

Comparing Mixture Models with EM
Algorithm and Gibbs Sampler

STP 540
Spring 2021

Zeyu Yang
Sixue Zhao

April 30, 2021

Introduction
EM algorithm and Gibbs sampler have both been highly successful in analyzing mixture models,

especially for parameter estimation. The EM algorithm is an iterative scheme based on maximum

likelihood, while Hibbs sampler is an approach of generating random sample from a multivariate

distribution (Liang 2009). In practice, it is often difficult to determine which algorithm will work

best (Zaheer, Wick et al.). In this project, we focus on the three-component normal mixture model

and compare the performance of simulated mixture model using both EM algorithm and Gibbs

sampler.

Methods
In our project, we assumed that we know the number of components, and coded up two algorithms

based on this assumption. In EM algorithm, we imagine that there is a small number of normal we

are mixing together with unequal weights and various components. The first step was constructing

initial values for probability at the value 1/3 with three components and mean and standard

deviation were simply to choose from uniform distribution at random. In E-step, we got the

probability of the ith sample from the jth component and recorded the parameters of last iteration.

In M-step, maximizing the log-likelihood by letting its derivation as zero, and here we gave the

optimization results directly. We can also set a threshold when the change between last iteration

and the next iteration is pretty small, where we think it converges.

Gibbs sampler is Markov Chain that uses full conditional distribution for the proposal distribution

for each component. Here we wanted to inference for the mean, standard deviation and probability.

Here is the algorithm in outline: 1) sample latent variable I (in our code is z) from an independent

multinoulli, 2) sample probability from a Dirichlet, 3) sample mean from an independent normal

distribution, and 4) sample standard deviation from an independent inverted chi-squared

distribution.

We simulated data with three components, and the mean of each component is 0, 1, 5, the

corresponding standard deviations are 1, 0.5, 2 and the probabilities equal to 0.4, 0.4, 0.2,

separately. Then we drew 100 simulated samples for each algorithm, and the general simulated

data is shown in Figure 1. To illustrate EM algorithm, figure 2 demonstrates the three components

(normal distribution) underlying the simulated data.

Figure 1: Histogram of simulated data

Figure 2: Three normal distribution underlying mixture model

Results
Table 1 and Table 2 showed the results of two algorithms. We can see that those two results were

very close to true values, but EM algorithm had a greater performance as its estimations were much

closer, especially in probability.

Table 1: Results on EM algorithm

 Component 1 Component 2 Component 3

Mean -0.026 0.948 5.043

Sigma 0.890 0.528 1.976

Probability 0.365 0.437 0.199

Table 2: Results on Gibbs sampler

 Component 1 Component 2 Component 3

Mean -0.263 0.954 4.565

Sigma 0.889 0.531 2.213

Probability 0.309 0.473 0.218

We also calculated the mean-square error (MSE) for the 100 observations drawn from the

simulated data in order to measure the performance of two algorithms. The smaller MSE we got

indicated the better the estimation of algorithm. The results are as follow.

Table 3: MSE on EM algorithm

 Component 1 Component 2 Component 3

MSE(Mean) 0.07 0.02 0.16

MSE(Sigma) 0.09 0.02 0.06

MSE(Probability) 0.02 0.02 0.00

Table 4: MSE on Gibbs sampler

 Component 1 Component 2 Component 3

MSE(Mean) 0.15 0.01 0.42

MSE(Sigma) 0.03 0.01 0.16

MSE(Probability) 0.02 0.01 0.00

In those two tables, we can see that EM algorithm had a better performance in mean. For sigma,

sometimes Gibbs sampler won, while other times EM algorithm exceled. We conclude that each

algorithm has its own merits.

Try the Gibbs sampler on the data simulated we mentioned above. We can see the first few samples

as “burn-in”, and then the mean parameters were near the true values. If we drop those “burn-in”,

the results would be more accurate.

Figure 3: The converge plot of mu in Gibbs Sampler

Discussions

Conclusions

We compared EM algorithm and Gibbs sampler on 100 mixture models drawn from simulated

data and found that their performance to be comparable based on the same number of components.

They are both good methods for parameter estimation. The EM algorithm doesn’t need any prior

information, while the Gibbs sampler is more complicated in computing. Summarizing the

simulation results and MSE tables, we think they usually get similar results about true values. For

estimated means, EM algorithm would be a better choice, while Gibbs sampler is an optimal

approach if want to conduct more statistical inference.

In addition, though we didn’t try any vectorization techniques in these two algorithms, we can still

explore their computational properties. The Gibbs sampler is sequential and difficult to parallelize,

and in our project, it took long time to get the results as well. In contrast, EM algorithm is easy to

parallelize, and we got the results in a comparative short time.

Limitations

The results and conclusions derived from this project are subject to some limitations. The

following paragraphs will further explain these limitations which include: 1) superficial

understanding of the mechanism of the two algorithms, and 2) outliers and unstable result.

Our codes were much more an editing of the lectures from our understandings, but not much at

understanding the context. In the project, we assumed that we knew the number of components

with simulated data and excluded that part in our codes. The incompleteness made the coded

algorithms less functional. We are also unable to get the information of which data points belongs

to which component in the EM algorithm.

The other limitation concerns the outliers and unstable result. For example, we drew 100

observations from simulated random sample in the EM algorithm, while our estimates were not

completely close to the true values, in fact some of them were outliers that far from the true values.

To conclude, we still cannot surely imply that our results can represent the two algorithms as a

whole.

Areas of Improvement

In mixture analysis, a key point is that the number of components in the mixture needed for the

analysis may depend heavily on the nature of the data (Aitkin 2001). As we mentioned previously,

we didn’t code up the latent variable in the EM algorithm in our project. It is yet uncertain that if

the lack of latent variable leads to unstable results in our codes, but that is one area of improvement

for coding. Additionally, we only consider the case of complete data, which is the easiest way to

validate our codes. We could also attempt to include missing values in the dataset and see what

happens.

References

Aitkin, M. (2001). "Likelihood and Bayesian analysis of mixtures." Statistical Modelling 1(4):
287-304.

Liang, L. (2009). On simulation methods for two component normal mixture models under
Bayesian approach.

Zaheer, M., et al. "Comparing Gibbs, EM and SEM for MAP Inference in Mixture Models."

Appendix

EM	Algorithm	

EM <- function(samp){

 k <- 3

 n <- 1000

 prob <- matrix(rep(0, k*n), nrow = n)

 weight <- matrix(rep(0, k*n), nrow = n)

 # intial values

 alpha <- c(0.333, 0.333,0.334)

 miu <- runif(k)

 sigma <- runif(k)

 # EM algorithm

 for (step in 1:200) {

 # E-step

 for (j in 1:k) {

 prob[, j] <- sapply(samp, dnorm, miu[j], sigma[j])

 weight[, j] <- alpha[j] * prob[, j]

 }

 row_sum <- rowSums(weight)

 prob <- weight/row_sum

 # record the values of parameters

 #oldalpha <- alpha

 #oldmiu <- miu

 #oldsigma <- sigma

 # M-step

 for (j in 1:k) {

 sum1 <- sum(prob[, j])

 sum2 <- sum(samp*prob[, j])

 alpha[j] <- sum1/n

 miu[j] <- sum2/sum1

 sum3 <- sum(prob[, j]*(samp-miu[j])^2)

 sigma[j] <- sqrt(sum3/sum1)

 }

 # set threshold

 #threshold <- 1e-5

 #if (sum(abs(alpha - oldalpha)) < threshold &

 # sum(abs(miu - oldmiu)) < threshold &

 # sum(abs(sigma - oldsigma)) < threshold) break

 cat('step', step, 'alpha', alpha, 'miu', miu, 'sigma', sigma, '\n')

 }

 alpha1 <- alpha

 sigma1 <- sigma

 for (i in 1:3){

 alpha1[rank(miu)[i]] <- alpha[i]

 sigma1[rank(miu)[i]] <- sigma[i]

 }

 alpha <- alpha1

 sigma <- sigma1

 miu <- sort(miu)

 return(list(miu,sigma,alpha))

}

Simulation	EM	algorithm	

rmix = function(n, pi, mu, s){

 z = sample(1:length(pi), prob=pi, size=n, replace=TRUE)

 x = rnorm(n, mu[z], s[z])

 return(x)

}

sim_em <- function(index){

 x <- rmix(n=1000, pi=c(0.4, 0.4, 0.2), mu=c(0, 1, 5), s=c(1, 0.5, 2))

 res <- EM(x)

 return(res)

}

set.seed(1000)

em_res <- llply(1:100, sim_em)

for(i in 1:100){

 if (is.nan(em_res[[101-i]][[2]][[3]])){

 em_res <- em_res[i-101]

 }

}

mu <- function(index, res){

 res[[index]][[1]]

}

sigma <- function(index, res){

 res[[index]][[2]]

}

pi <- function(index, res){

 res[[index]][[3]]

}

summary_res <- function(param, data){

 data.frame(Component1 = mean((data[, 1] -param[1])^2),

 Component2 = mean((data[, 2] -param[2])^2),

 Component3 = mean((data[, 3] -param[3])^2))

}

mu_em <- ldply(1:length(em_res), mu, res = em_res)

sigma_em <- ldply(1:length(em_res), sigma, res = em_res)

pi_em <- ldply(1:length(em_res), pi, res = em_res)

em_dat <- rbind(summary_res(c(0, 1, 5), data = mu_em),

 summary_res(c(1, 0.5, 2), data = sigma_em),

 summary_res(c(0.4, 0.4, 0.2), data = pi_em))

rownames(em_dat) <- c("Mean", "Sigma", "Probability")

Gibbs Sampler

normalize = function(x){return(x/sum(x))}

sample_z = function(x,pi,mu,sigma){

 #dmat=matrix(0,nrow=3,ncol=1000)

 #for (i in 1:3){

 # dmat[i,]=(mu[i]-x)/sigma[i]

 #}

 dmat = outer(mu,x,"-") # k by n matrix, d_kj =(mu_k - x_j)

 p.z.given.x = as.vector(pi) * dnorm(dmat,0,sigma)

 p.z.given.x = apply(p.z.given.x,2,normalize) # normalize columns

 z = rep(0, length(x))

 for(i in 1:length(z)){

 z[i] = sample(1:length(pi), size=1,prob=p.z.given.x[,i],replace=TRUE)

 }

 return(z)

}

sample_pi = function(z,k=3){

 counts = colSums(outer(z,1:k,FUN="=="))

 pi = gtools::rdirichlet(1,counts+1)

 return(pi)

}

sample_mu = function(x, z, sigma, mbar=0,tau=1){

 mu = rep(0,3)

 for (i in 1:3){

 sample.size = sum(z==i)

 ybar = ifelse(sample.size==0,0,mean(x[z==i]))

 n<-length((x[z==i]))

 a<-n/sigma[i]^2

 b<-1/tau^2

 mpost = (a*ybar+b*mbar)/(a+b)

 spost = sqrt(1/(a+b))

 mu[i] = rnorm(1,mpost,spost)

 }

 return(mu)

}

sample_sigma = function(x, z, mu, nu=2,lambda=1){

 sigma = rep(0,3)

 for(i in 1:3){

 n<-length((x[z==i]))

 c=1

 x1<-vector()

 for (j in 1:1000){

 if (z[j]==i)

 {x1[c]<-x[j]

 c=c+1}

 }

 S<-sum((x1-mu[i])^2)

 sigma[i] = sqrt((nu*lambda+S)/rchisq(1,nu+n))

 }

 return(sigma)

}

gibbs = function(x,k=3,niter =1000){

 pi = rep(1/k,k) # initialize

 mu = rnorm(k,0,10)

 sigma = rep(1, k)

 z = c(rep(1,333),rep(2,333),rep(3,334))#sample_z(x,pi,mu,sigma)

 res = list(mu=matrix(nrow=niter, ncol=k), pi = matrix(nrow=niter,ncol=k), z
 = matrix(nrow=niter, ncol=length(x)), sigma = matrix(nrow = niter, ncol =
k))

 res$mu[1,]=mu

 res$pi[1,]=pi

 res$z[1,]=z

 res$sigma[1,] = sigma

 for(i in 2:niter){

 sigma = sample_sigma(x, z, mu, nu=2, lambda=1)

 mu = sample_mu(x,z,sigma,mbar=0,tau=1)

 z = sample_z(x,pi,mu,sigma)

 pi = sample_pi(z,k)

 res$mu[i,] = mu

 res$pi[i,] = pi

 res$z[i,] = z

 res$sigma[i,] = sigma

 }

 return(res)

}

Simulation	Gibbs	Sampler	algorithm	

rmix = function(n, pi, mu, s){

 z = sample(1:length(pi), prob=pi, size=n, replace=TRUE)

 x = rnorm(n, mu[z], s[z])

 return(x)

}

sim_gibbs <- function(n){

 x <- rmix(n=1000, pi=c(0.4, 0.4, 0.2), mu=c(0, 1, 5), s=c(1, 0.5, 2))

 res <- gibbs(x,3)

 post_mu <- c(res$mu[1000, 1], res$mu[1000, 2], res$mu[1000, 3])

 post_sigma <- c(res$sigma[1000, 1], res$sigma[1000, 2], res$sigma[1000, 3])

 post_pi <- c(res$pi[1000, 1], res$pi[1000, 2], res$pi[1000, 3])

 post_pi1 <- post_pi

 post_sigma1 <- post_sigma

 for(i in 1:3){

 post_pi1[rank(post_mu)[i]] <- post_pi[i]

 post_sigma1[rank(post_mu)[i]] <- post_sigma[i]

 }

 post_pi <- post_pi1

 post_sigma <- post_sigma1

 post_mu <- sort(post_mu)

 return(list(post_mu, post_sigma, post_pi))

}

set.seed(1000)

gibbs_res <- llply(1:100, sim_gibbs)

mu <- function(index, res){

 res[[index]][[1]]

}

sigma <- function(index, res){

 res[[index]][[2]]

}

pi <- function(index, res){

 res[[index]][[3]]

}

summary_res <- function(param, data){

 data.frame(Component1 = mean((data[, 1] -param[1])^2),

 Component2 = mean((data[, 2] -param[2])^2),

 Component3 = mean((data[, 3] -param[3])^2))

}

mu_gibbs <- ldply(1: 100, mu, res = gibbs_res)

sigma_gibbs <- ldply(1: 100, sigma, res = gibbs_res)

pi_gibbs <- ldply(1: 100, pi, res = gibbs_res)

gibbs_dat <- rbind(summary_res(c(0, 1, 5), data = mu_gibbs),

 summary_res(c(1, 0.5, 2), data = sigma_gibbs),

 summary_res(c(0.4, 0.4, 0.2), data = pi_gibbs))

rownames(gibbs_dat) <- c("Mean", "Sigma", "Probability")

