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Introduction 
EM algorithm and Gibbs sampler have both been highly successful in analyzing mixture models, 

especially for parameter estimation. The EM algorithm is an iterative scheme based on maximum 

likelihood, while Hibbs sampler is an approach of generating random sample from a multivariate 

distribution (Liang 2009). In practice, it is often difficult to determine which algorithm will work 

best (Zaheer, Wick et al.). In this project, we focus on the three-component normal mixture model 

and compare the performance of simulated mixture model using both EM algorithm and Gibbs 

sampler. 

 

Methods 
In our project, we assumed that we know the number of components, and coded up two algorithms 

based on this assumption. In EM algorithm, we imagine that there is a small number of normal we 

are mixing together with unequal weights and various components. The first step was constructing 

initial values for probability at the value 1/3 with three components and mean and standard 

deviation were simply to choose from uniform distribution at random. In E-step, we got the 

probability of the ith sample from the jth component and recorded the parameters of last iteration. 

In M-step, maximizing the log-likelihood by letting its derivation as zero, and here we gave the 

optimization results directly. We can also set a threshold when the change between last iteration 

and the next iteration is pretty small, where we think it converges. 

Gibbs sampler is Markov Chain that uses full conditional distribution for the proposal distribution 

for each component. Here we wanted to inference for the mean, standard deviation and probability. 

Here is the algorithm in outline: 1) sample latent variable I (in our code is z) from an independent 

multinoulli, 2) sample probability from a Dirichlet, 3) sample mean from an independent normal 

distribution, and 4) sample standard deviation from an independent inverted chi-squared 

distribution. 

We simulated data with three components, and the mean of each component is 0, 1, 5, the 

corresponding standard deviations are 1, 0.5, 2 and the probabilities equal to 0.4, 0.4, 0.2, 

separately. Then we drew 100 simulated samples for each algorithm, and the general simulated 

data is shown in Figure 1. To illustrate EM algorithm, figure 2 demonstrates the three components 

(normal distribution) underlying the simulated data. 



Figure 1: Histogram of simulated data 

 
Figure 2: Three normal distribution underlying mixture model 

 
 

Results 
Table 1 and Table 2 showed the results of two algorithms. We can see that those two results were 

very close to true values, but EM algorithm had a greater performance as its estimations were much 

closer, especially in probability. 

 

Table 1: Results on EM algorithm 

 Component 1 Component 2 Component 3 

Mean -0.026 0.948 5.043 



Sigma 0.890 0.528 1.976 

Probability 0.365 0.437 0.199 

 

Table 2: Results on Gibbs sampler 

 Component 1 Component 2 Component 3 

Mean -0.263 0.954 4.565 

Sigma 0.889 0.531 2.213 

Probability 0.309 0.473 0.218 

 

We also calculated the mean-square error (MSE) for the 100 observations drawn from the 

simulated data in order to measure the performance of two algorithms. The smaller MSE we got 

indicated the better the estimation of algorithm. The results are as follow.  

Table 3: MSE on EM algorithm 

 Component 1 Component 2 Component 3 

MSE(Mean) 0.07 0.02 0.16 

MSE(Sigma) 0.09 0.02 0.06 

MSE(Probability) 0.02 0.02 0.00 

 

Table 4: MSE on Gibbs sampler 

 Component 1 Component 2 Component 3 

MSE(Mean) 0.15 0.01 0.42 

MSE(Sigma) 0.03 0.01 0.16 

MSE(Probability) 0.02 0.01 0.00 



In those two tables, we can see that EM algorithm had a better performance in mean. For sigma, 

sometimes Gibbs sampler won, while other times EM algorithm exceled. We conclude that each 

algorithm has its own merits. 

Try the Gibbs sampler on the data simulated we mentioned above. We can see the first few samples 

as “burn-in”, and then the mean parameters were near the true values. If we drop those “burn-in”, 

the results would be more accurate. 

Figure 3: The converge plot of mu in Gibbs Sampler 

 

Discussions 

Conclusions 

We compared EM algorithm and Gibbs sampler on 100 mixture models drawn from simulated 

data and found that their performance to be comparable based on the same number of components. 

They are both good methods for parameter estimation. The EM algorithm doesn’t need any prior 

information, while the Gibbs sampler is more complicated in computing. Summarizing the 

simulation results and MSE tables, we think they usually get similar results about true values. For 

estimated means, EM algorithm would be a better choice, while Gibbs sampler is an optimal 

approach if want to conduct more statistical inference. 



In addition, though we didn’t try any vectorization techniques in these two algorithms, we can still 

explore their computational properties. The Gibbs sampler is sequential and difficult to parallelize, 

and in our project, it took long time to get the results as well. In contrast, EM algorithm is easy to 

parallelize, and we got the results in a comparative short time. 

 

Limitations 

The results and conclusions derived from this project are subject to some limitations. The 

following paragraphs will further explain these limitations which include: 1) superficial 

understanding of the mechanism of the two algorithms, and 2) outliers and unstable result. 

Our codes were much more an editing of the lectures from our understandings, but not much at 

understanding the context. In the project, we assumed that we knew the number of components 

with simulated data and excluded that part in our codes. The incompleteness made the coded 

algorithms less functional. We are also unable to get the information of which data points belongs 

to which component in the EM algorithm. 

The other limitation concerns the outliers and unstable result. For example, we drew 100 

observations from simulated random sample in the EM algorithm, while our estimates were not 

completely close to the true values, in fact some of them were outliers that far from the true values. 

To conclude, we still cannot surely imply that our results can represent the two algorithms as a 

whole. 

 

Areas of Improvement 

In mixture analysis, a key point is that the number of components in the mixture needed for the 

analysis may depend heavily on the nature of the data (Aitkin 2001). As we mentioned previously, 

we didn’t code up the latent variable in the EM algorithm in our project. It is yet uncertain that if 

the lack of latent variable leads to unstable results in our codes, but that is one area of improvement 

for coding. Additionally, we only consider the case of complete data, which is the easiest way to 

validate our codes. We could also attempt to include missing values in the dataset and see what 

happens. 
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Appendix  

EM	Algorithm	

EM <- function(samp){ 

  k <- 3 

  n <- 1000 

  prob <- matrix(rep(0, k*n), nrow = n) 

  weight <- matrix(rep(0, k*n), nrow = n) 

   

  # intial values 

  alpha <- c(0.333, 0.333,0.334) 

  miu   <- runif(k) 

  sigma <- runif(k) 

   

  # EM algorithm 

  for (step in 1:200) { 

    # E-step 

    for (j in 1:k) { 

      prob[, j]   <- sapply(samp, dnorm, miu[j], sigma[j]) 

      weight[, j] <- alpha[j] * prob[, j] 

    } 

    row_sum <- rowSums(weight) 

    prob    <- weight/row_sum 

     



    # record the values of parameters 

    #oldalpha <- alpha 

    #oldmiu   <- miu 

    #oldsigma <- sigma 

     

    # M-step 

    for (j in 1:k) { 

      sum1     <- sum(prob[, j]) 

      sum2     <- sum(samp*prob[, j]) 

      alpha[j] <- sum1/n 

      miu[j]   <- sum2/sum1 

      sum3     <- sum(prob[, j]*(samp-miu[j])^2) 

      sigma[j] <- sqrt(sum3/sum1) 

    } 

     

    # set threshold 

    #threshold <- 1e-5 

    #if (sum(abs(alpha - oldalpha)) < threshold &  

    #    sum(abs(miu - oldmiu))     < threshold &  

    #    sum(abs(sigma - oldsigma)) < threshold) break 

    cat('step', step, 'alpha', alpha, 'miu', miu, 'sigma', sigma, '\n') 

  } 

   

  alpha1 <- alpha 

  sigma1 <- sigma 

  for (i in 1:3){ 

    alpha1[rank(miu)[i]] <- alpha[i] 

    sigma1[rank(miu)[i]] <- sigma[i] 

  } 

   

  alpha <- alpha1 

  sigma <- sigma1 

  miu <- sort(miu) 

  return(list(miu,sigma,alpha)) 



   

} 

Simulation	EM	algorithm	

rmix = function(n, pi, mu, s){ 

  z = sample(1:length(pi), prob=pi, size=n, replace=TRUE) 

  x = rnorm(n, mu[z], s[z]) 

  return(x) 

} 

sim_em <- function(index){ 

  x <- rmix(n=1000, pi=c(0.4, 0.4, 0.2), mu=c(0, 1, 5), s=c(1, 0.5, 2)) 

  res <- EM(x) 

  return(res) 

} 

 

set.seed(1000) 

em_res <- llply(1:100, sim_em) 

 

for(i in 1:100){ 

  if (is.nan(em_res[[101-i]][[2]][[3]])){ 

    em_res <- em_res[i-101] 

  } 

} 

 

mu <- function(index, res){ 

  res[[index]][[1]] 

} 

 

sigma <- function(index, res){ 

  res[[index]][[2]] 

} 

 

pi <- function(index, res){ 

  res[[index]][[3]] 



} 

 

summary_res <- function(param, data){ 

  data.frame(Component1 = mean((data[, 1] -param[1])^2),  

             Component2 = mean((data[, 2] -param[2])^2),  

             Component3 = mean((data[, 3] -param[3])^2)) 

   

} 

 

mu_em <- ldply(1:length(em_res), mu, res = em_res) 

sigma_em <- ldply(1:length(em_res), sigma, res = em_res) 

pi_em <- ldply(1:length(em_res), pi, res = em_res) 

 

em_dat <- rbind(summary_res(c(0, 1, 5), data = mu_em),  

                summary_res(c(1, 0.5, 2), data = sigma_em), 

                summary_res(c(0.4, 0.4, 0.2), data = pi_em)) 

 

rownames(em_dat) <- c("Mean", "Sigma", "Probability") 

Gibbs Sampler 

normalize = function(x){return(x/sum(x))} 

 

sample_z = function(x,pi,mu,sigma){ 

  #dmat=matrix(0,nrow=3,ncol=1000) 

  #for (i in 1:3){ 

  #  dmat[i,]=(mu[i]-x)/sigma[i] 

  #} 

  dmat = outer(mu,x,"-") # k by n matrix, d_kj =(mu_k - x_j) 

  p.z.given.x = as.vector(pi) * dnorm(dmat,0,sigma)  

  p.z.given.x = apply(p.z.given.x,2,normalize) # normalize columns 

  z = rep(0, length(x)) 

  for(i in 1:length(z)){ 

    z[i] = sample(1:length(pi), size=1,prob=p.z.given.x[,i],replace=TRUE) 

  } 



  return(z) 

} 

 

sample_pi = function(z,k=3){ 

  counts = colSums(outer(z,1:k,FUN="==")) 

  pi = gtools::rdirichlet(1,counts+1) 

  return(pi) 

} 

 

sample_mu = function(x, z, sigma, mbar=0,tau=1){ 

  mu = rep(0,3) 

  for (i in 1:3){ 

    sample.size = sum(z==i) 

    ybar = ifelse(sample.size==0,0,mean(x[z==i])) 

    n<-length((x[z==i])) 

    a<-n/sigma[i]^2 

    b<-1/tau^2 

    mpost = (a*ybar+b*mbar)/(a+b) 

    spost = sqrt(1/(a+b)) 

    mu[i] = rnorm(1,mpost,spost) 

  } 

  return(mu) 

} 

 

sample_sigma = function(x, z, mu, nu=2,lambda=1){ 

  sigma = rep(0,3) 

  for(i in 1:3){ 

    n<-length((x[z==i])) 

    c=1 

    x1<-vector() 

    for (j in 1:1000){ 

      if (z[j]==i) 

      {x1[c]<-x[j] 

      c=c+1} 



    } 

    S<-sum((x1-mu[i])^2) 

    sigma[i] = sqrt((nu*lambda+S)/rchisq(1,nu+n)) 

  } 

  return(sigma) 

} 

 

gibbs = function(x,k=3,niter =1000){ 

  pi = rep(1/k,k) # initialize 

  mu = rnorm(k,0,10) 

  sigma = rep(1, k) 

  z = c(rep(1,333),rep(2,333),rep(3,334))#sample_z(x,pi,mu,sigma) 

  res = list(mu=matrix(nrow=niter, ncol=k), pi = matrix(nrow=niter,ncol=k), z
 = matrix(nrow=niter, ncol=length(x)), sigma = matrix(nrow = niter, ncol = 
k)) 

  res$mu[1,]=mu 

  res$pi[1,]=pi 

  res$z[1,]=z  

  res$sigma[1, ] = sigma 

  for(i in 2:niter){ 

    sigma = sample_sigma(x, z,  mu, nu=2, lambda=1) 

    mu = sample_mu(x,z,sigma,mbar=0,tau=1) 

    z = sample_z(x,pi,mu,sigma) 

    pi = sample_pi(z,k) 

    res$mu[i,] = mu 

    res$pi[i,] = pi 

    res$z[i,] = z 

    res$sigma[i, ] = sigma 

  } 

  return(res) 

} 

Simulation	Gibbs	Sampler	algorithm	

rmix = function(n, pi, mu, s){ 

  z = sample(1:length(pi), prob=pi, size=n, replace=TRUE) 



  x = rnorm(n, mu[z], s[z]) 

  return(x) 

} 

sim_gibbs <- function(n){ 

  x <- rmix(n=1000, pi=c(0.4, 0.4, 0.2), mu=c(0, 1, 5), s=c(1, 0.5, 2)) 

  res <- gibbs(x,3) 

  post_mu <- c(res$mu[1000, 1], res$mu[1000, 2], res$mu[1000, 3]) 

  post_sigma <- c(res$sigma[1000, 1], res$sigma[1000, 2], res$sigma[1000, 3]) 

  post_pi <- c(res$pi[1000, 1], res$pi[1000, 2], res$pi[1000, 3]) 

  post_pi1 <- post_pi 

  post_sigma1 <- post_sigma 

  for(i in 1:3){ 

    post_pi1[rank(post_mu)[i]] <- post_pi[i] 

    post_sigma1[rank(post_mu)[i]] <- post_sigma[i] 

  } 

   

  post_pi <- post_pi1 

  post_sigma <- post_sigma1 

  post_mu <- sort(post_mu) 

  return(list(post_mu, post_sigma, post_pi)) 

} 

 

set.seed(1000) 

gibbs_res <- llply(1:100, sim_gibbs) 

 

mu <- function(index, res){ 

  res[[index]][[1]] 

} 

 

sigma <- function(index, res){ 

  res[[index]][[2]] 

} 

 

pi <- function(index, res){ 



  res[[index]][[3]] 

} 

 

summary_res <- function(param, data){ 

  data.frame(Component1 = mean((data[, 1] -param[1])^2),  

             Component2 = mean((data[, 2] -param[2])^2),  

             Component3 = mean((data[, 3] -param[3])^2)) 

   

} 

 

mu_gibbs <- ldply(1: 100, mu, res = gibbs_res) 

sigma_gibbs <- ldply(1: 100, sigma, res = gibbs_res) 

pi_gibbs <- ldply(1: 100, pi, res = gibbs_res) 

 

gibbs_dat <- rbind(summary_res(c(0, 1, 5), data = mu_gibbs),  

                summary_res(c(1, 0.5, 2), data = sigma_gibbs), 

                summary_res(c(0.4, 0.4, 0.2), data = pi_gibbs)) 

 

rownames(gibbs_dat) <- c("Mean", "Sigma", "Probability") 

 


