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1. Singular Value Decomposition

This is a key decomposition that applies to any matrix A, m × n.
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SVD:

Let A be m × n.
Then there are

▶ orthogonal U, m ×m

▶ orthogonal V , n × n

▶ diagonal Σ

such that

For integer r ,

σ11 ≥ σ22 . . . ≥ σrr > 0,
and σjj = 0, j > r , σij = 0, i ̸= j .
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2. Column space, Row space, and rank

We will see that the first r columns of U are an orthonormal basis
for the column space of A.

We will see that the first r columns of V are an orthonormal basis
for the row space of A.

Hence, the column rank = the row rank, which is then the rank.

So, r is the rank of the matrix.
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Note:

A is m × n, A = [a1, a2, . . . , an], ai ∈ Rm.

The column space is the span of the ai which is the set
{Ab, b ∈ Rn}.

Suppose B is n × n invertible.

Then
{Ab, b ∈ Rn} = {ABb, b ∈ Rn}

so that the column space of A is the same as the column space of
AB.

Similar result for premultiplying be an invertible matrix for the row
space.
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So, since V ′ is invertible, the column space of A is the column
space of UΣ.

Hence [u1, u2, . . . , ur ] is an orthonormal basis for the column space
of A.

The column rank of A is r .

[ur+1, . . . , um] is an orthonormal basis for the subspace
perpendicular to the column space.
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Similarly, the first r columns of V are an orthonormal basis for the
row space of A.

So, the row rank = the column rank = the rank, all which are
equal to r in our notation.

The i = r + 1, . . . , n columns of V form a basis for the subspace of
Rn orthogonal to the row space.
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3. Linear is just a bunch of linear
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A truly remarkable result !!!

Avj = σjj uj , 1 ≤ j ≤ r ,

Avj = 0, (r + 1) ≤ j ≤ n.

A : Rn → Rm.

▶ N(A) = {x ∈ Rn, s.t.Ax = 0}, a subspace of dim n − r with
orthonormal basis {vr+1, . . . , vn}.

▶ R(A) = {Ax , x ∈ Rn}, a subspace of dim r with orthonormal
basis {u1, u2, . . . , ur}.
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So, for A linear R ⇒ R we have the simple form:

y = ax

where A = [a], 1× 1.

In general, after you rotate to certain orthogonal bases, a rank r
linear transformation Rn ⇒ Rm is just the simple one r times.

ỹi = σii x̃i , i = 1, 2, . . . , r .
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r = 2.
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Note:

U orthogonal.

1 = |I | = |U ′U| = |U ′||U| = |U|2 ⇒ |U| = ±1.

Note:

A,m ×m square of full rank so r = m.

Obviously, x̃i → σii x̃i changes the volume by Πm
i=1 σii .

|A| = |U||Σ||V ′| = (±1)|Σ| = (±1)Πm
i=1 σii .

Note:

Inverse of x̃i → ỹi = σii x̃i is

ỹi → x̃i =
1
σii
ỹi

which is exactly VΣ−1U ′.
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4. Reduced Form

You can simplify the construction to the “reduced form” by getting
rid of the some zeros in Σ and corresponding columns in U and/or
V .

Consider the case where m > n and the rank is n so that the
columns of A, m × n are linearly independent.
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U2 is just an orthonormal basic for R(A)⊥, you don’t need it.
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In general we have:

Columns of U1 are an orthonormal basis for the column space of A.

Columns of V1 are an orthonormal basis for the row space of A.

15



5. SVD and Least Squares

Let’s see how the SVD decomposition can be used to compute the
least squares solution.

Let’s assume that X , n × p is of full rank p, where of course,

y = Xβ + ϵ

is our model.
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We simplify the SVD by using the reduced form.
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This just says:
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6. SVD and Spectral

A, m × n. A = UΣV ′.

A′A = [VΣ′U ′][UΣV ′] = VΣ′ΣV ′

So, A′A = VΣ2
nV

′.

Similarly, AA′ = UΣ2
mU

′.
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:

In our our svd, the rank of A, m × n is the number of non-zero
diagonals of Σ which is r in our basic notation.

For a symmetric matrix S , the rank is the number of non-zero
eigen values which is the number of non-zero elements if the
diagonal matrix D in S = PDP ′.

So, from the previous slide we have that the rank of A is the same
as the rank of A′A and AA′.

Of course, the rank of X ′X is relevant.
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7. Condition Number of a Matrix

If the columns (or rows) of a matrix A are linearly dependent, then
it can cause a problem, depending on what you want to do.

In linear regression, if X is the design matrix, the if the columns
are linearly dependent you cannot invert X ′X .

More generally, if the colums are close to being linearly dependent
then computation will become numerically unstable. That is, if
some of the σjj are close to 0 for j ∈ 1, 2, . . . , r this can cause
trouble.

We saw that computing the coefficients for the projection on the
the column space involved 1/σjj so you can see if these are very
small, we have trouble.
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Suppose X , n × p is of full column rank so that p = r .

Then,
X = U1 Σ̃V ′

as we discussed above when we looked at the reduced form.

Here, U1 is n × p, Σ̃ is p × p, and V is p × p.

The diagonals of Σ̃ are σjj , j = 1, 2, . . . , p, σj > σj+1,j+1 > 0.

The degree to which ill-conditioning prevents a matrix from being
inverted accurately depends on the ratio of its largest to smallest
singular value, a quantity known as the condition number: which is

Condition number =
σ11
σpp
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8. Moore Penrose Generalized Inverse

In solving the least squares problem, we have generally assumed
that the design matrix X , n × p is of full rank p.

If X is not of full rank then there a many solutions to

min
b

||y − Xb||2

The Moore Penrose inverse chooses a solution for us.
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Note: U1 is n × r , Σ̃ is r × r , V1 is p × r .

The columns of U1 are an orthonormal basis for the column space of X we like to
project y onto.

The columns of V1 are an orthonormal basis for the space of coefficient vectors that
do NOT map to 0.
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Clearly, XX+ y = Xbo projects y onto the column space of X .
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XX+ projects onto the column space of X .

X = U1 Σ̃V ′
1, X+ = V1 Σ̃

−1 U ′
1

X X+ = [U1 Σ̃V ′
1][V1 Σ̃

−1 U1] = U1 U
′
1

X+ X projects onto the row space of X .

X+ X = [V1 Σ̃
−1 U ′

1][U1 Σ̃V ′
1] = V1 V

′
1
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X+ X projects y onto the row space of X . gives us a
characterization of the MP choice of solution.

30



The column space and row space of X have the same dimension so
we can define a 1-1 map between them.

Everthing else gets projected away.
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9. Matrix Approximation

Suppose σ11 ≥ σ22 ≥ . . . σrr and after s they are small,
σii ≈ 0, i > s.
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Example:

Here is a 28x28 grey scale image of a digit.
The (i,j) element of the matrix is 0:255 indicating the grayscale.
I divided by 255.
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Here are the singular values from the 28x28 matrix.
This is called a scree plot.
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Here is are the matrix values for the image plotted against the
values from the approximation using 8 singular values.
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Here is a 28x28 grey scale image of a digit.
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