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1. Deviance, AIC, BIC

AIC, (A information criterion) and BIC (Bayesian information
criterion) are widely used for model selection.

Suppose we have a set of candidate models

Mm, m = 1, 2, . . . ,M.

Model Mm has parameter vector θm associate with it and

p(Z | θm,Mm)

represents the model of the data Z under model Mm.
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The Deviance:

Let θ̂m be the MLE under model Mm.

Let
L̂m = p(Z | θ̂m,Mm),

the maximized likelihood under model Mm.

Then the deviance is

Dm = −2 log(L̂m).

and the BIC is
BICm = Dm + log(n) dm

where dm is the dimension of θm and n is the sample size.
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You choose the model with the smallest BIC

BIC = D + d log(n) = −2log(L̂) + log(n) d

The Deviance:

Measures the in sample fit, with a smaller deviance indicating a
better fit.

Complexity Penalty:

The term d log(n) is a “complexity penalty” in that a higher
dimensional parameter θ corresponds to a more complex model.
BIC charges you log(n) for a parameter.

As you add parameters, the deviance will go down, but the
complexity penalty will go up, giving you a “U”.
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AIC:

The AIC is “an information criterion” or, “the Akaike information
criterion”.

AIC = D + d 2 = −2log(L̂) + 2 d

Use: Choose the model with the smallest AIC.

The AIC charges you 2 for a parameter!!

Clearly, for non-tiny n, the BIC charges more for a parameter so it
will give you a smaller model.
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2. Latent Variables and the EM Algorithm

A very general and powerful probabilistic modeling techigue
involves the use of latent variables.

Suppose we have a vector variable X .

Suppose we want to build a model for X which represents some
kind of complex structure.

A general approach to this is to make up a probabilistic model for
(Z ,X ) such that the marginal distribution of X has the desired
dependent structure.

The idea is that even though Z may be latent, unobserved
quantity, it is easier to think about things with Z in the picture.
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Example:

Suppose we give a person two different kinds of tests, both of
which are different ways of measuring their abilities.

Let X = (X1,X2) where Xi is the score on test i .

We might imagine that a person has an unobserved intelligence Z
and X is dependent because:

X1 = α1 + β1Z + ϵ1

X2 = α2 + β2Z + ϵ2

where the ϵi are independent.

This is an example of factor analyis in which a high dimensional
vector is a linear function of a small set of factors + uncorrelated
noise.
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Factor Analysis with one factor
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We are going to look at the analysis of mixtures of normals using
latent variables.

We will look at the Expectation-Maximization (EM) algorithm
which is used for estimation of the models with latent variables.

This is an important special case of the latent variable approach.
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3. Univariate Mixtures of Normals

We are just measuring a single number y .

Often, data yi , i = 1, 2 . . . , n does not “look normal”.

Here is some data I simulated with a kernel smooth plotted on top.
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A kernel smooth is

f (y) =
1

n

n∑
i=1

f (y | yi , σ2)

where f (y | µ, σ2) is a normal density.
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An alternative, somewhat simpler approach, is to imagine that
there is a small number of normals we are mixing together with
unequal weights.

Assume we have J mixture components where each component is
a f (y | µj , σ

2
j ) distibution.

Let θj = (µj , σ
2
j ) and θ = (θ1, θ2, . . . , θJ).

Our model is

p(y | θ, p) =
J∑

j=1

pj f (y | θj)
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Here is how I simulated the data.
The red curves are pj f (y | θj), j = 1, 2, 3
The blue is the sum of the red.
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Even though the data looks nothing like “normal” there is a simple
underlying structure mixing just three normals. 12



Here are the mixture weights, means, and standard deviations.

> pv

[1] 0.4 0.4 0.2

> mv

[1] 0 1 5

> sv

[1] 1.0 0.5 2.0

Can we model real data this way?

it works amazingly well.
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Mixture Model Estimates for the Simulated Data

Using the R package mclust:

> modsim = densityMclust(x)

> summary(modsim)

-------------------------------------------------------

Density estimation via Gaussian finite mixture modeling

-------------------------------------------------------

Mclust V (univariate, unequal variance) model with 3 components:

log.likelihood n df BIC ICL

-955.1265 500 8 -1959.97 -2171.702

Clustering table:

1 2 3

108 294 98

mclust estimates the number of components using BIC!!.
This is a triumph for BIC !!!
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Note:

The number of parameters is 3 means + 3 variances + 2 for the
probability vector giving 8.

In [17]: -2*(-955.1265) + math.log(500) * 8

Out[17]: 1959.9698647873774
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> mvf = modsim$parameters$mean

> svf = sqrt(modsim$parameters$variance$sigmasq)

> pvf = modsim$parameters$pro

> mvf

1 2 3

-0.2854986 0.8576423 4.8019094

> svf

[1] 0.9986226 0.5637910 2.1545613

> pvf

[1] 0.3031896 0.4795940 0.2172164

> mv

[1] 0 1 5

> sv

[1] 1.0 0.5 2.0

> pv

[1] 0.4 0.4 0.2

Note that even though the parameter estimates don’t match up
perfectly, the density fit is very close !!!
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Clustering:

Given the estimated θj and pj , how do we get the clustering??

We imagine that each particular observation is generated by one of
the mixture components and then infer the component.

Let I be the random variable denoting the mixture component that
Y comes from.

Then the joint distribution of (I ,Y ) given (p, θ) is given by the
marginal for I and the conditional for Y | I .

I = j if y comes from component j , then

p(I = j | p) = pj

f (y | I = j , p, θ) = f (y | I = j , θ) = f (y | θj).
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Given Y = y we can compute the conditional distribution of I
using Bayes theorem.

p(I = j | y , θ, p) ∝ p(I = j | p) p(y | I = j , θ, p) = pj f (y | θj)

For each yi we can assign it to the most probable component.
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Note

If we observe (Ii ,Yi ), i = 1, 2, . . . , n we have labelled data and we
can estimate

p(I = j | y)

as in logistic regression (with “y = I and x = y”).

Here the I is latent, we just made it up so that

p(y | p, θ) =
∑
j

P(I = j | p)p(y | I = j , θ, p) =
∑
j

pj f (y | θj).
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If we classify an observation to the most probable component then
we pick the component such that pj f (y | θj) is highest.
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Galaxies Data

Description:

A numeric vector of velocities in km/sec of 82 galaxies from 6

well-separated conic sections of an ‘unfilled’ survey of the

Corona Borealis region. Multimodality in such surveys is evidence

for voids and superclusters in the far universe.
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-------------------------------------------------------

Density estimation via Gaussian finite mixture modeling

-------------------------------------------------------

Mclust V (univariate, unequal variance) model with 4 components:

log-likelihood n df BIC ICL

-765.694 82 11 -1579.862 -1598.907
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4. The EM Algorithm for Univariate Mixtures of Normals

Here is our model:
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Usually we log the likelihood and then the product turns into a
sum.

In this case the terms we are summing are the log of the sums over
the mixture components and this is not friendly to optimize.

We introduce a latent variable indicating which mixture
component a y is from.
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That is we use the p(I | p), p(y | I , θ) structure.

But,

We reparametrize I into binary indicators for each mixture
component.

∆j = 1 if y comes from the j th component and 0 otherwise.

So, I is one-to-one with ∆ = (∆1,∆2, . . . ,∆J).
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For one y :

Then p(y ,∆ | θ, p) has the mixture model p(y | θ, p) as it’s
marginal. 28



For a sample y = (y1, y2, . . . , yi , . . . , yn), each yi gets it’s own
(∆i1,∆i2, . . . ,∆ij , . . . ,∆iJ). so the full model is now

and now, taking the log will help!!
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But we have a lot of ∆ij to deal with!!

Here is the EM idea.

It is an interative scheme. At each iteration we have current
estimates of (θ, p).

(1) E step.

Given the current values of (θ′, p′) compute the expected value of

Q(θ, p; θ′, p′) = E∆(log(p(y ,∆ | θ, p)))

where the expectation is over ∆ | y , θ′, p′.

(2) M step.

Get new values of (θ, p) by optimizing the expected log likelihood,
Q(θ, p; θ′, p′), over (θ, p).

Iterate until convergence.
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E Step :

The log likelihood is linear in the ∆ij we we just need the
expectations.

The ∆i ,j are independent over i (observations) not over j
(components) obviously. 31



so, in the M step, we can optimize over each θj and p separately!!!!
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M step for the θj :
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M step for the p, λ is the Lagrange multiplier:
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EM Algorithm, Mixture of Univariate Normals:

See Algorithm 8.5, page 275, “The Elements of Statistical
Learning”.

35



Starting Values:

For the case J = 2, “The Elements” (page 274) says:

A good way to construct initial guesses for µ̂1 and µ̂2 is
simply to choose two of the yi at random. Both σ̂2

1 and
σ̂2
2 can be set equall to the overall sample variance

(
∑n

i=1(yi − ȳ)2)/n. The mixing proportion π̂ can be
started at the value .5.
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Notes:

▶ After the dust settles, it is a very simple algorithm.

▶ What happens when all the αij are close to 0 or 1, what does
this mean?

▶ The αij are called the “responsibilities”, they give a “soft
assignment” of observation i to component j .

▶ Can converge to local minimum so starting values matter and
you may want to try multiple runs to find a useful minimum.
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Label Switching:

Note that the model is fundamentally unidentified in that the
labels for the components does not matter.

For example if I just switch p1 and p2 and θ1 and θ2 then I have
the exact same model for the data.

In the simple univariate case normal mixture model you can
identify the labels by imposing constraints such as

µ̂j < µ̂j+1
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Note:

We started with the mixture model:

p(y | θ, p) =
J∑

j=1

pj f (y | θj)

We then added the latent variables ∆ij . We can think of the
latents two different ways:
▶ A computation device to get the mle of (θ, p).
▶ Maybe we really want to think of our data as coming from

different sources !!!!!. The ∆ij really reflect how we think
about the model, about how the model “relates to the real
world”.

The second case is the really powerful idea underlying the use of
latent variables in many complex models.

Maybe there are a set of different kinds of galaxies out there!!
Maybe there is one kind of intrinic intelligence and different tests
just reflect that one underylying attribute in different ways!! 39



5. The EM Algorithm

Start with a model
p(y | θ)

Elaborate the model to include latent variables:

p(y , z | θ)

is such a way that the marginal model (margin out z) is our orginal
model.

Note: in our mixture mode “θ” = (θ, p) and Z = ∆.
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Let θ′ be a current value.

Iterate as follows:

E Step:
Q(θ, θ′) = E (log(p(y , z | θ))

where the expectation is taken over

Z | y , θ′

M Step:

Get the next θ by maximizing Q(θ, θ′).
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6. Multivariate Mixtures of Normals

The mixture of normals model gets more exciting when we use the
multivariate normal distribution.

y is now a vector and θj = (µj ,Σj) where now µ is a vector and Σ
is a variance matrix.

f (y | θj) ∼ N(µj ,Σj)

and

p(y | θ, p) =
J∑

j=1

pj f (y | θj)

as in the univariate case.
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EM algorithm for mixture of multivariate normals.

See for example section 11.4.2 of “Machine Learning, a
Probabilistic Approach” by Kevin Murphy.
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Simplifying Σj

In the univariate case, the mclust R-package considered two
models

▶ unequal variances: θj = (µj , σj).

▶ equal variances: θj = (µj , σ).

And then BIC was used to choose both the number of components
and the model.
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In the multivariate case, mclust considers a large number of
simplifying assumptions about the Σj expressed in terms of the
decomposition

Σj = λj DjAjD
′
j

where λj is a scalar, Dj is an orthogonal matrix, and Aj is diagonal.
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Clustering, Classification and Density Estimation Using Gaussian
Finite Mixture Models

by Luca Scrucca, Michael Fop, T. Brendan Murphy and Adrian E.
Raftery
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Eruptions of old faithful, Bivariate Normal Mixtures

##faithful data

#A data frame with 272 observations on 2 variables.

#

# [,1] eruptions numeric Eruption time in mins

# [,2] waiting numeric Waiting time to next

# eruption (in mins)

> head(faithful)

eruptions waiting

1 3.600 79

2 1.800 54

3 3.333 74

4 2.283 62

5 4.533 85

6 2.883 55
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BIC selects model EEE with just three components !!!!

-------------------------------------------------------

Density estimation via Gaussian finite mixture modeling

-------------------------------------------------------

Mclust EEE (ellipsoidal, equal volume, shape and orientation) model with 3

components:

log-likelihood n df BIC ICL

-1126.326 272 11 -2314.316 -2357.824

In [18]: 2 + 3*2 + 3

Out[18]: 11
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7. More on EM

We can actually get a handle on how different maximizing the
expected log likelihood is from maximizing the likelihood.

And we get to use the Kullback-Leibler divergence!!
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First, recall Jensen’s inequality.
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KL example, the exponential distribution
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EM:

Model: f (z , x | θ)

▶ x observed

▶ z latent

Iterates of θ: {θt}.

Q(θ | θt) = E (log(f (z , x | θ))

where E is over Z | x , θt .

θt+1 = argmax
θ

Q(θ | θt)
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We will express the difference between the log likelihoood and Q in
terms of a KL divergence.

First, we get a nice expression for the different between the log
likelihood and Q.

56



57



58



So, for example, we know that if

θt+1 is different from θt ,

we actually did increase the likelihood.

If θt is very close to a local max of the log likelihood, you will stay
there.
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8. Missing Data with the IID Multivariate Normal

Suppose we have our IID Xi ∼ Np(µ,Σ) model and we want MLEs
for µ and Σ.

But, in some of the Xi some of the components of Xi are missing.
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”o” for observed, ”m” for missing.
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We assume we have: MAR, missing at random.

For example, we don’t tend to drop the biggest or smallest, it is
just random which is missing.
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Note:

X ∼ N(µ,Σ).

Σ = E ((X − µ)(X − µ)′) = E (XX ′)− 2E (Xµ′) + E (µµ′) =
E (XX ′)− µµ′.

So,

E (XX ′) = Σ + µµ′.
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Note that this is very close to regression imputation where we
impute missing values by regressing the missing on the non-missing.

Note the our formula for the conditional mean of a multivariate
normal subvector Y says you should run a regression of each
element of the subvector on X .
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