,] -4 -5 [3,] -8 2 [4,] -3 1 [5,] -6 3

 1,]
 -1
 -2

 [2,]
 -4
 -5

 [3,]
 -8
 2

 [4,]
 -3
 1

 [5,]
 -6
 3

 [6,]
 -7
 4

- [1,] -1 -2
- [2,] -4 -5 [3,] -8 2
- [4,] -3 1
- [5,] -6 3 [6,] -7 4
- [7,] 5 6

Hierarchical Clustering

1. Start with each object as a cluster by itself.

2.

At each step, combine the two clusters which are closest.

3.

Stop when all objects are combined together.

How do you define how close two *clusters* are ?

"complete" uses the maximum of all distances between pairs of objects formed by selecting one object from each of the two clusters.

"single" uses the minimum.

> hclust(dist(oo),method="complete")\$merge [.1] [.2] [1,] -1 -2 [2,] -4 -5 [3,] -8 2 [4,] -3 1 [5,] -6 3 [6,] -7 4 [7,] 5 6 > hclust(dist(oo),method="single")\$merge [,1] [,2] [1,] -1 -2 [2,] -4 -5 [3,] -3 1 [4,] -6 2 [5,] -8 4 [6,] -7 3 [7,] 5 6

"complete" will give you "tight" clusters.

"single" will give you snaky ones. (any friend of yours is a friend of mine).

There are several choices.

First you have to choose the distance between pairs of objects, then you have to choose how to combine such distances to give the distance between two clusters of objects.

Let's try the cereal data

> cerhc = hclust(dist(cereal,method="canberra"),method="complete")

> names(cerhc)

[1] "merge" "height" "order" "labels"

[5] "method" "call" "dist.method"

> plot(cerhc,cex=.75)

Cluster Dendrogram

<u>cutree</u>

There are several functions in R for "doing" hierarchical clustering.

At a minimum we need to:

(i) cut the tree at some level to define a set of clusters

(ii) get the cluster id's of the objects

(i) and (ii) are achieved by *cutree*.

dist(oo) hclust (*, "complete") Let's do cereal with only two variables and then the whole thing.

dcer2 hclust (*, "complete")

> cer2Ind = cutree(cer2hc,h=3)

> table(as.factor(cer2Ind))

1 2 3 4 5 6 7

7 3 12 9 7 3 2

>

> plot(cer2,type="n", xlab="sugar",ylab="protein") > for(i in 1:length(cer2lnd)){ + text(cer2\$sugar[cer2lnd==i], cer2\$protein[cer2lnd==i],

paste("g",i,sep=""))

+}

Plot of the two variables with the group labels.

Let's change it to "canberra".

> dcer2 = dist(cer2,method="canberra")
> cer2hc = hclust(dcer2)
> plot(cer2hc,cex=.75)

> abline(h=.55)

Cereal, the real thing:

cerhc =
hclust(dist(cereal,method="canberra")
,method="complete")

> plot(cerhc,cex=.75)

> abline(h=3.5)

> cerInd = cutree(cerhc,h=3.5)

> table(as.factor(cerInd))

1 2 3 4 5 6 16 2 13 8 2 2

> row.names(cereal)[cerInd==1]

- [1] "ACCheerios" "HoneyNutCheerios"
- [3] "MultiGrainCheerios" "OatmealRaisinCrisp"
- [5] "RaisinNutBran" "TotalRaisinBran"
- [7] "TotalWholeGrain" "Cheaties"
- [9] "WheatiesHoneyGold" "AllBran"
- [11] "CracklinOatBran" "JustRightCrunchyNuggets"
- [13] "MueslixCrispyBlend" "NutriGrainAlmondRaisin"
- [15] "RaisinBran" "Life"
- > row.names(cereal)[cerInd==3]
- [1] "CocoaPuffs" "CountChocula" "GoldenGrahams" "LuckyCharms"
- [5] "Trix" "AppleJacks" "CornPops" "FrootLoops"
- [9] "FrostedFlakes" "NutNHoneyCrunch" "Smacks" "CapNCrunch"
- [13] "HoneyGrahamOhs"
- > row.names(cereal)[cerInd==4]
- [1] "Kix" "TotalCornFlakes" "CornFlakes" "Crispix"
- [5] "NutriGrainWheat" "Product19" "RiceKrispies" "SpecialK"
- > row.names(cereal)[cerInd==2]
- [1] "Cheerios" "QuakerOatmeal"
- > row.names(cereal)[cerInd==5]
- [1] "FrostedMiniWheats" "FruitfulBran"
- > row.names(cereal)[cerInd==6]
- [1] "PuffedRice" "PuffedWheat"

How many groups?

Few enough that you can think about them.

But you don't want to combine together things that are really different.

I've probably chosen too few here.

Usually people make up names for the groups.

	> Summary(cereal[cerma=1,])							
We can	calories		protein		fat		sodium	
easily	Min.	: 70.0	Min.	:2.000	Min.	:1.0	Min.	:140.0
	1st Qu	.:100.0	1st Qu	:2.750	1st Qu	.:1.0	1st Qu.	:165.0
obtain	Median	:110.0	Median	:3.000	Median	:1.0	Median	:195.0
the variable	Mean	:113.1	Mean	:2.875	Mean	:1.5	Mean	:190.6
summaries	3rd Qu	.:122.5	3rd Qu	.:3.000	3rd Qu	.:2.0	3rd Qu.	:212.5
fan a alvatan	Max.	:160.0	Max.	:4.000	Max.	:3.0	Max.	:260.0
for a cluster.	fil	ber	car	rbo	sug	gar	po	tass
	Min.	:1.000	Min.	: 0.00	Min.	: 3.0	Min.	: 60.0
	1st Qu	.:1.500	1st Qu	:11.25	1st Qu	.: 6.0	1st Qu	1.: 90.0
	Median	:2.750	Median	:14.50	Median	: 7.5	Mediar	1 :115.0
	Mean	:2.938	Mean	:13.28	Mean	: 8.0	Mean	:136.6
	3rd Qu	.:3.250	3rd Qu	:16.25	3rd Qu	.:10.0	3rd Qu	1.:160.0
	Max.	:9.000	Max.	:21.00	Max.	:14.0	Max.	:320.0

> summary(coreal[corind=1])

I'd like to see how the cluster differ. I could print summaries for each cluster but it might not be easy to compare.

I'll plot the cluster means for the different groups.

```
m1 = mean(cereal[cerind==1,])

m3 = mean(cereal[cerind==3,])

m4 = mean(cereal[cerind==4,])

plot(c(1,8),range(c(m1,m3,m4)),xlab="var",ylab="mean",type="n")

text(1:8,m1,"gp1",col=2)

text(1:8,m3,"gp3",col=3)

text(1:8,m5,"gp4",col=4)
```

No use because of the different scales.

cerealsc = cereal
for(i in 1:8){
temp = range(cerealsc[[i]])
cerealsc[[i]] = (cerealsc[[i]]-temp[1])/(temp[2]-temp[1])
}
<pre>m1 = mean(cerealsc[cerInd==1,]) m3 = mean(cerealsc[cerInd==3,]) m4 = mean(cerealsc[cerInd==4,]) plot(c(1,8),range(c(m1,m3,m4)),xlab="var",ylab="mean",type="n") text(1:8,m1,"gp1",col=2) text(1:8,m3,"gp3",col=3) text(1:8,m4,"gp4",col=4)</pre>

> names(cerealsc)

[1] "calories" "protein" "fat" "sodium" "fiber" "carbo"

[7] "sugar" "potass"

Group 3 is high on sugar and low on protein, fiber, and potassium.

k-means is another popular clustering method.

For example, it is in h2o.

The Algorithm:

- 1. Choose the number of clusters.
- 2. Choose starting values for the mean vector of each cluster.
- 3. Assign each object to the cluster having the closest mean
- 4. Replace the old cluster means with the mean of the cluster
- 5. Repeat 3 and 4 until "done"

Note: by mean vector, I mean a vector of means for each of the variables.

The help.

Description Perform k-means clustering on a data matrix.

Usage kmeans(x, centers, iter.max = 10) Arguments

- X A numeric matrix of data, or an object that can be coerced to such a matrix (such as a numeric vector or a data frame with all numeric columns).
- centers Either the number of clusters or a set of initial cluster centers. If the first, a random set of rows in X are chosen as the initial centers.
- iter.ma The maximum number of iterations allowed.
- х

Let's try it.

I'm using the scaled cereal data.

- > cerkm = kmeans(cerealsc,5)
- > names(cerkm)
- [1] "cluster" "centers" "withinss" "size"
- > cerkm\$cluster

```
[1] 5 1 5 5 5 5 2 5 2 4 3 2 4 2 5 2 5 3 5 2 5 3 2 5 5 2 4 2 4 5 4 2 2 4 2 5 1 5 5 3 2 2 3
```

> cerkm\$centers

calories		protein	fat	sodium	fiber	carbo	sugar	potass	
1	0.5454545	1.000000	0.3333333	0.8125000	0.16666667	0.7500000	0.1333333	0.2131148	
2	0.4155844	0.2571429	0.1428571	0.5669643	0.15079365	0.7987013	0.2095238	0.1487119	
3	0.4181818	0.5600000	0.6666667	0.4312500	0.44888889	0.2727273	0.3600000	0.4918033	
4	0.7727273	0.400000	0.444444	0.6145833	0.39814815	0.7159091	0.7555556	0.5355191	
5	0.5625000	0.1125000	0.3333333	0.5527344	0.06944444	0.5653409	0.7666667	0.1004098	

So, \$cluster give us the cluster id for each object. \$centers gives us the variable means for each cluster.

> cerkm\$withinss
[1] 0.2693324 3.4848313 1.8653941 0.9931863 1.8572751
> cerkm\$size
[1] 2 14 5 6 16

\$withinss gives us

$$\sum_{i=1}^{n_c} \sum_{j=1}^{p} (x_{ij} - \overline{x}_j)^2 \qquad n_c = \text{\# objects in the cluster}$$

for each cluster.

size gives us the number of objects in each cluster (n_c).

And that's it !!
How many clusters?

I'll try various cluster sizes and for each size sum the \$withinss.

A "good fit" means this is small.

```
ncl = 40
ssv = rep(0,ncl-1)
for(i in 2:ncl)
{
temp = kmeans(cerealsc,i)
print(i)
print(icmp$size)
ssv[i-1] = sum(temp$withinss)
}
plot(2:ncl,ssv)
```


For k-means it seems like we had to make fewer choices than with the hierarchical method.

But don't be fooled.

Choosing the scale of the data affects the clustering.