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1. Goals
In this set of notes and the next we want to become familiar with
some of the basic vector/matrix (Linear Algebra) ideas that are
pervasive in statistics.

For example in numpy.linalg
(https://numpy.org/doc/stable/reference/routines.linalg.html) we
have:

We need to know what some of these are.
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Note:

This will not be a formal “intro to Linear Algebra”.

Just an informal, hopefully intuitive reminder of basic ideas that
are fundamental for us.

That is, I’m not dotting all the i’s and crossing all the t’s, but I
need to be able to say things like “so these vectors are an
orthonormal basis” and you know what I mean.

In particular the following matrix decompostions are important:

I QR

I spectral, (eigen values and vectors)

I Cholesky

I Singular value

So, we will review these and get a look at how the play a role in
statistics.
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2. Vectors, Matrices, and Linear Combinations

A vector x in Rn is

I tend to use both notations for the transpose.

The default is that a vector is column vector.
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We multiply a scalar times a vector and we add vectors:
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Linear Combinations

Let {x1, x2, . . . , xm} be vectors in Rn.

Note that now xi is the i th vector, not the i th component of the
vector x .

A linear combination of the {xi} is
∑m

i=1 αi xi .

Linearly Independent

{x1, x2, . . . , xm} are linearly independent if,

m∑
i=1

αi xi = 0 ⇐⇒ αi = 0, i = 1, 2, . . . ,m.
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Span

Let S = {xi}. The span of S is the {
∑
αixi , xi ∈ S , αi ∈ R}.

That is, all the linear combinations of vectors in S .

Subspace

A subset S of Rn is a (linear) subspace if
x , y ∈ S =⇒ αx + βy ∈ S .

Basis

The set of vectors B is a basis for the subspace M if the vectors in
B are linearly independent and M is the span of S .

Dimension of a Subspace

The dimension of a subspace is the number of vectors in a basis.
You can show this is well defined.
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The span of {x}
is a one dimen-
sional subspace.

The span of
{x1, x2} is a
two dimensional
subspace.

The intersection of two
subspaces is a subspace.

Note the magic !!!: we imagine these vectors to be in Rn!!.
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Standard Basis of Rn:

Let ei = [0, 0, . . . , 1, 0, 0, . . . , 0]′ where the 1 is in the i th position.

Then, for x = [xi ], x =
∑n

i=1 xiei =⇒ span of {ei} is Rn.∑
αiei = 0 =⇒ αi = 0, i = 1, 2, . . . , n, so the set {ei} is linearly

independent.

So, dimension of Rn is n.

The set {ei} is called the standard basis.
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3. Inner Products

x = [xi ], y = [yi ], x , y ∈ Rb.

The inner product between x and y is:

< x , y >=
∑

xi yi .

The geometric intuition is the < x , y > tells us about the angle
between x and y .

Orthogonal vectors:

x is orthogonal to y if
< x , y >= 0.

We write x ⊥ y .
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L2 (euclidean) norm:

||x || =
√
< x , x >.

Euclidean distance:

x1, x2 ∈ Rn, d(x1, x2) = ||x1 − x2||.
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Note:

Suppose x ⊥ y , z = x + y , then,

||z ||2 =

=< x + y , x + y >

=< x , x > +2 < x , y > + < y , y >

= ||x ||2 + ||y ||2
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Orthogonal Projection of y on x :

We want to “project” y onto x .

The projection is a vector in the span of {x} so it equals β̂x for
some β̂.

We want the residual, y − β̂x to be orthogonal to x :

0 =< y − β̂x , x >=< y , x > −β̂ < x , x > =⇒ β̂ =
< y , x >

< x , x >
.
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projection gives the minimum distance:

Suppose we want:
minimize
ŷ∈Span({x})

||y − ŷ ||2

Which is the same as:

minimize
β∈R

||y − β x ||2
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So clearly the minimum is at β∗ = β̂.
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Cauchy Swartz Inequality

So,

−1 ≤ < x , y >

||x || ||y ||
≤ 1
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The angle between two vectors:

x , y ∈ Rn.

Given the CS inequality, we can let the angle between x and y be
given by

cos(θ) =
< x , y >

||x || ||y ||
, θ ∈ [0, π].
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example: x ⊥ y ⇒ cos(θ) = 0, θ = π/2 = 90 degrees.

example: cos(θ) = 1, θ = 0, x and y are colinear.
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4. Matrices

A matrix is a two-way array.

The n ×m matrix X is [xij ], i = 1, 2, . . . , n; j = 1, 2, . . . ,m.
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It often helps to think of a matrix as a bunch of columns:

It often helps to think of a matrix as a bunch of rows:
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The Transpose:

To transpose a matrix we flip the rows and columns.

So if X is n ×m then X ′ is m × n.

Symmetric Matrices

A square matrix (n × n) is symmetric if A = A′.
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Matrix Multiplication:
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Several ways to think about matrix multiplication.

A is n × p. b ∈ Rp.

Ab is a linear combination of the the columns of A.

Similarly b′A is a linear combination of the rows for A.
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Note

(AB)′ = B ′A′.

A = [aij ],B = [bij ], same dimensions, aA + bB = [a aij + b bij ].

C (A + B) = CA + CB

and so on...
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Note

x , y ∈ Rn. < x , y >= x ′y = y ′x .

x ∈ Rn, y ∈ Rm. xy ′ = [xiyj ].
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Linear Transformation

A fundamental way to think about a matrix is as a linear
transformation.

For A, n × p:

A(x) = Ax .

A : Rp ⇒ Rn

Linear:

A(α x + β z) = αA(x) + β A(z)
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Diagonal Matrices

A square matrix A is diagonal if A = [aij ] has aij = 0, ∀i 6= j .

We write A = diag(a) = diag(a1, a2, . . . , an) means:

A =

The Identity

I = diag(1, 1, . . . , 1).

Ix = x .
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Rank of a matrix

Suppose
X = [x1, x2, . . . , xp].

Let sp(X ) be be span of the columns of X :

sp(X ) = {Xb, b ∈ Rp}.

The column rank is the dimension of sp(X ).

Similarly, the row rank is the dimension of sp(X ′), the rows of X .

It runs out that the row rank is the same as the column rank so we
can define the rank of a matrix to be the column rank.
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Inverse of a Matrix

Suppose A is an n × n square matrix.

Suppose the rank of A is n.

Then the columns of A form a basis for Rn.

Hence, for any y ∈ Rn there is a unique b ∈ Rn such that y = Ab.

Hence, ∃ a matrix A−1 which is the inverse of A.
That is,

y = Ab ⇒ b = A−1y .
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Note

AA−1 = A−1A = I .

(AB)−1 = B−1A−1.

I = I ′ = (AA−1)′ = (A−1)′A′.

(A′)−1 = (A−1)′
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Trace of a Matrix

A = [aij ], n × n.

Trace of A:

tr(A) =
n∑

i=1

aii

A, n × k , B, k × n,

tr(AB) = tr(BA)

example:

y , x ∈ Rn.
y ′x = tr(y ′x) = tr(xy ′).
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5. Orthogonal Projections and Orthogonal Matrices

Suppose V is a subspace of Rn with dim(V ) = p < n.

For any y ∈ Rn, we want to orthogonally project y onto V .

Let PV denote the map such that PV y is the projection.

That is,

PV y ∈ V , y − PV y ⊥ V .

That is,
< y − PV y , v >= 0, ∀ v ∈ V .
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We can always find a basis for V .

Let X be the matrix whose columns are the basis vectors,
sp(X ) = V .
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Let X = [x1, x2, . . . , xp], rank(X ) = p.

Given y , there is some b such that PV y = Xb.

We need:

< y − Xb, xj >= 0, ∀j , ⇐⇒ X ′(y − Xb) = 0.
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Very cool.

Incredibly important.
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V perp

Let V be a subspace.

V⊥ = {x such that x ⊥ v ,∀ v ∈ V }.

V⊥ is a subspace.

PV⊥ = I − PV

y = PV y + PV⊥y , ||y ||2 = ||PV y ||2 + ||PV⊥y ||2.
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Minimum Distance to a Linear Subspace

Let y be a vector in Rn.

Let V be a p dimensional subspace.

Let X be a n × p matrix whose columns are a basis for V .

minimize
v∈V

||y − v ||2

Which is the same as

minimize
b∈Rp

||y − Xb||2
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Let b̂ = (X ′X )−1X ′y .

So, PV y = Xb̂.

Let QV = PV⊥ .

||y − Xb||2 =

= ||PV y + QV y − Xb||2

= ||X (b̂ − b) + QV y ||2

= ||QV y ||2 + ||X (b̂ − b)||2

= ||QV y ||2 + (b̂ − b)′X ′X (b̂ − b)

So, the min is at b∗ = b̂.
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Sum of Subspaces

V ,W subspaces.

V + W = {v + w , v ∈ V ,w ∈W }.

V + W is a subspace.

Orthogonal Subspaces

V ,W subspaces.

V ⊥W ⇐⇒ v ⊥ w , ∀ v ∈ V , w ∈W .
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Key result

V1, V2 orthogonal subspaces.

PV1+V2 = PV1 + PV2
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Let Vi = span(Xi ).

V1 ⊥ V2 ⇒ X ′1X2 = 0.
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Projecting onto the sum of orthongoal subspaces

Vi is a subspace, i = 1, 2, . . . ,m.

Vi ⊥ Vj , i 6= j .

P∑m
i=1 Vi

=
m∑
i=1

PVi
.

To project onto the sum of orthogonal subspaces, you can project
onto each subspace one at a time and then add up the projections.
This underlies a ton of stuff in statistics.

||P∑m
i=1 Vi

y ||2 =
m∑
i=1

||PVi
y ||2.
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Orthonormal vectors

A set of vectors {o1, o2, . . . , op} is orthonormal if

||oi || = 1,∀i , < oi , oj >= 0, i 6= j .

A set of orthonormal vectors is always linearly independent.

If V = span({oi}), then

PV y =

p∑
i=1

< oi , y > oi .

||PV y ||2 =

p∑
i=1

(< oi , y >)2.
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We can see this with the matrix formula for the projection.

Again let {o1, o2, . . . , op} be orthonormal.
Then,
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Orthogonal matrices

If p = n we have O = [o1, o2, . . . , on] with

O ′O = OO ′ = I

O is an orthogonal matrix.

Orthogonal matrices play a key role in 3 out of 4 of our important
matrix decompositions !!!!

Two ways to look at orthogonal matrices.
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O ′O = I =⇒ ON matrix is a rotation

Thinking of x ⇒ Ox as a map from Rn to Rn, O is a rotation.

Because O ′O = I ,

< Ox ,Oy >= x ′O ′Oy = x ′y =< x , y > .

and,

||Ox || = ||x ||.
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In R2
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OO ′ = I =⇒ ON matrix is change of basis

If {vi}ni=1 is a basis for Rn then any x ∈ Rn can be written as∑
civi .

By a change of basis we mean writing vectors in terms of an
alternative basis.

If {ui}ni=1 is also a basis for Rn, then x =
∑

diui , for some di .

Let O = [o1, o2, . . . , on].

x = Ix = OO ′x =
∑

oi < oi , x >
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In R2

x =< o1, x > o1+ < o2, x > o2
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6. Gram Schmidt and QR

Let X = [x1, x2, . . . , xp]. Vj = span({x1, x2, . . . , xj}).

I span({x1, x2, . . . , xj}) = span({o1, o2, . . . , oj}).

I for O = [o1, o2, . . . , op], O ′O = Ip.
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p = 2
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The QR Decomposition

In general, since xj always is a linear combination of
{o1, o2, . . . , oj}, we can always write X = [x1, x2, . . . , xp] as

X = Q R
where

I Q ′Q = I , if p = n, Q is orthogonal.

I R is upper triangular, p × p.

Upper Triangular: R = [rij ], rij = 0 for i < j .

rij : xj ∈ span({o1, o2, . . . , oj})⇒
xj =

∑j
i=1 rijoi =

∑j
i=1 < xj , oi > oi .
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Note

I Given a basis for a subspace, you can always construct an
orthonormal basis.

I The inverse of an upper triangular matrix is upper triangular.

I For X , n × n, ∼ O(n3) operations.
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QR and Regression

http://madrury.github.io/jekyll/update/statistics/2016/07/20/lm-in-R.html
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Backsolve

We often want to solve Ax = y for x given y and A.
If A is triangular, this is easy.

This is often called “backsolve”.
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all of our matrix decompositions involve

I Orthogonal matrices

I diagonal matrices

I upper/lower triangular matrices
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7. Determinant

Let A be a square matrix.

The determinant of a square matrix will play a key role in some
statistical compuations.

For example, the densities of the multivariate normal and
multivariate t involve determinants.

The determinant of a n × n matrix is a number.

det : Rn×n ⇒ R.
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Here is an intuitive definition of the determinant.

Let Cn be the unit cube in Rn. That is, Cn = [0, 1]n.

det(A) ≡ |A| = Volume({Ax , x ∈ Cn})× (−1)k

where k is the number of orientation flips.

I can get away with being vague about “orientation flips” because
most of the time either it will be zero, or we just need the absolute
value of the determinant.
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Example
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Example

One orientation flip.
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Example
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Key Properties of the Determinant

A and B are square, U is upper trianguler, L is lower triangular,
and O is orthogonal.

Diagonals of U and L are positive. |A|+ is the absolute value of
the determinant of A.
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Key

All of our matrix decompostions involve upper and lower triangular,
diagonal, and orthogonal matrics, and products of matrices.

For of these cases, the determinant is simple and intuitive.

Example

X is n × n. X = QR.

det(X ) =
∏

Rii .
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8. Random Variables and Vectors

Recall that for a discrete random variable X we have:

P(X = xk) = pk , k = 1, . . . ,m, E (X ) =
∑

pkxk .

Recall that for a continuous random variable X we have:

P(X ∈ A) =

∫
A
f (x)dx , E (X ) =

∫
f (x) x dx .

Var(X ) = E ((X−E (X ))2), Cov(X ,Y ) = E ((X−E (X ))(Y−E (Y )).

We need to work the vectors of random variables.
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Expectation of a Random Vector
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Expectation of a Random Matrix
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Variance (or Covariance) of a Random Vector

I will probably use both Var(X ) and cov(X ) for the same thing.
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Expectation of a Matrix (Matrices) time a Random Vector
(Matrix)
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Variance (Covariance) of a Matrix times a Random Vector
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A Single Linear Combination

X = [Xi ], i = 1, 2, . . . , p. a ∈ Rp.

E (a′X ) = a′µ.

Var(a′X ) = a′Σa =
∑

aiajσij =
∑

a2i σii +
∑
i<j

2aiajσij .
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Var(a′X ) = a′Σa

Since Var(a′X ) ≥ 0 we have

a′Σa ≥ 0, ∀a.

Σ is positive semi-definite.

If a′Σa > 0, ∀a, Σ is positive definite.
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9. Statistical Connections

Let’s go back through the linear algebra and explore some of the
basic statistical connections.

We have already seen how the QR decomposition is used in linear
regression.
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Sample variance and standard deviation

Suppose we have observation on a single numeric x .

Here, Var(x) is the sample variance of x , also often denoted by s2x .
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Covariance
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Correlation
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Simple Regression Likelihood

Yi = βxi + εi , εi ∼ N(0, σ2), iid .

So,

Yi | xi ∼ N(xiβ, σ
2).

f (y |x , β, σ) =
n∏

i=1

n(yi |xiβ, σ2).

Where n(y |µ, σ2) is the normal density with mean µ and standard
deviation σ.

78



n(y |µ, σ2) =
1√
2π

1

σ
exp(− 1

2σ2
(y − µ)2).

Prob(µ− σ < Y < µ+ σ) = .68

Prob(µ− 1.96σ < Y < µ+ 1.96σ) = .95.

E (Y ) = µ, Var(Y ) = σ2.
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We write our model in vector notation
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Mle:

We estimate β and σ by maximizing the likelihood:

max
β,σ

L(β, σ | y , x) ∝ f (y | x , β, σ).
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The Sample Mean and the one vector

A basic model in statistics is

Yi ∼ N(µ, σ2), iid.

Or,

Yi = µ+ εi ∼ N(0, σ2), iid .
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Write the model as a regression:
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Multiple Regression Model
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MLE
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Mean and Variance of β̂
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QR and Var(β̂)

Easy to invert an upper triangular and the inverse is upper
triangular.
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