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Gibbs Sampling with two Parameters

Example: Bivariate Normal

Normal Mean and Variance
Normal (µ, σ), Simulated Data

The General Gibbs Sampler

Hierarchical Normal Means



Gibbs Sampling with two Parameters

Suppose we have a two dimensional parameter space

θ = (θ1, θ2).

An important example is

Yi ∼ N(µ, σ2), θ = (µ, σ).

We want to “compute” π(θ1, θ2)

π might be the prior or the posterior (usually the posterior).



We define a Markov chain with stationary distribution π by:

Given current values (θ01, θ
0
2), draw the next pair, (θ11, θ

1
2) using:

1. draw θ11 ∼ θ1 | θ2 = θ02.

2. draw θ12 ∼ θ2 | θ2 = θ11.

where θ1 | θ2 is the conditional for θ1 given θ2 under the joint
distribution corresponding to π.

Same for θ2 | θ1.



i th draw is labelled (ia, ib)
where ia is the first update (θ1 | θ2)
and ib is the second update (θ2 | θ1).
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Note:

1.
We clearly have a Markov Chain.

2.
If (θ01, θ

0
2) is a draw from π then θ02 is a draw from the marginal of

θ2 under π. Then (θ11, θ
0
2) is a draw from the joint π, and so on ...

The stationary distribution of the Markov chain is π !!!!



Example: Bivariate Normal

The previous graphs were generating using:

[
θ1
θ2

]
∼ N(

[
0
0

]
,

[
1 ρ
ρ 1

]
)

θ1 | θ2 ∼ N(ρ θ2, (1− ρ2)).

θ2 | θ1 ∼ N(ρ θ1, (1− ρ2)).



Here is R code to do the Gibbs sampler:

nd = 500

x1d=rep(0,nd)

x2d=rep(0,nd)

x1=10

x2=10

for(i in 1:nd) {

x1 = rnorm(1,rho*x2,sqrt(1-rho^2)) # x1 | x2

x2 = rnorm(1,rho*x1,sqrt(1-rho^2)) # x2 | x1

x1d[i] = x1; x2d[i]=x2

}



(1,1): marginal draws of x1, (1,2): marginal draws of x2
(2,1): acf of x1 draws, (2,2): acf of x2 draws
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Note: for the ACF’s I dropped the first 100 draws.
We often need to drop the initial draws, during which the Markov
Chain “burns in” and “forgets” the starting values which may, or
may not, be good.



(1,1): marginal draws of x1, (1,2): marginal draws of x2
(2,1): x1 vs. x2, (2,2): normal qqplot of x1
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Normal Mean and Variance

Observe
Yi ∼ N(µ, σ2), iid

prior:

µ ∼ N(µ̄, τ2), σ2 ∼ νλ

χ2
ν

.

with
p(µ, σ) = p(µ) p(σ), they are independent!!.



Gibbs Sampler:

Pick starting values for µ and σ and then draw:

I µ | σ, y .

I σ | µ, y .

We certainly know how to do the first draw.

Given µ we observe

εi = Yi − µ ∼ N(0, σ2).

so we know how to do the second draw!



To implement the Gibbs sampler we can write a function for each
of the draws

# mu|sigma ----------

drmu = function(y,sigma,mbar,tau) {

#draw mu | sigma, y~N(mu,sigma^2)

#y: data

#mu ~ N(mbar,tau^2)

n = length(y)

a= n/sigma^2

b=1/tau^2

ybar=mean(y)

mpost = (a*ybar+b*mbar)/(a+b)

spost = sqrt(1/(a+b))

return(rnorm(1,mpost,spost))

}



# sigma|mu ----------

drsigma = function(y,mu,nu,lambda) {

#draw sigma | mu, y~N(mu,sigma^2)

#y: data

#sigma^2 ~ nu*lambda/chi^2_nu

n=length(y)

S = sum((y-mu)^2)

return(sqrt((nu*lambda+S)/rchisq(1,nu+n)))

}



And then our Gibbs sampler is simply:

#Gibbs to draw from the posterior

nd = 1000 #number of gibbs iterations

muv = rep(0,nd) #storage for mu draws

sigv = rep(0,nd) #storage for sigma draws

mud=0 #current mu draw (this is the starting value)

sigd=1 #current sigma draw (this is the starting value)

for(i in 1:nd) {

#mu|sigma

mud = drmu(y,sigd,mbar,tau)

#sigma | mu

sigd = drsigma(y,mud,nu,lambda)

muv[i]=mud; sigv[i]=sigd

}



Normal (µ, σ), Simulated Data

Let’s try this with some simulated data.
Simulate the data and specify the prior:

#do simulated example

mu = 10 #true mu

sigma=5 #true sigma

n=100 # number of observations

set.seed(99)

#simulate data

y = mu + sigma*rnorm(n)

#specify prior

mbar=0

tau=10

nu=5

lambda = 3^2



#plot mcmc

par(mfrow=c(2,2))

plot(muv,type=’b’)

plot(sigv,type=’b’)

acf(muv)

acf(sigv)

dev.copy2pdf(file=’mu-sig-ts.pdf’,height=10,width=10)

Wow!
no burn-in!!
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#plot inference: prior and posterior

par(mfrow=c(2,2))

#prior draws

muvpri = mbar + tau*rnorm(nd)

sigvpri = sqrt((nu*lambda)/rchisq(nd,nu))

hist(muvpri)

hist(sigvpri)

#posterior draws

hist(muv)

abline(v=mu,col=’blue’)

hist(sigv)

abline(v=sigma,col=’blue’)



(1,1): prior on µ, (1,2): prior on σ.
(1,1): posterior on µ, (1,2): posterior on σ.
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#prediction

ypred = rep(0,nd)

for(i in 1:nd) {

ypred[i] = rnorm(1,muv[i],sigv[i])

}

par(mfrow=c(1,1))

hist(ypred)

For each draw of
θ = (µ, σ)
from the posterior,
we draw
Y | θ ∼ N(µ, σ2).
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The General Gibbs Sampler

We can extend the idea of the Gibbs sampler to any number of
parameters!
Let

θ = (θ1, θ2, . . . , θk).

Here each θj can be a subset or “block” of parameters of any size.
We then iterate by sequentially drawing from all the conditionals:

θj | θ1, θ2, . . . , θj−1, θj+1, . . . , θk .

That is:

I update each θj by drawing from its conditional given the rest.

I condition using the most recent draws of “the rest”.



If we start with
θ0 = (θ01, θ

0
2, . . . , θ

0
k).

then we get to
θ1 = (θ11, θ

1
2, . . . , θ

1
k).

by drawing

θ1j ∼ θj | θ1 = θ11, θ2 = θ12, . . . , θj−1 = θ1j−1, θj+1 = θ0j+1, . . . , θk = θ0k

j = 1, 2, . . . , k.



Hierarchical Normal Means

Observe:

Yij ∼ N(θj , σ
2
j ), j = 1, 2, . . . ,m, i = 1, 2, . . . , nj .

We have m groups of observations.

Within each group, we observe iid normal data with a mean θj and
standard deviation σj that depend on the group.



Let’s ignore the σj for a while and focus on our choice of prior (or
model) for the θj .

Suppose the groups have something to do with each other in that
they are the same kind of thing.

It may help us to think about our prior for the θj jointly.

Hoff’s example is:

I Each group corresponds to a school.

I Within each group, each Yi ,j is a students score on a math
test.

Yi ,j : math score for student i , at school j .



The data, each boxplots displays math test scores for a particular
school.
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Rather than think about each school separately, we think about an
overall level for the schools and then how much this overall level
varies across schools:

θj ∼ N(µθ, σ
2
θ).

µθ: overall mean level across schools.
σθ: variation in individual school mean level.

For example, if σθ were 0, that would be like combining the groups
together.



If we stop here, we are just using the same prior for each θj .

So, for example,

E (θj | yj , σj) =
aj ȳj + b µθ

aj + b
,

aj =
nj
σ2j
, b =

1

σ2θ
.

We shrink each θj towards the common “grand mean” µθ and the
amount of shrinkage is crucially controlled by σθ.

But, our inference for θj only depends on the observations in
group j .



Where it get interesting is when we say to ourselves:

Well, I like the idea of thinking about the θ’s together, but I am
really not too sure about what the overall mean µθ should be and
how much the θj vary about µθ, that is, σθ.

Maybe if I have a lot of observations in most of the groups telling
me that their θ’s are big that should suggest bigger θ’s in the rest
of the groups.



θj ∼ N(µθ, σ
2
θ).

We can put priors on µθ and σθ:

µθ ∼ N(µ̄, σ2µ), σ2θ ∼
ν λ

χ2
ν

, independent.

Now, all of the data will help us learn about (µθ, σθ).

Learning about µ determines where we shrink to.

Learning about σθ determines how much we shrink.

By thinking about the groups together, we have adapative
shrinkage.



θj ∼ N(µθ, σ
2
θ).

µθ ∼ N(µ̄, σ2µ), σ2θ ∼
ν λ

χ2
ν

, independent.

Note that if we observed the θj , this would just be our standard
normal inference problem for a normal mean and standard
deviation (µθ, σθ).



We could also think about the σj hierarchically and perhaps we will
do this later.

For now let’s just use

σ2j ∼
ν1 λ1
χ2
ν1

, iid .



Let θ = (θ1, θ2, . . . , θm) and σ = (σ1, σ2, . . . , σm).

Let yj = (y1j , y2j , . . . , ynj j) and y = (y1, y2, . . . , ym).

Then our full joint can be written,

p(µθ, σθ, θ, σ, y) =

p(µθ) p(σθ) p(θ | µθ, σθ) p(σ) p(y | θ, σ).



p(µθ, σθ, θ, σ, y) =

p(µθ) p(σθ) p(θ | µθ, σθ) p(σ) p(y | θ, σ).
where,

p(µθ) : N(µ̄, σ2µ)

p(σθ) : σ2θ ∼
ν λ
χ2
ν

p(θ | µθ, σθ) = Πm
j=1 p(θj | µθ, σ2θ), θi | µθ, σ2θ ∼ N(µθ, σ

2
θ).

p(σ) = Πm
j=1 p(σj), σ

2
j ∼

ν1 λ1
χ2
ν1

p(y | θ, σ) = Πm
j=1 p(yj | θj , σj)

p(yj | θj , σj) = Π
nj
i=1 p(yij | θj , σj), yij ∼ N(θj , σ

2
j )

Have to pick
(µ̄, σµ, ν, λ, ν1, λ1).



Gibbs Sampler:

µθ | σθ, θ, σ, y

σθ | µθ, θ, σ, y

θ | µθ, σθ, σ, y

σ | µθ, σθ, θ, y

where,

µθ | σθ, θ, σ, y = µθ | σθ, θ (normal mean)
σθ | µθ, θ, σ, y = σθ | µθ, θ (normal standard deviation)
θ | µθ, σθ, σ, y = θ | µθ, σθ, σ, y

(m normal means, 1 for each θj)
σ | µθ, σθ, θ, y = σ | θ, y

(m normal standard deviations, 1 for each σj)



Hierarchical Means Gibbs Sampler

drHierM = function(y,theta,sigma,mtheta,stheta,mm,sm,nu,lam,nu1,lam1) {

#y: list, y[[j]], observations for group j

#theta,sigma: y_ij ~ N(theta[j],sigma[j]^2)

#mtheta,stheta: theta_j ~ N(mtheta,stheta^2)

#mm,sm: mtheta ~ N(mm,sm^2)

#nu,lam: stheta^2 ~ nu*lam/chi^2_nu

#nu1,lam1: sigma_j ~ nu1*lam1/chi^2_nu1

m=length(y)

#draw theta----------

for(j in 1:m) {

theta[j] = drmu(y[[j]],sigma[j],mtheta,stheta)

}

#draw sigma----------

for(j in 1:m) {

sigma[j] = drsigma(y[[j]],theta[j],nu1,lam1)

}

#draw mtheta----------

mtheta = drmu(theta,stheta,mm,sm)

#draw stheta----------

stheta = drsigma(theta,mtheta,nu,lam)

return(list(theta=theta,sigma=sigma,mtheta=mtheta,stheta=stheta))

}



(1,1): post mean of θj vs. ȳj .
(1,2): post mean of σj vs. sd(yj).
(2,1): nj vs. absolute value of difference, θj - ȳj .
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