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1. Undirected Learning/Data Mining

Up until now we have emphasized directed data mining.

This is the x and y game.

Given x, what’s y ?????

Now we will look at tools in undirected data mining.

We will start with the most fundamental one, clustering.
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What is undirected data mining ?

We still have observations on several variables,
and we are still looking for some kind of pattern.

But now, there is no “y”.

We just have “x” and want to see if there is structure.
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For example, suppose we have two numeric variables x1 and x2.

If I compute the correlation between x1 and x2 I could say I am
doing “undirected data mining/learning”.

If I regress, x2 on x1, with the goal of predicting x2 given future x1
values, I am doing directed data/learning mining.
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The basic technique in undirected DM is clustering.

We take our observations and try to divide them into 
groups of customers or brands or whatever.

It can be simpler to understand a large set
(eg of customers) by saying we have a group
like that, and a group like that, and so on.

Maybe our models will work better if you do one
group at a time.
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“... most of the data mining projects going on
in the real world are directed”.

Berry and Linoff 

Directed data mining is also called
supervised data mining or supervised learning.

And undirected data mining is also called,
unsupervised learing.
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“With supervised learning there is a clear measure
of success....  This can be estimated in a variety of ways
including cross-validation.  In the context of unsupervised
learning, there is no such direct measure of success.
It is difficult to ascertain the validity of inferences drawn
from the output of most unsupervised learning algorithms.
One must resort to heuristic arguments not only for
motivating the algorithms, as is often the case in 
supervised learning as well, but also for judgments
as to the quality of the results.  This uncomfortable 
situation has led to heavy proliferation of proposed
methods, since effectiveness is a matter of opinion
and cannot be verified directly”.

Hastie, Tibshirani, and Friedman, page 439
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2. The Cereal Data

We have data on different brands of cereal.

For each brand we have different measures of product
characteristics.

> dim(cereal)

[1] 43 8

We have 43 brands.
For each brand we have measurements
on 8 characteristics.
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> row.names(cereal)

[1] "ACCheerios"              "Cheerios"               

[3] "CocoaPuffs"              "CountChocula"           

[5] "GoldenGrahams"           "HoneyNutCheerios"       

[7] "Kix"                     "LuckyCharms"            

[9] "MultiGrainCheerios"      "OatmealRaisinCrisp"     

[11] "RaisinNutBran"           "TotalCornFlakes"        

[13] "TotalRaisinBran"         "TotalWholeGrain"        

[15] "Trix"                    "Cheaties"               

[17] "WheatiesHoneyGold"       "AllBran"                

[19] "AppleJacks"              "CornFlakes"             

[21] "CornPops"                "CracklinOatBran"        

[23] "Crispix"                 "FrootLoops"             

[25] "FrostedFlakes"           "FrostedMiniWheats"      

[27] "FruitfulBran"            "JustRightCrunchyNuggets"

[29] "MueslixCrispyBlend"      "NutNHoneyCrunch"        

[31] "NutriGrainAlmondRaisin"  "NutriGrainWheat"        

[33] "Product19"               "RaisinBran"             

[35] "RiceKrispies"            "Smacks"                 

[37] "SpecialK"                "CapNCrunch"             

[39] "HoneyGrahamOhs"          "Life"                   

[41] "PuffedRice"              "PuffedWheat"            

[43] "QuakerOatmeal"          

The Brands.
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The variables:

> names(cereal)

[1] "calories" "protein"  "fat"      "sodium"   "fiber"    
"carbo"    "sugar"   

[8] "potass"  

Thus, each variable is a characteristic of the brand.

This is a common type of application.

Another common kind of data has consumer responses
to various questions about the brands as the variables.
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> summary(cereal)

calories        protein           fat             sodium    

Min.   : 50.0   Min.   :1.000   Min.   :0.0000   Min.   :  0.0 

1st Qu.:100.0   1st Qu.:2.000   1st Qu.:0.0000   1st Qu.:145.0  

Median :110.0   Median :2.000   Median :1.0000   Median :190.0 

Mean   :107.9   Mean   :2.465   Mean   :0.9767   Mean   :180.5 

3rd Qu.:110.0   3rd Qu.:3.000   3rd Qu.:1.5000   3rd Qu.:220.0  

Max.   :160.0   Max.   :6.000   Max.   :3.0000   Max.   :320.0 

fiber carbo           sugar potass      

Min.   :0.000   Min.   : 0.00   Min.   : 0.000   Min.   : 15.00 

1st Qu.:0.500   1st Qu.:12.00   1st Qu.: 3.000   1st Qu.: 37.50  

Median :1.000   Median :14.00   Median : 8.000   Median : 60.00

Mean   :1.714   Mean   :14.01   Mean   : 7.605   Mean   : 84.42

3rd Qu.:2.850   3rd Qu.:17.00   3rd Qu.:12.000   3rd Qu.:110.00  

Max.   :9.000   Max.   :22.00   Max.   :15.000   Max.   :320.00

Other than calories, everything is in grams or milligrams.
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I want to see how the different brands are
“positioned” with regard to these characteristics.

If I just
think about
two of the
characteristics
at a time this
is easy.

How do I see
how they
are positioned
using all 8 ?
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Maybe I
could
drop
potass
or
fiber.
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3. Distance

We think of each brand of cereal as an object.

We wish to group together objects which are similar, or
equivalently, place objects which are different in different groups.

To do this, we have to have a measure of how different objects are.

In R the difference between two objects is called the distance.
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Suppose x denotes the set of measurements
for one object and y those of another,
(just to make a point, y does not mean what it
has in directed mining!!!!).

For example, with the cereal data and the first
two brands:

> x = cereal[1,]

> y = cereal[2,]

> x

calories protein fat sodium fiber carbo sugar potass

ACCheerios 110       2   2    180   1.5  10.5    10     70

> y

calories protein fat sodium fiber carbo sugar potass

Cheerios      110       6   2    290     2    17     1    105

(ACCheerios is Apple-Cinnamon Cheerios)
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So, object x is ACCheerios and object y is Cheerios.

How different are objects x and y ?

The first  thing you might think of to use is
Euclidean distance:

p
2

i i
i 1

d(x,y) (x y )
=

= −∑

> sqrt(sum((x-y)^2))

[1] 116.0366
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R has a function to compute distances, since
it plays a basic role in clustering (and mds).

> library(mva)

> ?dist

Usage:

dist(x, method = "euclidean", diag = FALSE, upper = FALSE)

print.dist(x, diag = NULL, upper = NULL, ...)

as.matrix.dist(x)

.....

Here, x would be a data frame, and the function
will compute the distances for all pairs of objects,
for all rows of the frame.
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> cer2 = cereal[1:2,]

> cer2
calories protein fat sodium fiber carbo sugar potass

ACCheerios 110       2   2    180   1.5  10.5    10     70

Cheerios        110       6   2    290   2.0  17.0     1    105

> dist(cer2)

[1] 116.0366

If we try dist on the first two brands we see that it
returns the Euclidean distance:
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> dist(cereal[1:4,])

ACCheerios    Cheerios CocoaPuffs

Cheerios      116.036632

CocoaPuffs    15.508062    121.6511

CountChocula   6.363961    117.8940         10

The first four objects (brands):

So, between each pair of objects we 
have a distance.
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> temp = as.matrix(dist(cereal))

> dim(temp)

[1] 43 43

> temp[1,1]

[1] 0

> temp[1,2]

[1] 116.0366

> temp[1,3]

[1] 15.50806

> temp[3,1]

[1] 15.50806

With all 43 brands we have a distance matrix.

To access specific distances I turn it into
a matrix.

The matrix is 43 by 43 each row and column
corresponds to an object (brand).

The distance between object i and object j
is temp[i,j].

Object 1 is not far from itself.

Dist between 1 and 2 is as before.

Dist between 1 and 3 is as before.

Dist between 1 and 3 is same as 3 and 1.
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Is Euclidean distance a sensible thing to use
for our cereal example ?

Some quantities are measured in grams and others
in milligrams.
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euclidean: 

Usual square distance between the two vectors (2 norm). 
maximum: 

Maximum distance between two components of x and y (supremum
norm)

manhattan: 

Absolute distance between the two vectors (1 norm).
canberra: 

sum(|x_i - y_i| / |x_i + y_i|). Terms with zero numerator and 
denominator are omitted from the sum and treated as if the values 
were missing. 

binary: 

(aka asymmetric binary): The vectors are regarded as binary bits, so 
non-zero elements are `on' and zero elements are `off'. The distance
is the proportion of bits in which only one is on amongst those in 
which at least one is on. 

The dist function in R has 5 options for the form of the distance:
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> tempdf = data.frame(x=c(1,4),y=c(2,6))

> row.names(tempdf) = c("o1","o2")

> tempdf

x y

o1 1 2

o2 4 6

> dist(tempdf,method="euclidean")

[1] 5

> dist(tempdf,method="maximum")

[1] 4

> dist(tempdf,method="manhattan")

[1] 7

> dist(tempdf,method="canberra")

[1] 1.1

> (3/5) + (4/8)

[1] 1.1

A simple example
with 4 different
distances applied.

Note that canberra
does not depend on
the units of the variable.

22



24

How about the binary distance?

This is appropriate when each of the variables in
binary (factor with two levels).

For example, we might ask consumers a series
of  yes/no questions about the brands.

Of course, you can always take any variable
and “bin” it to make it binary.
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The distance is:

# times only one var =1 / times at least one is 1

> o1 = c(0,0,0,0,1,1,1,1,1)

> o2 = c(0,0,1,1,0,1,1,1,1)

> temp = rbind(o1,o2)

> dist(temp,method="binary")

[1] 0.4285714

> 3/7

[1] 0.4285714

At least one of the variables is 1
7 times.

3 of those times only 1 of the
two is 1.

dist is 3/7.

For example, if they matched perfectly, the 
distance would be 0.
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There are only three possibilities:

both 0, both 1, mismatch.

dist = # mismatch /  (# both 1 + # mismatch)
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> o1 = c(0,0,0,0,0,1)

> o2 = c(0,0,0,0,0,0)

> temp = rbind(o1,o2)

> dist(temp,method="binary")

[1] 1

> 

> o1 = c(1,1,1,1,1,0)

> o2 = c(1,1,1,1,1,1)

> temp = rbind(o1,o2)

> dist(temp,method="binary")

[1] 0.1666667

> 1/6

[1] 0.1666667

It is not clear
that this is 
the best
thing to do !!

Why should
these two
simple examples
give different
distances ?

People have looked at just about every possible way
you can combine # both 0, # both 1, # mismatch
to get a distance measure.
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In general you should define your own distance measure.
This will give a p by p matrix of distances for any pair.

R has functions for turning matrices into distance
data structures and vice versa:

as.matrix.dist(x)
as.dist(m, diag = FALSE, upper = FALSE) 

You can also just use as.matrix (as I did, seems to
give the same thing).
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> temp = dist(cereal[1:4,])

> temp

ACCheerios Cheerios CocoaPuffs

Cheerios     116.036632                    

CocoaPuffs 15.508062 121.6511           

CountChocula 6.363961 117.8940         10

> junk = as.matrix.dist(temp)

> junk

ACCheerios Cheerios CocoaPuffs CountChocula

ACCheerios 0.000000 116.0366   15.50806     6.363961

Cheerios     116.036632   0.0000  121.65114   117.894020

CocoaPuffs 15.508062 121.6511    0.00000    10.000000

CountChocula 6.363961 117.8940   10.00000     0.000000

> stuff = as.dist(junk)

> stuff

ACCheerios Cheerios CocoaPuffs

Cheerios     116.036632                    

CocoaPuffs 15.508062 121.6511           

CountChocula 6.363961 117.8940         10
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Choosing a good distance could be quite difficult
to do sensibly in practice.

You could have several different numeric variables
with completely different units.

What is the relative size of the distances?

p
2

i i i
i 1

d(x,y) w (x y )
=

= −∑

Choosing the weight is equivalent to choosing
a scaling for the variable.
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How about different factor variables with different

numbers of levels combined with numerics

having different units ?
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How about our cereal example ?

Hey this should be easy, we just have grams
and milligrams.

Should we convert the grams into milligrams ?
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Note:

The R documentation calls the distances
“dissimilarities”.
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4. Hierarchical Clustering

Lets look at a simple example.

oo is a data frame holding 8 objects.
Each object is represented by two numeric measurements called x
and y.

> oo

x y

o1 10 0

o2 9 0

o3 7 0

o4 0 10

o5 0 9

o6 0 7

o7 10 3

o8 2 10
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There
are two
obvious groups.
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> temp = hclust(dist(oo))

> names(temp)

[1] "merge"       "height"      "order"      

[4] "labels"      "method"      "call"       

[7] "dist.method"

> temp$merge

[,1] [,2]

[1,]   -1   -2

[2,]   -4   -5

[3,]   -8    2

[4,]   -3    1

[5,]   -6    3

[6,]   -7    4

[7,]    5    6

The function in
R for hierchical
clustering is
“hclust”.

You have to
give it a distance
structure.

Here the results
are in temp.
The merge
component
tells how the clustering
is done.

Each row refers to a step in the clustering procedure.
We will go through it line by line, step by step.
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Hierarchical clustering starts by thinking
of each object as a cluster all by itself.

Then it picks two “clusters” to merge together.

The first row of the temp$merge says the first
two objects joined together are o1 and o2.

The numbers with a minus sign refers to the
actual objects.  So -1 refers to the first object. 

> temp$merge

[,1] [,2]

[1,]   -1   -2

Take objects 1 and 2 and merge
them together.
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So this is step 1: > temp$merge

[,1] [,2]

[1,]   -1   -2
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The next
step is to
put objects
4 and 5 together.

> temp$merge

[,1] [,2]

[1,]   -1   -2

[2,]   -4   -5
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The next
step is to
put object
8 and the cluster
formed at step 2
together.

> temp$merge

[,1] [,2]

[1,]   -1   -2

[2,]   -4   -5

[3,]   -8    2

So, this two refers to the
cluster formed at step 2
which was objects 4 and 5
combined.
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[1,]   -1   -2

[2,]   -4   -5

[3,]   -8    2

[4,]   -3    1
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[1,]   -1   -2

[2,]   -4   -5

[3,]   -8    2

[4,]   -3    1

[5,]   -6    3
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1,]   -1   -2

[2,]   -4   -5

[3,]   -8    2

[4,]   -3    1

[5,]   -6    3

[6,]   -7    4
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[1,]   -1   -2

[2,]   -4   -5

[3,]   -8    2

[4,]   -3    1

[5,]   -6    3

[6,]   -7    4

[7,]    5    6

Finally, we are all one big happy family.
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How does
R plot the
clustering ?

> plot(temp)

[1,]   -1   -2

[2,]   -4   -5

[3,]   -8    2

[4,]   -3    1

[5,]   -6    3

[6,]   -7    4

[7,]    5    6

The “height” represents
the “closeness” of the 
joined clusters.
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Hierarchical Clustering

1.
Start with each object as a cluster by itself.

2.

At each step, combine the two clusters which
are closest.

3.

Stop when all objects are combined together.

How do you define how close two clusters are ?
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> hclust(dist(oo),method="complete")$merge

[,1] [,2]

[1,]   -1   -2

[2,]   -4   -5

[3,]   -8    2

[4,]   -3    1

[5,]   -6    3

[6,]   -7    4

[7,]    5    6

> hclust(dist(oo),method="single")$merge

[,1] [,2]

[1,]   -1   -2

[2,]   -4   -5

[3,]   -3    1

[4,]   -6    2

[5,]   -8    4

[6,]   -7    3

[7,]    5    6

“complete”
uses the
maximum of
all distances
between pairs
of objects formed
by selecting one
object from each
of the two clusters.

“single” uses the
minimum.
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“complete” will give you “tight” clusters.

“single” will give you snaky ones.
(any friend of yours is a friend of mine).

There are several choices.

First you have to choose the distance between
pairs of objects, then you have to choose how to
combine such distances to give the distance between
two clusters of objects.
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Let’s try the cereal data

> cerhc = hclust(dist(cereal,method="canberra"),method="complete")

> names(cerhc)

[1] "merge"       "height"      "order"       "labels"     

[5] "method"      "call"        "dist.method"

> plot(cerhc,cex=.75)
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cutree

There are several functions in R for “doing”
hierarchical clustering.

At a minimum we need to:

(i) cut the tree at some level to define a set of clusters

(ii) get the cluster id’s of the objects

(i) and (ii) are achieved by cutree.
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> oohc = hclust(dist(oo))

> plot(oohc)

> ooc3 = cutree(oohc,3)

> ooc3

o1 o2 o3 o4 o5 o6 o7 o8 

1  1  1  2  2  2  3  2

> cutree(oohc,h=4)

o1 o2 o3 o4 o5 o6 o7 o8 

1  1  1  2  2  2  3  2  

You can ask for
a number of
groups

or cut the
“dendogram”
at a certain
height.
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Let’s do cereal with only two variables and
then the whole thing.

> cer2 = cereal[,c("sugar","protein")]

> dcer2 = dist(cer2,method="euclidean")

> cer2hc = hclust(dcer2)

> plot(cer2hc,cex=.75)

> abline(h=3)
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> cer2Ind = cutree(cer2hc,h=3)

> table(as.factor(cer2Ind))

1  2  3  4  5  6  7 

7  3 12  9  7  3  2 

> 

> plot(cer2,type="n",

xlab="sugar",ylab="protein")

> for(i in 1:length(cer2Ind)){

+ text(cer2$sugar[cer2Ind==i],

cer2$protein[cer2Ind==i],

paste("g",i,sep=""))

+ }

Plot of the two variables with
the group labels.
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> dcer2 = dist(cer2,method="canberra")

> cer2hc = hclust(dcer2)

> plot(cer2hc,cex=.75)

> abline(h=.55)

Let’s change it
to “canberra”.
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Different.

57



59

cerhc = 
hclust(dist(cereal,method="canberra")
,method="complete")

> plot(cerhc,cex=.75)

> abline(h=3.5)

> cerInd = cutree(cerhc,h=3.5)

> table(as.factor(cerInd))

1  2  3  4  5  6 

16  2 13  8  2  2 

Cereal, the real thing:
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> row.names(cereal)[cerInd==1]

[1] "ACCheerios"              "HoneyNutCheerios"       

[3] "MultiGrainCheerios"      "OatmealRaisinCrisp"     

[5] "RaisinNutBran"           "TotalRaisinBran"        

[7] "TotalWholeGrain"         "Cheaties"               

[9] "WheatiesHoneyGold"       "AllBran"                

[11] "CracklinOatBran"         "JustRightCrunchyNuggets"

[13] "MueslixCrispyBlend"      "NutriGrainAlmondRaisin" 

[15] "RaisinBran"              "Life"

> row.names(cereal)[cerInd==3]

[1] "CocoaPuffs"      "CountChocula"    "GoldenGrahams"   "LuckyCharms"    

[5] "Trix"            "AppleJacks"      "CornPops"        "FrootLoops"     

[9] "FrostedFlakes"   "NutNHoneyCrunch" "Smacks"          "CapNCrunch"     

[13] "HoneyGrahamOhs" 

> row.names(cereal)[cerInd==4]

[1] "Kix"             "TotalCornFlakes" "CornFlakes"      "Crispix"        

[5] "NutriGrainWheat" "Product19"       "RiceKrispies"    "SpecialK"       

> row.names(cereal)[cerInd==2]

[1] "Cheerios"      "QuakerOatmeal"

> row.names(cereal)[cerInd==5]

[1] "FrostedMiniWheats" "FruitfulBran"     

> row.names(cereal)[cerInd==6]

[1] "PuffedRice"  "PuffedWheat"

How many groups?

Few enough that you
can think about them.

But you don’t want to
combine together
things that are really
different.

I’ve probably chosen
too few here.

Usually people make
up names for 
the groups.
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> summary(cereal[cerInd==1,])
calories        protein           fat          sodium     

Min.   : 70.0   Min.   :2.000   Min.   :1.0   Min.   :140.0  

1st Qu.:100.0   1st Qu.:2.750   1st Qu.:1.0   1st Qu.:165.0  

Median :110.0   Median :3.000   Median :1.0   Median :195.0  

Mean   :113.1   Mean   :2.875   Mean   :1.5   Mean   :190.6  

3rd Qu.:122.5   3rd Qu.:3.000   3rd Qu.:2.0   3rd Qu.:212.5  

Max.   :160.0   Max.   :4.000   Max.   :3.0   Max.   :260.0  

fiber carbo           sugar potass     

Min.   :1.000   Min.   : 0.00   Min.   : 3.0   Min.   : 60.0  

1st Qu.:1.500   1st Qu.:11.25   1st Qu.: 6.0   1st Qu.: 90.0  

Median :2.750   Median :14.50   Median : 7.5   Median :115.0  

Mean   :2.938   Mean   :13.28   Mean   : 8.0   Mean   :136.6  

3rd Qu.:3.250   3rd Qu.:16.25   3rd Qu.:10.0   3rd Qu.:160.0  

Max.   :9.000   Max.   :21.00   Max.   :14.0   Max.   :320.0  

We can
easily
obtain
the variable
summaries
for a cluster.
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I’d like to see how the cluster differ.
I could print summaries for each cluster but
it might not be easy to compare.

I’ll plot the cluster means for the different groups.

m1 = mean(cereal[cerInd==1,])

m3 = mean(cereal[cerInd==3,])

m4 = mean(cereal[cerInd==4,])

plot(c(1,8),range(c(m1,m3,m4)),xlab="var",ylab="mean",type="n")

text(1:8,m1,"gp1",col=2)

text(1:8,m3,"gp3",col=3)

text(1:8,m5,"gp4",col=4)
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No use 
because of
the different
scales.
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cerealsc = cereal

for(i in 1:8){

temp = range(cerealsc[[i]])

cerealsc[[i]] = (cerealsc[[i]]-temp[1])/(temp[2]-temp[1])

}

m1 = mean(cerealsc[cerInd==1,])

m3 = mean(cerealsc[cerInd==3,])

m4 = mean(cerealsc[cerInd==4,])

plot(c(1,8),range(c(m1,m3,m4)),xlab="var",ylab="mean",type="n")

text(1:8,m1,"gp1",col=2)

text(1:8,m3,"gp3",col=3)

text(1:8,m4,"gp4",col=4)

I’ll scale
all the vars
to be
between
0 and 1,
and then
plot the
means.

63



65

> names(cerealsc)

[1] "calories" "protein"  "fat"      "sodium"   "fiber"    
"carbo"   

[7] "sugar"    "potass"  

Group 3 is high
on sugar
and low on
protein,
fiber,
and potassium.
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5. K-means Clustering

k-means is another popular clustering method.

For example, it is in h2o.
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1.  Choose the number of clusters.
2.  Choose starting values for the mean vector of each

cluster.
3.  Assign each object to the cluster having the closest mean
4.  Replace the old cluster means with the mean of the cluster
5.  Repeat 3 and 4 until “done”

The Algorithm:

Note: by mean vector, I mean a vector of means
for each of the variables.
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Description
Perform k-means clustering on a data matrix. 

Usage
kmeans(x, centers, iter.max = 10) 
Arguments

x A numeric matrix of data, or an object that can be coerced to such a matrix (such as a numeric vector or a data frame with all numeric columns). 

centers Either the number of clusters or a set of initial cluster centers. If the first, a random set of rows in x are chosen as the initial centers. 

iter.ma
x

The maximum number of iterations allowed. 

The help.
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Let’s try it.

I’m using the scaled cereal data.

68



70

> cerkm = kmeans(cerealsc,5)

> names(cerkm)

[1] "cluster"  "centers"  "withinss" "size"    

> cerkm$cluster

[1] 5 1 5 5 5 5 2 5 2 4 3 2 4 2 5 2 5 3 5 2 5 3 2 5 5 2 4 2 4 5 4 2 2 4 2 5 1 5 5 3 2 2 3

> cerkm$centers
calories   protein       fat    sodium      fiber     carbo sugar    potass

1 0.5454545 1.0000000 0.3333333 0.8125000 0.16666667 0.7500000 0.1333333 0.2131148

2 0.4155844 0.2571429 0.1428571 0.5669643 0.15079365 0.7987013 0.2095238 0.1487119

3 0.4181818 0.5600000 0.6666667 0.4312500 0.44888889 0.2727273 0.3600000 0.4918033

4 0.7727273 0.4000000 0.4444444 0.6145833 0.39814815 0.7159091 0.7555556 0.5355191

5 0.5625000 0.1125000 0.3333333 0.5527344 0.06944444 0.5653409 0.7666667 0.1004098

So, $cluster give us the cluster id for each object.
$centers gives us the variable means for each cluster.
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> cerkm$withinss

[1] 0.2693324 3.4848313 1.8653941 0.9931863 1.8572751

> cerkm$size

[1]  2 14  5  6 16

$withinss gives us 
cn p

2
ij j

i 1 j 1
(x x )

= =

−∑∑

for each cluster.

nc = # objects in the cluster

$size gives us the number of objects in each cluster (nc).

And that’s it !!
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How many clusters?

I’ll try various cluster sizes and for each size sum
the $withinss.

A “good fit” means this is small.

ncl = 40

ssv = rep(0,ncl-1)

for(i in 2:ncl)

{

temp = kmeans(cerealsc,i)

print(i)

print(temp$size)

ssv[i-1] = sum(temp$withinss)

}

plot(2:ncl,ssv)
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Suggests no
more than
13 clusters,
but lot’s 
of possibilities.
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For k-means it seems like we had to make fewer
choices than with the hierarchical method.

But don’t be fooled.

Choosing the scale of the data affects the clustering.
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