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1. Introduction

A square matrix A = [aij ] is symmetric if aij = aji .

A square, symmetric matrix is positive definite (pd) if

x ′Ax > 0 ∀x .
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Our basic example is a covariance matrix.

If X = (X1,X2, . . . ,Xp)′ is a random (column) vector with
E (X ) = µ = (µ1, µ2, . . . , µp)′, then the covariance of X is

Σ = E ((X − µ)(X − µ)′) = [E ((Xi − µi )(Xj − µj)]

is symmetric.

Since
Var(a′X ) = a′Σa

Σ is positive definited unless some linear combination of the Xi has
0 variance.
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Let’s review two basic matrix decompositions for symmetric pd
matrices and use them to review basic properties of the
multivariate normal distribution.

We’ll look at:

(i):

The eigen decomposition.

(i):

The Choleski decomposition.

Later we will also look at the Singular Value Decomposition.

3



2. Change of Variable

To develop the normal distribution based on matrix
decompositions, we will need the change of variable formulas,
univariate and multivariate.

Let’s review these.
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Let Θ be a random variable with density p(θ).

In Bayesian statistics, θ is often used for the parameter of the
model so that p(θ) is the prior distribution.

The general Bayesian model consists of:

f (y | θ), p(θ).

Rather than think in terms of the parameter θ we may want to
consider a 1-1 reparmetrization

γ = g(θ),

where g is 1 to 1.

What is p(γ) ??
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Univariate change of variable
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Univariate change of variable

A simple way to see it.
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Example

Suppose Y ∼ Bernoulli(θ) and p(θ) = 1.

That is, we have the uniform prior on θ ∈ (0, 1).

Suppose we want to work with the odds-ratio, instead of the
probability.
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Calculus intuition for univariate change of variable
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Example, linear

Suppose X ∼ p(x |α), where α is a “shape” parameter.

Let Y = a + bX .

X = Y−a
b . dx

dy = 1
b .

f (y | a, b, α) = p(
y − a

b
)

1

b
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example:

Details:

If ‘scale’ is omitted, it assumes the default value of ‘1’.

The Gamma distribution with parameters ‘shape’ = a and ‘scale’ = s

has density

f(x)= 1/(s^a Gamma(a)) x^(a-1) e^-(x/s)

for x >= 0, a > 0 and s > 0. (Here Gamma(a) is the function

implemented by R’s ‘gamma()’ and defined in its help. Note that a

= 0 corresponds to the trivial distribution with all mass at point

0.)

f (x |a) =
1

Γ(a)
xa−1 e−x .

Y = sX , X = Y /s, dx/dy = 1/s.

f (y |s, a) =
1

Γ(a)
(y/s)a−1 e−y/s (1/s)
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Multivariate Change of Variable
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Example, Linear, Rk ⇒ Rk

Z = (Z1,Z2, . . . ,Zk)′.

µ ∈ Rk , A, k × k , invertible.

y = µ+ Az , z = A−1(y − µ),
dz

dy
= A−1.

f (y) = fz(A−1(y − µ)) |A−1|.
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3. Orthogonal Matrices and Rotation

A matrix p × p matrix P is orthogonal if

P ′P = PP ′ = I

where I is the identity matrix.

This means all the rows and columns have euclidean length 1 and
all the rows are orthogonal to each other and all the columns are
orthogonal to each other.

14



15



The columns of P (or the rows) form an orthonormal basis for Rp.

16



P may be viewed as a rotation.
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4. Multivariate Normal

In the univariate normal case it is useful to think a general
Y ∼ N(µ, σ2) as a linear function of a standard normal:
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What about the multivariate normal? Can we express it as a linear
function of a “standard normal”?
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The multivariate normal density from the change of variable and
Y = µ+ AZ :
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But, can we choose A is such a way that it tell us a nice story
about how the Zi are combined to create a dependent structure
embodied in a given Σ?

Given Σ, there is more than one way to choose A such that
Σ = AAT !!!!

21



Choleski Decomposition

Given symmetric, positive definite Σ we can always write Σ = AAT

where A is lower triangular.

In R2 we have:
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Eigen Decomposition

Also called the spectral decomposition.

We can always write a symmetric positive definite Σ = PDPT .

The columns of P are the eigen vectors of Σ and the diagnonal
elements are the corresponding eigen values. 23



The geometric picture is:

?worth a thousand words?
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Note:

A symmetric, pd.

A = PDP ′

(i)

|A| = |P|2 |D| = |D| =
∏

dii

(ii)

tr(A) = tr(DP ′P) = tr(D) =
∑

dii
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Note:

A = PDP ′

D
1
2 = diag(d

1
2
ii ).

A = PD
1
2D

1
2P ′ = PD

1
2P ′PD

1
2P ′

Let A
1
2 = PD

1
2P ′.

So,

A = A
1
2A

1
2 .

A
1
2 is called the symmetric pd square root of A.
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5. The Choleski Decomposition

Not only is the Choleski decomposition very powerful, you can
figure out basic things about it very simply!!

Simple and powerful, my favorite!!
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Computing the Choleski:

Choleski:

A symmetric, positive definite → ∃ lower triangular L such that

A = LL′

To compute L, you can recursively solve the system of equations
give by

LL′ = A
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The simple 2× 2 case:
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In general we have:

Notice that the top 2× 2 corner is just like the simple 2× 2 case!

After that we can do solve for L by interating over the rows, and
doing each row by iterating over the columns.
Assume we know all the rows of L for rows 1, 2, . . . , (j − 1).

j th row of L times first column of L′:

Lj1 L11 = aj1 → Lj1 = aj1/L11.
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j th row of L times second column of L′:

Lj1L21 + Lj2L22 = aj2 → Lj2 = (aj2 − Lj1L21)/L22
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j th row of L times i th column of L′, (j > i):

i∑
k=1

LjkLik = aji → Lji = (aji −
(i−1)∑
k=1

LjkLik)/Lii

32



and, finally,

j th row of L times j th column of L′, (j > i):

j∑
k=1

L2
jk = ajj → Ljj = (ajj −

(j−1)∑
k=1

L2
jk)1/2
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Other basic properties:

(i)

For L lt (lower triangular), L−1 is lt and fast to compute.

(ii) The system

Lx = b

is quickly recursively solved.
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(iii)

If A is symmetric, pd, then the system

Ax = b

can be solved by

A = LL′ → LL′x = b → L′x = L−1b

Let y = L−1b and solve for y using Ly = b.

Then solve for x using L′x = y .
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As previously noted:

See Murphy, page section 7.5.2.

QR is O(np2).
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6. More on the Multivariate Normal

We’ll use the Choleski decomposition to derive fundamental
properties of the multivariate normal distribution.

I (a) The marginal from a multivariate normal.

I (b) For normals, uncorrelated ⇒ independent.

I (c) The conditional from a multivariate normal.

I (d) Linear of normal is normal.
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We partition a normal vector into X and Y .
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We take the choleski root of Σ.
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We have (X ,Y )′ in terms of the choleski.
We have Σ in terms of the choleski.
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(a) Marginal of X , (b) uncorrelated implies independence.
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(c) Y |X = x .
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Solve for x coefficients in terms of Σ.
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Y |X = x .

44



An important special case:
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So, if (X ,Y ) are multivariate normal, X ∈ Rp, Y ∈ R, then,

So that the conditional distribution of Y |X = x has the form of
the standard multiple regression model with iid homoscedastic
normal errors.
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(d)

48



7. Simulating a Multivariate Normal

Suppose we wish to draw Y ∼ N(µ,Σ).

Let Z = (Z1,Z2, . . . ,Zp)′, Zj ∼ N(0, 1), iid .

Then let,
Y = µ+ AZ

where,
Σ = AA′

If A is cholesky, multiplication AZ is fast.
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8. Likelihood, Sufficiency, and MLE

Let’s use our spectral decomposition to learn about the
multivariate normal likelihood.

Let,
Xi ∼ Np(µ,Σ), iid , i = 1, 2, . . . , n.

Xi = (Xi1,Xi2, . . . ,Xip)′
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Recall that for a parametric model,

f (y | θ), θ ∈ θ,

given data, y, the maximum likelihood estimator is obtained by
finding the θ that makes what you have seen most likely:

θ̂ = argmax
θ

f (y | θ)

In practice we often maximize the log of the likelihood or minimize
the negative of the log likelihood.
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Example:

FOC: “first order condition”, f ′ = 0.
So, the observed sample frequency is the MLE!
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In our problem we will observe Xi = xi for
Xi ∼ Np(µ,Σ), iid , i = 1, 2, . . . , n.

note:

x a p dimensional column vector. A p × p.

x ′Ax = tr(x ′Ax) = tr(Axx ′),

where tr is the trace.
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A =
∑
i

(xi − x̄)(xi − x̄)′
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Sufficiency:

Give data, functions of the data are sufficient is they are all we
need to compute the likelihood.

Clearly, for iid MVN data,

x̄ and A

are sufficient.

p + p(p+1)
2 quantities instead of the n p data.
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What is A?

The k , j element of A is:

Ajk =
n∑

i=1

(xij − x̄j)(xik − x̄k)

The sample covariance between Xj and Xk is

sjk =
Ajk

(n − 1)

The sample variance of Xj is

sjj =
Ajj

(n − 1)
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MLE:

L ∝ |Σ|−n/2 exp(tr(−1
2 Σ−1A)) exp(−n

2 (x̄ − µ)′Σ−1(x̄ − µ))

Clearly, for any Σ, maximum over µ is attained at

µ̂ = x̄

Notation: etr(A) = exp(tr(A)).
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9. Checking for Normality
Suppose Y ∼ N(µ,Σ).

Σ = PD
1
2D

1
2P ′.

Σ−1 = PD−
1
2D−

1
2P ′.

Then
Y = µ+ PD

1
2Z , Z ∼ N(0, I ).

So,
Z = D−

1
2P ′(Y − µ).

Z ′Z = (Y − µ)′PD−
1
2D−

1
2P ′(Y − µ) = (Y − µ)′Σ−1(Y − µ).

So,
(Y − µ)′Σ−1(Y − µ) = Z ′Z =

∑
Z 2
i ∼ χ2

p.
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So if Yi ∼ N(µ,Σ), iid , then

Di = (Yi − µ̂)′Σ̂−1(Yi − µ̂) ≈ χ2
p, iid

So you can check to see if the Di look right.

I usually use a qqplot.
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10. Weighted Regression
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